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Main arguments about complexity of NFS

The cost the factorization of N with GNFS is:

LN(1/3, (64/9)1/3 + o(1))

as a function of N, as N grows to infinity.
However, NFS for factoring is not the whole story.

We mentioned NFS-DL over finite fields.
SNFS is also a special case.
and there are more weird ways to use NFS, including algebraic
curves.

The complexity is L(1/3, c + o(1)) most of the time, but with
varying c.
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CEP and analogues
The Canfield-Erdős-Pomerance theorem is fundamentally
important for the analysis of NFS.

CEP with the L function
A random integer n ≤ Lx (a, α) is Lx (b, β)-smooth with probability:

Lx

(
a − b,−α

β
(a − b)(1 + o(1))

)
.

This theorem has useful analogues in other contexts:

Number fields: we saw it with NFS.
The smoothness probability according to given norm bounds
obeys the same rules.
Polynomials over finite fields.
Function fields.
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This goes very heuristic, very quickly

Significant caveat about the extension of CEP to number fields or
function fields:

we can only say that this is valid for a fixed number/function
field.
the uniformity of the result across a range of number/function
fields is a more difficult aspect. Note that this typically
depends on our input!

As a general rule, a lot of these more subtle things are either
proven, or at least more accessible to proofs in the polynomial /
function field case than in the integer / number field case.

The more down-to-earth approach is not too much concerned
about these subtleties, since anyway a lot of things are really
heuristic.
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Main questions for complexity analysis

What is the target on the bottom of the diagram?
What mathematical objects do we have on both sides?
What objects are we trying to decompose, along which basis?
What are the sizes (on both sides)?
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Notations

We’re reusing some notations that we already used for the analysis:

loglog N LN(1/3, δ) algebraic degree.
LN(1/3, β) smoothness bound ≈ # relations.
LN(1/3, α) bounds on a and b in a − bx .

Asymptotically, relation collection and linear algebra are always in
the same ballpark, so we may think of α and β as being equal.

CSE291-14: The Number Field Sieve; Variants of NFS 7/50



A comparison point

Recall the key asymptotic aspects of the analysis of GNFS.

One rational side, and one algebraic side of degree

d = loglog N LN(1/3, δ + o(1)) = (δ + o(1))
( log N

log log N

)1/3
.

. . .
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A comparison point

Coefficients of f0 and f1 both ≈ m = LN(2/3, 1
δ + o(1)).

Two norms, of absolute values

| Res(a − bx , f0)| ≈ LN(2/3, 1
δ

+ o(1))

| Res(a − bx , f1)| ≈ LN(2/3, 1
δ

+ αδ + o(1)).

Choose δ to minimize the product of norms, and eventually
equate the remaining things to get the final asymptotic
complexity estimate.

The size of the norms matters!
The key thing is really 1

δ + 1
δ + αδ. How it connects to the final

complexity is not the important part of the machinery.
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The Special Number Field Sieve (SNFS)

Remember: NFS started with a very exceptional case.

N = 2128 + 1, f0 = x − 243, f1 = x3 + 2.

The coefficients of f1 are extremely small.

It is highly unlikely to find such a good polynomial pair with
other random integers of that size.
Argument: Say we constrain coefficients of f0 and f1 to
absolute values 243 and 2: only 243×2+1×4 = 290 integers.

Let us define a family of integers such that this sort of
extraordinary things are possible.
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An SNFS family

Let (Ni)i≥0 be a family of integers such that. . .

Informally: the NFS analysis works in an almost dream-like
way.
More formally: we’ll try to do this dream analysis and come
back to what the exact definition of the family should be.
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An SNFS family

Let (Ni)i≥0 be a family of integers such that. . .

There exists a polynomial f1 of degree
d = loglog N LN(1/3, δ+ o(1)), for some δ to be determined. . .
with coefficients in LN(2/3, o(1)). . .
and such that there is a polynomial f0 with coefficients just
large enough so that Res(f0, f1) = N. That means coefficients
of size LN(2/3, 1/δ).

Then in this case, we end up with:

| Res(a − bx , f0)| ≈ LN(2/3, 1
δ

+ o(1))

| Res(a − bx , f1)| ≈ LN(2/3, αδ + o(1)).
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Consequence for the analysis

If all of this actually happens:
1
δ + αδ is minimized with δ = 1/

√
α.

The smoothness probability is 2
√

α
3β , and the constraint is:

2α− 2
√
α

3β = β.

We finish with α = β and 2
√
α = 3β2, which leads

β = (2/3)2/3 = (4/9)1/3 and:

2β = (32/9)1/3.

If we go backwards, this gives δ = (3/2)1/3.
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What is SNFS

A family of SNFS integers
Let (Ni)i≥0 be a family of integers such that for each Ni :

There exists a polynomial f1 of degree
d = loglog Ni LNi (1/3, (3/2)1/3 + o(1)).
with coefficients in LNi (2/3, o(1)). . .
and such that there is a polynomial f0 with coefficients of size
LNi (2/3, 1/δ) such that Res(f0, f1) = Ni (or a multiple of Ni).

Then the asymptotic cost of factoring an integer in this family is
heuristically

LNi (1/3, (32/9)1/3 + o(1)).
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Does this mean anything?

The previous definition is, in essence, an asymptotic one.
The question that gets often asked is

Let N = blah. Is N an SNFS target?

The most useful answer is that if N can be obtained as the
resultant of two polynomials with:

an algebraic polynomial of a reasonable degree;
an algebraic polynomial with super small coefficients;
and a rational polynomial with “normal” coefficients

then YES, we’re going to obtain something better than GNFS.

CSE291-14: The Number Field Sieve; Variants of NFS 15/50



Examples of SNFS numbers
Integers of the form r e − s with r , s bounded by a constant are
easily obtained as resultants of an SNFS polynomial pair.

Note however that the same is not true of their composite factors,
which might be easier to tackle with GNFS!

Example: the 1214-bit integer 3766 + 1 was factored using some
ECM first, and then some (fairly easy) GNFS for the rest.

3766+1=2×5×656822133606644237×2102130222907676881×68749406802433157741×

2774238816790942869692104969×11913498249982150275039859349×

30386584928990666330278777161645922849×

303889341986146630791713973167874707042199651755239385807424842909×

626943698188540315697357582114234580866611225002057825604732642929274209337×

1643219997305927454467487321521956788712629535384031275052894683382398757857
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Analysis of NFS-DL

If we use the GNFS polynomial selection to compute discrete
logarithms modulo a prime p, then the analysis (of the
precomputation phase) is exactly the same, and N is replaced by p.

Lp(1/3, (64/9)1/3 + o(1)).
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Analysis of NFS-DL (JL)
If d is the GNFS-factoring preferred degree, Joux-Lercier works
with degrees D and D + 1, with D = d/2.

deg f0 = D + 1, ridiculously small coefficients.
deg f1 = D, coefficients around p1/D.

Then for |a| ≈ |b| ≈ A, we have:
| Res(a − bx , f0)| ≈ AD+1

| Res(a − bx , f1)| ≈ ADp1/D

And then
A2D+1p1/D ≈ Lp(2/3, αδ + 2

δ
).

Same as GNFS-factoring, but the balance is a bit weird:
αδ spreads out between both sides,
and 2

δ is only on one side.
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The (defunct) Function Field Sieve

FFS is an interesting variation of NFS.
We trade all number fields for function fields.
A function field is attached to a curve, with all the algebraic
geometry theory that comes with it.
We are interested in high degree extensions of very small finite
fields (think F2).

Note
The Function Field Sieve is now almost completely superseded by
the quasi-polynomial algorithm(s) for DLP in small-characteristic
fields.
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Analogy

N ∈ Z, n bits. H ∈ F2[x ], deg H = n.
N = Res(f0, f1 ∈ Z[x ]) H = Resy (f0, f1 ∈ F2[x , y ])
ϕ = a − bx ∈ Z[x ] ϕ = a(x) − b(x)y ∈ F2[x , y ]
Number field defined by f0 Function field defined by f0

(curve defined by f0)
Ideal ⟨a − bα⟩ → prime ideals Function ϕ(x , y) → places
Norm p 2deg p(x)

Smoothness of integers Smoothness of polynomials
Canfield-Erdős-Pomerance (various analogues)

All n-bit integers are different All F2n are isomorphic!

Everything works pretty much the same, and actually some tricky
things become easier (cofactorization).
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FFS allows crazy things

Polynomial selection for FFS is very special.

Decide on your dream sizes and degrees.
Choose f0(x , y) at random.
Choose f1(x , y) at random.
Repeat until Resy (f0, f1) has an irreducible factor with the
desired degree.

This means that FFS reaches the SNFS complexity.
FFS works also for other fields (see later).
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FFS allows crazy things

More fun stuff: x and y really have symmetric roles in FFS.
The following works (assuming correct degrees and so on):

Choose f0(x , y) = y − (random polynomial in x).
Choose f1(x , y) = x − (random polynomial in y).
Work with ϕ(x , y) with well chosen degrees.

In that situation, both f0 and f1 define function fields of degree 1,
meaning: F2[x ], really!

(in practice, we might prefer the larger degree choices, so that we can
benefit from somewhat distorted smoothness situations, via analogues of
the Murphy-α value).
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Coppersmith’s algorithm

Coppersmith’s algorithm is a special case of FFS (but was invented
10 years earlier), working with the polynomials f0 = y2k − R(x)
and f1 = y − xh.

This is very special because f0 has degree a power of two. In
algebraic geometry terms: a purely inseparable cover of P1.
In more concrete terms, this makes it possible to share the
factor base between the two sides, which is a unique feature.
The complexity is L2n(1/3, (32/9)1/3 + o(1)) when 2n is such
that 2k is really the sweet spot for the degree. The general
FFS is much more flexible.

Yet, Coppersmith’s algorithm is a great landmark, being the very
first L(1/3) algorithm!
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NFS/FFS on more things

The general methodology of finding smooth things also works on
the number fields and function fields that we consider.

In a family of number fields defined by an NFS-like
polynomials (very important assumption!), we can:

try to factor a − bα.
and eventually do fancy things like class group and unit group
computations in time L(1/3).

In a family of high genus algebraic curves with defining
polynomials having a prescribed form (degx H and degy H
both somewhat large), we can mimic FFS.

We can decompose into low-degree prime divisors.
Thanks to a descent procedure, we can solve the DLP!

Note that in these cases, we deal with only one side.
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Multiple kinds of finite fields

Multiple ways to create a k-bit finite field:

Fp, for a k-bit prime p.
F2k =F2[x ]/f (x) for an irreducible f ∈ F2[x ] of degree n = k.
More generally, Fpn , with n log2 p ≈ k.

Fp and F2k are two opposite ends of the spectrum.
Fields of (roughly) the same size are along the line:

log n + log log p = log(k log 2) = constant.

When we compare finite fields, we usually denote Q = pn.

How does the DLP cost evolve as a function of Q?
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Multiple kinds of finite fields

≈ same size Q = pn

NFS

FFS

log log p

log n

Prime fields: deg = 1, characteristic is large: NFS.
Binary fields: p = 2, everything is in the degree: FFS.
Does it extend to more fields?
What happens when log log p ≈ log n?
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Easy: extending FFS

(reminder: FFS is dead!)
It is easy to reformulate FFS with some characteristic p larger than
2, and see what constraints must be put on p.

The FFS range
Answer: FFS works as long as

p ≤ LQ=pn(1/3, o(1))

which we can also interpret as

log n ≥ 2 log log p − log o(1) + 2 log log log Q.
≥ 2 log log p + away from 0 quickly enough.

CSE291-14: The Number Field Sieve; Variants of NFS 27/50



FFS range: asymptotic meaning

The FFS range
If (FQi )i≥0 is a family of finite fields, with Qi = pni

i , and F is a
function such that:

F (Q) ≤ LQ(1/3, o(1)) (as Q → ∞)
pi ≤ F (Qi)

Then precomputation phase of the DLP in (FQi )i≥0 costs:

LQi (1/3, (32/9)1/3 + o(1)).

This is informally called the small characteristic range.
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FFS range: graphically

log n = 2 log log p

FFS

log log p

log n
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Extending NFS

There are various ways to deal with fields of rather large
characteristic, and small degree.

Extension proposed early on by Schirokauer.
Better version by generalizing Joux-Lercier.

Choose d according to Q, pick D = d/2.
Pick small degree D + 1 polynomial with a degree n factor
mod p (notation: ψ(x)).
Find small vector in lattice of dimension D + 1 and determinant
Q spanned by p, . . . , pnx , and ψ(x) and its multiples.
This works as long as n ≤ D + 1, which translates to

p ≥ LQ(2/3, o(1)).
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NFS range: asymptotic meaning

The NFS range
If (FQi )i≥0 is a family of finite fields, with Qi = pni

i , and F is a
function such that:

F (Q) ≥ LQ(2/3, o(1)) (as Q → ∞)
pi ≥ F (Qi)

Then precomputation phase of the DLP in (FQi )i≥0 costs:

LQi (1/3, (64/9)1/3 + o(1)).

This is informally called the large characteristic range.
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NFS range: graphically

log n = 2 log log p

FFS
log n = 1

2 log log p

NFS

log log p

log n
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The remaining cases

The “middle case” was long thought as being much harder.
The first LQ(1/3) algorithm was found in 2006. Since in the middle
case, p itself is less than LQ(2/3, o(1)), it is actually quite simple:

Take small f0 with deg f0 = n, and simply take f1 = f0 + p.
This is really as simple as it can get. Provided we are away
from both boundaries, the complexity is
LQ(1/3, (128/9)1/3 + o(1)).
This can be improved: other methods reach
LQ(1/3, (96/9)1/3 + o(1))
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Boundaries are a nightmare

log n = 2 log log p

FFS
log n = 1

2 log log p

NFS

“NFS-HD”

log log p

log n

The complexity is easier to express away from the boundaries.
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Many other variants

There are multiple variants of the above algorithms, with
competing polynomial selection methods.

Some adjustments for the boundary cases.
Some finer-grain asymptotic estimates.
Adaptation to composite degree.
Adaptation to fields of SNFS-like characteristic.
Use of towers of number fields.
. . .
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The quasi-polynomial algorithm
In the FFS range, a different approached was introduced in 2013,
reaching eventually quasi-polynomial complexity.

First QP complexity by BGJT14.
Multiple variants, practical improvements, and experimental
results.
The algorithm is so different that proving stuff is possible!

Theorem (Quasi-polynomial algorithm)
Given any p and any n, the DLP in F×

pn can be solved in expected
time

CQP(pn) = (pn)2 log2 n+O(1).

This means that FFS is all but dead, except very close to the
boundary.
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Small, medium, large

Finite fields are not T-shirts, unfortunately.

The small, medium, and large characteristic regimes are asymptotic
considerations!!
They only make real sense for an infinite family of target fields.

In practice:

Comparing log log p and log n may give a rough idea.
In cases where the answer seems unclear, the only way to
decide which method is best is by experimenting!
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Multiple number fields

MNFS is a variant of NFS, proposed by Coppersmith in 1993.

Asymptotically, this beats NFS.

LN(1/3, ((64/9)1/3 = 1.923)+o(1)) → LN(1/3, 1.902+o(1)).

This was later adapted to the discrete logarithm context.
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The MNFS diagram

Z[x ]

Q

Z/NZ

Q(α1) Q(α2) · · · Q(αk)

Pick a − bx .
See if Res(a − bx , f0) is smooth (sieve).
If yes, for j ∈ [1, k]: See if Res(a − bx , fj) is smooth.

If yes, we have a relation!
Goal (R(m))2 ≡ (A1(m) · · · Ak(m))2 mod N.
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Basic idea

Informally, the idea is to “share” some computation.
Polynomial selection is not too hard.

Pick a good polynomial pair (f0, f1).
Derive fj as uj f0 + vj f1 for a few small multipliers.
We might as well adjust polynomial selection criteria a little
bit.
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Orders of magnitude

In Coppersmith’s analysis, we need LN(1/3, 0.13 . . .) number fields
(current range: this means dozens of number fields).

The rational side is easier, and is the one that is shared.

The algebraic sides have smaller smoothness bounds, yet the
algebraic norms are bigger. Smoothness is rare!
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What about practice?

Coppersmith’s MNFS has never been used beyond very small
proof-of-concept experiments.

Implementation and optimization is certainly not a trivial task, but
not insurmountable either.

Whether it is possible/useful to sieve is not entirely clear.
Per-pair ECM, or product trees, can be ways to go.
Linear algebra has to deal with a weird matrix which deserves
special treatment.

The determination of the crossover point between the usual NFS
and MNFS is completely open.
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What is o(1)?

GNFS complexity is

LN(1/3, (64/9)1/3 + o(1)).

Here, o(1) is a function that tends to zero as N tends to ∞.

This is a lot different from an asymptotic complexity bound of the
form O(blah). Here, we have a multiplicative unknown function
that belongs to LN(1/3, o(1)).
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What can you put in LN(1/3, o(1))?

LN(1/3, o(1)) = exp
(
o((log N)1/3(log log N)2/3)

)
.

Any polynomial in log N is in LN(1/3, o(1)).
Even super-polynomial exp((log N)x ) for x ≤ 1/3 is.
Oscillatory behaviour can also be swallowed, e.g. the following
completely imaginary multiplier is in LN(1/3, o(1)):

2 − cos
(

2π · 31/3
( log N

log log N

)1/3)
.

(rationale: after all, what can we say of what happens when
the “ideal” degree is halfway between two integers?)
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We don’t know the truth
Comparison of L(N) = LN(1/3, (64/9)1/3) with something that
would be consistent with our generous asymptotic inaccuracy:

2512 2795 21024 21536 22048 22560 23072 23584 24096

240

256

272

288

2104

2120

2136

2152
L(N)

L(N)1 + sin(loglogN)/log(logN)
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Does that matter?

FAQ: how expensive is RSA-(n + 200) compared to RSA-n?
We often do as if the cost were c · L(N) for some unknown
constant c, instead of the not really useful L(N)1+o(1).
In the 1990s, some words of caution were usually going with these
bodacious approximations.
This has since become the accepted practice for establishing key
size recommendations.

The usual RSA key size ↔ symmetric key size correspondence
table comes from here.
Shorter range extrapolations usually do:

cost at n + k bits ≈ L(2n+k)
L(2n) ×cost of academic record at n bits.
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What if we’re totally wrong?

Here are two expressions, both consistent with L(N)1+o(1).

g0(N) = L(N) g1(N) = L(N)1/(1+22/ log log N).

Based on g0(N) = L(N), we can compute g0(22048)
g0(2512) ≈ 228.

We’re tempted to think that RSA-2048 is several hundred
millions times harder than RSA-512.
Based on g1(N), we can compute g1(22048)

g1(2512) ≈ 28.
The conclusion is very different!
What gives?
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Where does o(1) come from?

While o(1) is used in several places to simplify calculus, its origin
can be traced to smoothness estimates.

Smoothness (Hildebrand)
Under some conditions on x , y :

Ψ(2x , 2y )
2x = ρ(x/y)

(
1 + O

(
log(1 + x

y )
y

))
.

Furthermore, the asymptotic behaviour of ρ is

ρ(u) = exp(−u log u · (1 + o(1))) = u−u·(1+o(1)).

The main inaccuracy is the asymptotic expansion of log ρ.
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More terms of log ρ

Can we compute more terms of log ρ? YES!

With some computer algebra, computing hundreds of terms in the
asymptotic expansion of log ρ is eminently possible, eventually
leading to more terms replacing o(1) in the NFS asymtptotic
complexity.

We get a bivariate series in log log log N
log log N and 1

log log N .
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Is it useful?

What if we replace o(1) by (say) a hundred terms of the series for
our estimate?

Bad news: for N < exp(exp(22)) ≈ 25 billion bits, the series diverges!

The (log of the) NFS complexity is approximated by the first
term of a divergent series (in the practical range).

Note that this is not unlike our example function g1(N).

The main problem is our attempt to write a self-contained
asymptotic estimate for the probability of smoothness, seeking a
closed formula. Explicit numerical estimates of smoothness
probabilities should be of better value.
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