
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

March 10, 2022

CSE291-14: The Number Field Sieve 1/43

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 10

Records and some recent stuff

A brief timeline

Hidden SNFS primes, up to kilobit size

Latest factoring and DLP records

Plan

A brief timeline

Hidden SNFS primes, up to kilobit size

Latest factoring and DLP records

I

Late 1970s, Schroeppel: first analysis of CFRAC. L() notation.
1980s, Pomerance + many: the quadratic sieve and its
variants.
1983, Coppersmith: L(1/3) algorithm for DLP in F2n .
1985, Lenstra: ECM.
1986, Wiedemann: sparse linear algebra over finite fields.
1988, Pollard: Factoring with cubic integers.
1989, Lenstra, Manasse: factoring with electronic mail.
1990, Lenstra+others: The (special) number field sieve.
1990-1993, (many): GNFS.

Adleman: quadratic characters.
Pollard: lattice sieving.
Couveignes, Montgomery: square root.

CSE291-14: The Number Field Sieve; Records and some recent stuff 3/43

II

1992: early days of DSA.
1990-1993, Gordon: NFS for discrete logarithms.
1993, Schirokauer: Schirokauer maps.
1993, Coppersmith: the Multiple Number Field Sieve.
1994, Coppersmith: Block Wiedemann.
1994, Adleman: FFS.
1996, Weber: first practical NFS-DL computations.
1999, Lenstra+many: RSA-512.
2000, Bernstein: product trees.
Early 2000s, Kleinjung: improvements to GNFS polynomial
selection and to lattice sieving.
2002, Joux-Lercier: improvements to NFS-DL.

CSE291-14: The Number Field Sieve; Records and some recent stuff 4/43

III
2002, Thomé: first use of Block Wiedemann for large
computations.
2006, Joux-Lercier-Smart-Vercauteren: L(1/3) for all fields.
2007: Kilobit SNFS.
2007, (many): development of Cado-NFS begins.
2008-2009: RSA-768.
2013: last big FFS computation F2809 .
2014: quasi-polynomial in F2n .
2015: The Tower Number Field Sieve.
2015: Logjam. Individual logarithms are cheap.
2016: DLP-768 (232 digits).
2016: hidden SNFS kilobit DLP.
2018-2019: DLP-240, RSA-240, RSA-250.
2016-2021: several records for extension fields, finally using
TNFS.

CSE291-14: The Number Field Sieve; Records and some recent stuff 5/43

Timeline of records

50

100

150

200

250

1995 2000 2005 2010 2015 2020
128

256

384

512

640

768

896
p,N(dd)

Year

p,N(bits)

RSA modulus factorization

DL GF(p)

Important note: not all of these records represent the same
amount of computational power!

CSE291-14: The Number Field Sieve; Records and some recent stuff 6/43

Computational cost
Comparing computations is not a trivial task.

Caveat: we only have published, academic records.
All record computations generally use a scattered variety of
resources.
The only reasonable thing to do is to give what would have
been the total cost if the computation had been run on one
single resource type (and document that resource type).
By definition, the unit of computational power depends on the
point in time when the computation is done.
For about 20 years, the trend of scaling all computational
costs to unique computational unit (e.g. MIPS-years) has
been all but abandoned.
Hyperthreading complicates things even more. The usual
approach is to count physical CPU time.

CSE291-14: The Number Field Sieve; Records and some recent stuff 7/43

Plan

A brief timeline

Hidden SNFS primes, up to kilobit size

Latest factoring and DLP records

Hidden SNFS primes, up to kilobit size

Next few slides: takeaways from a computation done in 2016
(Fried, Gaudry, Heninger, Thomé, EC 2017).

Relation to NFS in practice.
We can get something that is cryptographically relevant, for a
moderate computational cost.

CSE291-14: The Number Field Sieve; Records and some recent stuff 8/43

Plan

Hidden SNFS primes, up to kilobit size
(Z/pZ)∗ in crypto
Backdooring primes
Can one unveil the trapdoor?
Computing DL mod 1024-bit primes with Cado-NFS
Outcome and lessons

(Z/pZ)∗, a.k.a. MODP groups

For Diffie-Hellman, for DSA: we’ve been using
(Z/pZ)∗ groups for decades.

ga mod p

gb mod p

gab mod pgab mod p

Today (and whether we like it or not), FF DH and FF DSA are still
very widespread.

TLS
SSH
IPsec
. . .

Various measurements show their endured prevalence.

CSE291-14: The Number Field Sieve; Records and some recent stuff 9/43

Who says which are the primes we use?

For a given key size, it should be fine if everybody uses the same p.

It is almost “One prime to rule them all”

De facto: a few primes are very widespread, promoted by:
Standards (RFCs, . . .).
Implementations (Apache, OpenSSL, . . .), or manufacturers
of dedicated equipment (Cisco, Juniper, . . .).

Who has a say on what primes go there?

CSE291-14: The Number Field Sieve; Records and some recent stuff 10/43

The 1992 controversy

Beginning of the 1990s = early days of DSA.
Year 1992: panel at Eurocrypt, CACM article in July, article by
Gordon at Crypto.

Is it a good idea to standardize primes?
Most important points raised by (Lenstra and) McCurley:

So far, it has not been demonstrated that trapdoor moduli for the discrete logarithm
problem can be constructed such that a) they are hard to detect, and b) knowledge of
the trapdoor provides a quantifiable computational advantage for parameter sizes that
could actually be computed by known methods, even with foreseeable machines.

—K. S. McCurley, EC92 panel.

Part of the 1992 discussions focused on why a lower bound on p
should be 1024 bits, not 512.
But the above points seemed to suffice to settle the discussion on
the trapdoor: too conspicuous, and not a game-changer anyway.

CSE291-14: The Number Field Sieve; Records and some recent stuff 11/43

1992 context

In 1992, NFS was still a new algorithm.
Many practical challenges were yet to be solved.
Linear algebra appeared a daunting task.
This is even more true for NFS-DL: first preprint in April 1990.
Algorithms for individual logs in NFS-DL took years to settle.

p

polynomial
selection sieving filtering linear

algebra

log db

one-off precomputation

y , g descent

x

per-key computation

All these hurdles have long been passed.

CSE291-14: The Number Field Sieve; Records and some recent stuff 12/43

Interlude

Some of the implications of the practice of NFS-DL took a long
time to percolate and reach the use of FF-DLP in practice.
Until Logjam, many people overlooked the difference between
precomputation (offline) and individual log (online) time for
NFS-DL.

Precomputation Individual Log
core-years core-time

RSA-512 [Cavallar et al. 1999] 1 —
DH-512 [Adrian et al. 2015] 10 10 mins

RSA-768 [Kleinjung et al. 2009] 1,000 —
DH-768 [Kleinjung et al. 2016] 5,000 2 days

RSA-240 [Boudot et al. 2020] 900 —
DH-240 [Boudot et al. 2020] 3,000 1 day

CSE291-14: The Number Field Sieve; Records and some recent stuff 13/43

What does it look like in 2016?

Many primes are found in the wild with unknown provenance.
We cannot tell whether they have been chosen with malice.

1024-bit primes in Apache http software;
RFC 5114 primes (≥1024 bits);
2048-bit prime used in IACR 2015 BOD election;
. . .

We wish to investigate how trapdoors can be designed, and how
easier they make the DLP computations.

CSE291-14: The Number Field Sieve; Records and some recent stuff 14/43

RFC5114
Network Working Group M. Lepinski
Request for Comments: 5114 S. Kent
Category: Informational BBN Technologies

January 2008

Additional Diffie-Hellman Groups for Use with IETF Standards

2. Additional Diffie-Hellman Groups

This section contains the specification for eight groups for use in
IKE, TLS, SSH, etc. There are three standard prime modulus groups
and five elliptic curve groups. All groups were taken from
publications of the National Institute of Standards and Technology,
specifically [DSS] and [NIST80056A]. Test data for each group is
provided in Appendix A.

2.1. 1024-bit MODP Group with 160-bit Prime Order Subgroup

The hexadecimal value of the prime is:

p = B10B8F96 A080E01D DE92DE5E AE5D54EC 52C99FBC FB06A3C6
9A6A9DCA 52D23B61 6073E286 75A23D18 9838EF1E 2EE652C0
13ECB4AE A9061123 24975C3C D49B83BF ACCBDD7D 90C4BD70
98488E9C 219A7372 4EFFD6FA E5644738 FAA31A4F F55BCCC0
A151AF5F 0DC8B4BD 45BF37DF 365C1A65 E68CFDA7 6D4DA708
DF1FB2BC 2E4A4371

The hexadecimal value of the generator is:

g = A4D1CBD5 C3FD3412 6765A442 EFB99905 F8104DD2 58AC507F
D6406CFF 14266D31 266FEA1E 5C41564B 777E690F 5504F213
160217B4 B01B886A 5E91547F 9E2749F4 D7FBD7D3 B9A92EE1
909D0D22 63F80A76 A6A24C08 7A091F53 1DBF0A01 69B6A28A
D662A4D1 8E73AFA3 2D779D59 18D08BC8 858F4DCE F97C2A24
855E6EEB 22B3B2E5

The generator generates a prime-order subgroup of size:

q = F518AA87 81A8DF27 8ABA4E7D 64B7CB9D 49462353

Here is p
Here is q | (p − 1)
Please use for crypto.

Supported by:
900K (2.3%) HTTPS
hosts
340K (13%) IPsec
hosts

CSE291-14: The Number Field Sieve; Records and some recent stuff 15/43

Plan

Hidden SNFS primes, up to kilobit size
(Z/pZ)∗ in crypto
Backdooring primes
Can one unveil the trapdoor?
Computing DL mod 1024-bit primes with Cado-NFS
Outcome and lessons

NFS goes very well in special cases

For arbitrary p (or N for factoring), there’s a lower bound on how
small f and g can be (e.g. by counting).

Factoring knows about especially easy integers
Say if N = r e − s with r , s small. We pick:

f = r e mod kX k − s with small k to our liking,
and g = X − r ⌊e/k⌋

This is the special NFS (SNFS, as opposed to GNFS).
Applies in particular to the Cunningham tables.
Likewise, we have an SNFS-DL for “attacker-friendly primes”.

Next: timeline of factoring records for SNFS and GNFS, compared.

CSE291-14: The Number Field Sieve; Records and some recent stuff 16/43

SNFS versus GNFS (factoring) records

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

p(11887)
p(13171)

RSA-130
RSA-140

RSA-155
2,953+

RSA-160
RSA-576

RSA-200

RSA-768
RSA-240

RSA-120
RSA-129

12,151-
12,167+

(2ˆ15-135)ˆ41-1

10,211-

2,773+
2,809-

2,1642M

6,353-

2,1039-
2,1061-GNFS

SNFS
MPQS

CSE291-14: The Number Field Sieve; Records and some recent stuff 17/43

We may ease our task even more

DLP mod attacker-friendly primes may be well within reach while
DLP mod “normal” primes of the same size is still remote.

But there is more !
So-called DSA primes
DSS promotes primes with a moderate size subgroup of (Z/pZ)∗

E.g. 1024-bit prime p with 160-bit prime q dividing p − 1.
RFC5114 promotes examples of such primes.

If a DSA prime is also attacker-friendly, then (S)NFS-DL linear
algebra is modulo q, not modulo p − 1. This is an additional win
for the attacker.

CSE291-14: The Number Field Sieve; Records and some recent stuff 18/43

Fantasy of a body tinkering with standards

What if we can design attacker-friendly DSA primes?

Heidi hides her polynomials
Heidi, a mischievous protocol designer

chooses secret polynomials f and g ;
publishes p = Res(f , g) and pushes for its widespread use.
p has a (say) 160-bit prime factor q.
Knowing f and g , Heidi can run SNFS-DL.
Linear algebra is to be done mod q.

D. Gordon (Crypto 1992): a way to do just that.
This construction is still efficient today.

CSE291-14: The Number Field Sieve; Records and some recent stuff 19/43

How to trapdoor a DSA prime [Gordon92]

Want to construct primes p, q such that q | p − 1 and

f (x) = f6x6 + · · · + f0, g(x) = g1x − g0

such that p | Res(f , g).

Slow algorithm:
1. Choose random f , g .
2. Check if p = Res(f , g) prime.
3. Factor p − 1 with ECM.
4. Repeat until p − 1 has 160-bit prime factor.

CSE291-14: The Number Field Sieve; Records and some recent stuff 20/43

How to trapdoor a DSA prime [Gordon92]

Want to construct primes p, q such that q | p − 1 and

f (x) = f6x6 + · · · + f0, g(x) = g1x − g0

such that p | Res(f , g).

Better algorithm:
1. Choose f (x), q, g0.
2. Want q | Res(f (x), g1x − g0) − 1.
3. Compute G(g1) = Res(f (x), g1x − g0) − 1.
4. Compute root G(r) ≡ 0 mod q; g1 = r + cq.
5. Repeat until Res(f (x), g1x − g0) prime.

Note that this implies that the target size for g1 is larger than q.

CSE291-14: The Number Field Sieve; Records and some recent stuff 20/43

Plan

Hidden SNFS primes, up to kilobit size
(Z/pZ)∗ in crypto
Backdooring primes
Can one unveil the trapdoor?
Computing DL mod 1024-bit primes with Cado-NFS
Outcome and lessons

Can we tell whether p has a trapdoor?

This looks nice for Heidi, but won’t work if the primes she pushes
for is conspicuously weird.

E.g. you shouldn’t do DLP in (Z/pZ)∗ for p = 21024 − 105.

However if Heidi allows herself sufficient freedom in choosing the
coefficients of f , then p looks innocuous.

CSE291-14: The Number Field Sieve; Records and some recent stuff 21/43

Detecting the trapdoor

“Easy” if g(x) = x + g0 or similar.
1. Brute force leading coefficient fd of f .
2. Search values of g0 near (p/fd)1/d .
3. Use LLL to search for other small coefficients of f .

If g(x) = g1x + g0 don’t know a way that doesn’t require
brute forcing coefficients of f or g .

Open Problem: Given p = Res(f , g1x + g0) and f has small
coefficients, find f , g .

CSE291-14: The Number Field Sieve; Records and some recent stuff 22/43

Crafting the trapdoor

1992-era parameters: 512-bit p, 160-bit q
Forces deg f = 3; suboptimal for NFS.
f chosen from small set so not well hidden.

... this trap only makes sense for primes up to [600 bits]. Furthermore, this kind of
trap can be detected, although this requires more work than an average user will be
able to invest.

—A. Lenstra, EC92 Panel.

DSA standard: optional “verifiably random” prime generation.

CSE291-14: The Number Field Sieve; Records and some recent stuff 23/43

Crafting the trapdoor in the modern era

Gordon’s trapdoor construction remains best construction.

Modern parameters: 1024-bit p, 160-bit q
Can choose deg f = 6, optimal for NFS.
Choose |fi | ≈ 211.
Brute force search to find f ≈ 280 ≈ cost of Pollard rho for q.
Don’t know of better way to detect trapdoor.

CSE291-14: The Number Field Sieve; Records and some recent stuff 24/43

Exploiting the trapdoor in the modern era

We generated a target 1024-bit prime in 12 core-hours.
The public part:

p = 16332398724044367910140207009304915503098943980691751
91735800707915692277289328503584988628543993514237336
97660534800194492724828721314980248259450358792069235
99182658894420044068709413666950634909369176890244055
53414932372965552542473794227022215159298376298136008
12082006124038089463610239236157651252180491

q = 1120320311183071261988433674300182306029096710473 ,

and Heidi’s hidden polynomials:

f = 1155 x6 + 1090 x5 + 440 x4 + 531 x3 − 348 x2 − 223 x − 1385
g = 567162312818120432489991568785626986771201829237408 x

−663612177378148694314176730818181556491705934826717 .

CSE291-14: The Number Field Sieve; Records and some recent stuff 25/43

Plan

Hidden SNFS primes, up to kilobit size
(Z/pZ)∗ in crypto
Backdooring primes
Can one unveil the trapdoor?
Computing DL mod 1024-bit primes with Cado-NFS
Outcome and lessons

Computation timings
We used only two clusters. Linear algebra was done on higher-end
hardware with fast interconnect (Infiniband FDR 56Gbps, Cisco
UCS 40Gbps)

Used parameters m = 24, n = 12 for block Wiedemann.

sieving linear algebra individual log
sequence generator solution

cores ≈3000 2056 576 2056 500–352
CPU time (core) 240 years 123 years 13 years 9 years 10 days
calendar time 1 month 1 month 80 minutes

CSE291-14: The Number Field Sieve; Records and some recent stuff 26/43

Computation went smoothly, of course

On the bright side, our computation took almost exactly the
predicted time (both CPU time and wall-clock time).

Yet we did have our share of mishaps.
UPenn: deal with cluster being kicked out of the computer
room with 2-day notice, and moved 2 miles south with no
decent network connection.
raspberry pi’s + university wifi + . . .
Nancy: of course not everything was coded yet when we
started. . .

CSE291-14: The Number Field Sieve; Records and some recent stuff 27/43

Comparison with other computations

Our computation: log2 p ≈ 1024, log2 q ≈ 160: 400 core-years.

Safe prime of the same size: expect lin.alg 7× harder.

768-bit GNFS-DLP (Kleinjung et al., 2017): ≈ 5000 core-years.

2048-bit trapdoored p, like here: expect similar to GNFS-1340.

Some conspicuous SNFS primes found in the wild (q = (p − 1)/2):
p = 21024 − 1093337: doable but harder than our p!

polynomial not as good as ours: α value is bad;
sieving 3× harder
linear algebra mod q = (p − 1)/2.

p = 2784 − 228 + 1027679 (exercise) ≈ 60 core-years.

CSE291-14: The Number Field Sieve; Records and some recent stuff 28/43

Plan

Hidden SNFS primes, up to kilobit size
(Z/pZ)∗ in crypto
Backdooring primes
Can one unveil the trapdoor?
Computing DL mod 1024-bit primes with Cado-NFS
Outcome and lessons

Danger of over-interpreting the result

We have found no poorly-hidden trapdoored prime in the wild.
either because the trap was well hidden (after all, the recipe
dates back to 1992).
or because there was no trapdoor at all.

If Heidi designed RFC5114 and suggested the primes used in
Apache and so on, she might be caught red-handed in the future.
There is no plausible deniability.

Not clear that Heidi is at ease about such a scenario.

Anyway, now the RFCs have ditched the RFC5114 primes.

CSE291-14: The Number Field Sieve; Records and some recent stuff 29/43

Lessons
1024-bit DLP can be easy for an attacker that maliciously chose
the prime to his liking.

We found no easy way to prove that a trapdoor is present.

Verifiable randomness is necessary.

It’s not even the question of accusing anyone of wrongdoing.
We found no smoking gun.
But the lack of verifiable randomness is a major hindrance for
trust in cryptographic standards.

Of course people still get it awfully wrong.
E.g. the standardized French and Chinese elliptic curves are really
really bad to this regard.

CSE291-14: The Number Field Sieve; Records and some recent stuff 30/43

Plan

A brief timeline

Hidden SNFS primes, up to kilobit size

Latest factoring and DLP records

Pre-2019 state-of-the-art

RSA-768: 02/2008–12/2009. About 1,500 core-years in total.
large-scale improvement compared to the previous RSA-200
record. RSA-768 was a much larger undertaking.
coordination of multiple computer clusters.
fancy block Wiedemann, multi-country.

DLP-768: 06/2016: About 5,300 core-years.
Much more efficient than previous 180-digit record thanks to
Joux-Lercier polynomial selection.
First apparent involvement of government computational
resources (BSI) in an academic computation.

CSE291-14: The Number Field Sieve; Records and some recent stuff 31/43

Recent results

Our DLP-240 computation was faster than the previous DLP-768
computation, while of course we tackled a harder challenge.

This is also true if we try to measure the cost on the same
hardware that was used for the DLP-768 computation.

What are the important things in this computation?

CSE291-14: The Number Field Sieve; Records and some recent stuff 32/43

A simple rule of thumb

We look for smoothness with respect to a bound L.

A prime should appear either often, or very rarely.

below some bound B, we strive to find all pairs (a, b) such
that primes below B appear in the factorization.
We do this with sieving.
“large primes” (LPs) such that B ≤ p < L:
allowed if we happen to find them.
Limit to a few LPs per relation (e.g., 2, sometimes 3).

CSE291-14: The Number Field Sieve; Records and some recent stuff 33/43

The relations that we like to see

52 · 11 · 23 · 287093 · 870953 · 20179693 · 28306698811 · 47988583469 23 · 5 · 7 · 13 · 31 · 61 · 14407 · 26563253 · 86800081 · 269845309 · 802234039 · 1041872869 · 5552238917 · 12144939971 · 15856830239

3 · 1609 · 77699 · 235586599 · 347727169 · 369575231 · 9087872491 23 · 3 · 5 · 13 · 19 · 23 · 31 · 59 · 239 · 3989 · 7951 · 2829403 · 31455623 · 225623753 · 811073867 · 1304127157 · 78955382651 · 129320018741

5 · 1381 · 877027 · 15060047 · 19042511 · 11542780393 · 13192388543 24 · 5 · 13 · 31 · 59 · 823 · 2801 · 26539 · 2944817 · 3066253 · 87271397 · 108272617 · 386616343 · 815320151 · 1361785079 · 12322934353

23 · 52 · 173 · 971 · 613909489 · 929507779 · 1319454803 · 2101983503 27 · 32 · 5 · 29 · 1021 · 42589 · 190507 · 473287 · 31555663 · 654820381 · 802234039 · 19147596953 · 23912934131 · 52023180217

22 · 15193 · 232891 · 19514983 · 139295419 · 540260173 · 606335449 22 · 34 · 13 · 19 · 74897 · 1377667 · 55828453 · 282012013 · 802234039 · 3350122463 · 35787642311 · 37023373909 · 128377293101

22 · 54 · 439 · 1483 · 13121 · 21383 · 67751 · 452059523 · 33099515051 22 · 33 · 11 · 13 · 19 · 5023 · 3683209 · 98660459 · 802234039 · 1506372871 · 4564625921 · 27735876911 · 32612130959 · 45729461779

small primes: abundant → dense column in the matrix
large primes: rare → sparse colum, limit to 2 or 3 on each side.

Before linear algebra, the filtering step tries to do as many cheap
combinations as it can, so as to get a smaller matrix.

CSE291-14: The Number Field Sieve; Records and some recent stuff 34/43

The relations that we like to see

52 · 11 · 23 · 287093 · 870953 · 20179693 · 28306698811 · 47988583469 23 · 5 · 7 · 13 · 31 · 61 · 14407 · 26563253 · 86800081 · 269845309 · 802234039 · 1041872869 · 5552238917 · 12144939971 · 15856830239

3 · 1609 · 77699 · 235586599 · 347727169 · 369575231 · 9087872491 23 · 3 · 5 · 13 · 19 · 23 · 31 · 59 · 239 · 3989 · 7951 · 2829403 · 31455623 · 225623753 · 811073867 · 1304127157 · 78955382651 · 129320018741

5 · 1381 · 877027 · 15060047 · 19042511 · 11542780393 · 13192388543 24 · 5 · 13 · 31 · 59 · 823 · 2801 · 26539 · 2944817 · 3066253 · 87271397 · 108272617 · 386616343 · 815320151 · 1361785079 · 12322934353

23 · 52 · 173 · 971 · 613909489 · 929507779 · 1319454803 · 2101983503 27 · 32 · 5 · 29 · 1021 · 42589 · 190507 · 473287 · 31555663 · 654820381 · 802234039 · 19147596953 · 23912934131 · 52023180217

22 · 15193 · 232891 · 19514983 · 139295419 · 540260173 · 606335449 22 · 34 · 13 · 19 · 74897 · 1377667 · 55828453 · 282012013 · 802234039 · 3350122463 · 35787642311 · 37023373909 · 128377293101

22 · 54 · 439 · 1483 · 13121 · 21383 · 67751 · 452059523 · 33099515051 22 · 33 · 11 · 13 · 19 · 5023 · 3683209 · 98660459 · 802234039 · 1506372871 · 4564625921 · 27735876911 · 32612130959 · 45729461779

small primes: abundant → dense column in the matrix
large primes: rare → sparse colum, limit to 2 or 3 on each side.

Before linear algebra, the filtering step tries to do as many cheap
combinations as it can, so as to get a smaller matrix.

CSE291-14: The Number Field Sieve; Records and some recent stuff 34/43

The combination cost

Relations with 2 LPs or less are a blessing.
They easily participate in cheap combinations.
If we have only 2-LP relations, filtering will get rid of most of
them.
We are left with a number of primes to combine that is
roughly the number of primes below B.
Caveat: two sides to deal with.

We must pay attention to the special-q as well! How does it
compare to B?

CSE291-14: The Number Field Sieve; Records and some recent stuff 35/43

Strategy for RSA-240

q

229.6
0.8e9

231
2.1e9

B

232.8
7.4e9

236
69e9

L
q < B: allow

2 LPs on side 0,
3 LPs on side 1.

B ≤ q < L: allow 2 LPs on each side.
(q counts as an extra LP on side 1.)

This strategy makes it easy to get rid of most p ≥ B on side 0
before we enter linear algebra proper.
We still have many on side 1, but that is not too bad because
linear algebra in the factoring context is reasonable.

CSE291-14: The Number Field Sieve; Records and some recent stuff 36/43

Unstable yield, but we know what we’re
doing

Note that we change the relation collection criteria radically
depending on q!
The yield changes (plot from this data)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1000 2000 3000 4000 5000 6000 7000 8000

RSA-240 relation yield per 1-q

This is expected, and fits well with our goal!
CSE291-14: The Number Field Sieve; Records and some recent stuff 37/43

https://gitlab.inria.fr/cado-nfs/records/-/raw/master/rsa240

Strategy for DLP-240

For DLP-240, we used composite q, to avoid the disadvantage of
having q in the LP range.

q

213
8e3

226.5
1e8

229
0.5e9

B

235
34e9

L

237.1
150e9

238.1
300e9

qi , qj
(prime factors of q)

q = qiqj
Allow 2 LPs on each side.
(Factors of q are not LPs.)

This strategy was efficient in reducing the combination work to
essentially primes p < B only.

CSE291-14: The Number Field Sieve; Records and some recent stuff 38/43

Alternative to sieving

In all cases, we have an “easy” and a “hard” side, depending on
the size of the norms.

Relation collection is about restricting attention to a subset of
(a, b)’s. There’s one side that we have to do first.

If we do the “hard” side first, not very many of the (a, b) pairs are
left.

In some situations, this selection is so drastic that it may
make sense to process these few pairs one by one instead of
doing sieving on the other side.
This is exactly what we did for the previous records, using
product trees (for some parameter ranges).

CSE291-14: The Number Field Sieve; Records and some recent stuff 39/43

Summary of relation collection

Tried-and-true techniques do work. Many low-level
improvements in the deep aspects of special-q sieving.
Seldom used techniques such as composite special-q or batch
smoothness detection played a key role.
We tailored the relation collection step so that the subsequent
filtering step works well. (choice of q ranges, number of LPs.)

Relation collection is by far the most expensive step, which ran
over several months. The distribution of the work raises several
interesting issues as well.

CSE291-14: The Number Field Sieve; Records and some recent stuff 40/43

Approximative timeline and core-hours

2018/08 - 2019/03 DLP-240 relation collection. 21M c·h
4k cores working in parallel.

2019/05 - 2019/08 DLP-240 linear algebra (sequences) 5M c·h
2019/04 - 2019/06 RSA-240 relation collection. 7M c·h

4.3k cores working in parallel.
2019/10 - 2020/02 RSA-250 relation collection. 21M c·h

12k cores working in parallel.
2019/07 - 2019/08 RSA-240 linear algebra (sequences) 0.6M c·h

2019/11 RSA-240 linear algebra (wrap up) 0.1M c·h
DLP-240 linear algebra (wrap up) 0.7M c·h

2020/02 RSA-250 linear algebra 2M c·h
caveat: time windows often include partially idle periods

CSE291-14: The Number Field Sieve; Records and some recent stuff 41/43

Relations, matrix size, core-years timings

RSA-240 DLP-240 RSA-250
polynomial selection 76 core-years 152 core-years 150 core-years
deg f0, deg f1 1, 6 3, 4 1, 6
relation collection 794 core-years 2400 core-years 2450 core-years
raw relations 8.93G 3.82G 8.75G
unique relations 6.01G 2.38G 6.13G
filtering days days days
after singleton removal 2.60G × 2.38G 1.30G × 1.00G 2.74G × 2.62G
after clique removal 1.18G × 1.18G 150M × 150M 1.82G × 1.82G
after merge, + density 282M, d = 200 36M, d = 253 405M, d = 252
linear algebra 83 core-years 625 core-years 250 core-years
m, n 512,256 48,16 1024,512
characters, sqrt, ind log days days days

Data & reproducibility info: gitlab.inria.fr/cado-nfs/records.

CSE291-14: The Number Field Sieve; Records and some recent stuff 42/43

https://gitlab.inria.fr/cado-nfs/records/

Conclusions
More than just records, we developed efficient
parameterization strategies for further computations.
We developed an extensive simulation framework to guide the
parameter choices. Not perfect.
We show that our implementation scales well and can tackle
larger problems. No technology barrier at this point.

Comparisons:
Comparison with previous record (DLP-768, 232 digits, 2016):
On identical hardware, our DLP-240 computation would have
taken less time than the 232-digits computation.
FF-DLP is not much harder than integer factoring.

For future projects, we intend to keep the focus on our capacity to
anticipate the computational cost, and to harness large computing
power.

CSE291-14: The Number Field Sieve; Records and some recent stuff 43/43

	Records and some recent stuff
	A brief timeline
	Hidden SNFS primes, up to kilobit size
	(Z/pZ)* in crypto
	Backdooring primes
	Can one unveil the trapdoor?
	Computing DL mod 1024-bit primes with Cado-NFS
	Outcome and lessons

	Latest factoring and DLP records

