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1. Introduction

In this paper we consider a differential system arising in photo-acoustic tomography. We refer [12] to 
get a complete description of the model. Let us briefly mention that we deal with two coupled partial 
differential equations that describes the light intensity (fluence) behavior inside a body that is excited by a 
laser (pulsed) source and the acoustic pressure wave which is generated by this excitation. The authors of 
[12] have investigated the model and obtained an optimal control formulation to recover some parameters 
of interest, namely the absorption and diffusion coefficients (μ, D).

We want to address the optimal solution sensitivity with respect to the source and the observation data 
that appears in the wave equation. For that purpose, in a first step we assume that the diffusion coefficient 
is constant (and for sake of simplicity equal to 1).

In this work, we prove uniqueness and stability results provided that the coercivity constant α of the 
cost functional J , given by (2.4), is large enough.

From this point of view, the result is similar to the one of [10]. Other results of uniqueness and stability, 
in the context of the photo-acoustic, have been obtained in [2,3,7–9,11]. For example, in [8,9] the authors 
obtained uniqueness and stability results under the assumption that the function H(x) := Γ(x)μ(x)Iμ(x)
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is known and the absorption and diffusion coefficients are smooth enough. Moreover, they did not consider 
the whole process which couples lightning and acoustic wave equations.

The stability of optimal controls have also studied in [13,18,20,22,23] in other settings.
The paper is structured as follows. In Section 2, we recall the problem setting and preliminary results. 

Section 3 is devoted to stability and uniqueness properties. In Section 4, we compute the derivative of the 
optimal control with respect to the source giving a characterization. We also study the stability of the 
optimal solution with respect to the observation. We end the paper with conclusions and a few words on 
future work.

2. Problem setting

2.1. Photo-acoustic modelling

Recall photo-acoustic tomography (PAT) principle: tissues to be imaged are illuminated by a laser (the 
source). This energy is converted into heat creating a thermally induced pressure jump that propagates as 
a sound wave, which can be detected. The fluence rate Iμ, that is the average of the luminous intensity in 
all the directions, satisfies the diffusion equation (see [1,5,12])

⎧⎪⎪⎨
⎪⎪⎩

1
c

∂Iμ
∂t

(t, x) + μ(x)Iμ(t, x) − ΔIμ(t, x) = S(t, x) in (0, T ) × Ω

Iμ(t, x) = 0 on (0, T ) × ∂Ω
Iμ(0, x) = 0 in Ω.

(2.1)

where c is the speed of light, S is the incident light source, μ is the absorption coefficient, and T > 0 is the 
duration of the acquisition process.

Here, Ω stands for the part of the body where the diffusion approximation is relevant and the diffusion 
coefficient has been set to 1 for simplicity. It is an open subset of Rd (d ≥ 2) of class C2. For a fixed T > 0, 
we will often denote Q := (0, T ) × Ω.

The acoustic wave that is generated is described via the pressure pμ that satisfies (up to the change of 
variables: p �→

∫ t

0 p(s) ds):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2pμ
∂t2

(t, x) − div(v2
s∇pμ)(t, x) = 1Ω(x)Γ(x)μ(x)Iμ(t, x) in (0, T ) × B

pμ(t, x) = 0 on (0, T ) × ∂B

pμ(0, x) = ∂pμ
∂t

(0, x) = 0 in B.

(2.2)

Here, the Grueneisen coefficient Γ, coupling the energy absorption to the thermal expansion, is assumed 
to be known. In the sequel we assume that Γ has compact support in Ω so that Γ1Ω = Γ and that the speed 
of sound vs is known and satisfies vs ∈ [vmin

s , vmax
s ], with vmin

s > 0. The ball B is the domain where the wave 
propagates. It includes Ω and it has to be bounded in view of numerical simulations. It is large enough to 
assume that there is no reflected wave before time T.

The absorption coefficient μ is the parameter we want to study. We assume that

μ ∈ Uad = {μ ∈ L∞(B) | μ ∈ [μmin, μmax] a.e. in B}, (2.3)

where 0 < μmin < μmax are positive real numbers.
The photo-acoustic tomography model is completely described by the coupling of equations (2.1) and 

(2.2), where Iμ is extended by 0 on B \ Ω. Here S is the incident light source that we assume in L2(Q).
We first recall the results of [12] (for D = 1).
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Theorem 2.1. Let Ω be a bounded connected open set of Rd with C1 boundary, Γ ∈ L∞(B), vs ∈ L∞(B) with 
vs ∈ [vmin

s , vmax
s ] a.e. in B. Assume that the assumption (2.3) holds. Then,

1. Equation (2.1) has a unique solution Iμ such that

Iμ ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

∂Iμ
∂t

∈ L2(0, T ;H−1(Ω)).

2. Equation (2.2) has a unique solution pμ such that

pμ ∈ C(0, T ;H1
0 (B)) ∩ C1(0, T ;L2(B)).

Using Theorem 2.1, we define the maps

I: Uad −→ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω))

μ �−→ Iμ

where Iμ satisfies (2.1) and

p: Uad −→ C0(0, T ;H1
0 (B))

μ �−→ pμ

where pμ is the solution to (2.2).
Next we define, for every μ ∈ Uad, the functional J

J(μ) = 1
2

∫
[0,T ]×ω

(pμ(t, x) − pobs(t, x))2dx dt + α

∫
Ω

μ2(x)dx, (2.4)

where α ≥ 0 and ω ⊂ R
d is the observation subset; we consider the optimization problem:

(P) min
μ∈Uad

J(μ).

Theorem 2.2. (See [12].) Assume that α ≥ 0. Then, Problem (P) has at least a solution.
Moreover, for every μ̄ optimal solution to Problem (P), there exists q1μ and q2μ such that

• The state equations (2.1)–(2.2) are satisfied

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2pμ
∂t2

(t, x) − div(v2
s∇pμ)(t, x) = Γ(x)μ(x)Iμ(t, x) in (0, T ) × B

pμ(t, x) = 0 on (0, T ) × ∂B

pμ(0, x) = ∂pμ
∂t

(0, x) = 0 in B

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
c

∂Iμ
∂t

(t, x) + μ(x)Iμ(t, x) − ΔIμ(t, x) = S(t, x) in (0, T ) × Ω

Iμ(t, x) = 0, on (0, T ) × ∂Ω
Iμ(t, x) = 0 in (0, T ) × B\Ω
Iμ(0, x) = 0 in Ω.
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• The adjoint state equations are satisfied

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2q1μ
∂t2

− div(v2
s∇q1μ) = (pμ − pobs)1ω in (0, T ) × B

q1μ = 0 on (0, T ) × ∂B

q1μ(T, ·) = ∂q1μ
∂t

(T, ·) = 0 in B

(2.5)

⎧⎪⎪⎨
⎪⎪⎩

−1
c

∂q2μ
∂t

+ μq2μ − Δq2μ = Γμq1μ in (0, T ) × Ω

q2μ = 0 on (0, T ) × ∂Ω

q2μ(T, ·) = 0 in Ω.

(2.6)

• For all μ ∈ L∞(Ω) such that μ ∈ [μmin, μmax],

〈 T∫
0

(1ΩΓq1μ − q2μ)Iμ dt + 2αμ̄, μ− μ̄

〉
L2(Ω)

≥ 0. (2.7)

Furthermore, systems (2.5)–(2.6) respectively have a unique solution

q1μ ∈ C(0, T ;H1
0 (B)) ∩ C1(0, T ;L2(B))

and

q2μ ∈ C(0, T ;L2(B)) ∩ L2(0, T ;H1
0 (B)).

Here 〈·, ·〉L2(Ω) denotes the L2-inner product.

2.2. Regularity results and estimates

In this subsection we give regularity results for two particular problems, of parabolic type and hyperbolic 
type respectively, and we provide estimates that we will use extensively in the following sections. These 
problems are representative of the systems we considered in the previous section and the ones to be studied 
in the sequel. The proofs of these results can be obtained with a slight change of the proofs in [15] because 
here we consider systems of equations with less smooth coefficients. Therefore, we omit these proofs.

Theorem 2.3 (Regularity result for parabolic systems). Let Ω be a bounded connected open set of Rd with 
C2 boundary, f ∈ L2(Q) and β ∈ L∞(Ω) such that β(x) ∈ [βmin, βmax] with 0 < βmin ≤ βmax. Then, the 
system

⎧⎪⎪⎨
⎪⎪⎩

∂w

∂t
(t, x) + β(x)w(t, x) − Δw(t, x) = f(t, x) in (0, T ) × Ω

w(t, x) = 0 on (0, T ) × ∂Ω
w(0, x) = 0 in Ω,

has a unique solution w such that

w ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), ∂w ∈ L2(Q).
∂t
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Moreover we have the following estimate

sup
0≤t≤T

‖w(t)‖H1
0 (Ω) + ‖w‖L2(0,T ;H2(Ω)) +

∥∥∥∥∂w∂t
∥∥∥∥
L2(Q)

≤ C‖f‖L2(Q) (2.8)

where C depends on Ω, T and ‖β‖L∞(Ω).

Theorem 2.4 (Regularity result for hyperbolic system). Let Ω be a bounded connected open set of Rd with 
C2 boundary, g ∈ H1(0, T ; L2(Ω)) and κ be a Lipschitz continuous function in Ω (that only depends on the 
space variable) such that κ(x) ∈ [κmin, κmax] with 0 < κmin ≤ κmax. Then, the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂t2
(t, x) − div(κ(x)∇u)(t, x) = g(t, x) in (0, T ) × Ω

u(t, x) = 0 on (0, T ) × ∂Ω

u(0, x) = ∂u

∂t
(0, x) = 0 in Ω

has a unique solution u such that

u ∈ L∞(0, T ;H2(Ω)), ∂u
∂t

∈ L∞(0, T ;H1
0 (Ω)),

∂2u

∂t2
∈ L∞(0, T ;L2(Ω)), ∂

3u

∂t3
∈ L2(0, T ;H−1(Ω)),

and we have the following estimate

sup
0≤t≤T

(
‖u(t)‖H2(Ω) +

∥∥∥∥∂u∂t (t)
∥∥∥∥
H1

0 (Ω)
+
∥∥∥∥∂2u

∂t2
(t)

∥∥∥∥
L2(Ω)

)
+
∥∥∥∥∂3u

∂t3

∥∥∥∥
L2(0,T ;H−1(Ω))

≤ C‖g‖H1(0,T ;L2(Ω)) (2.9)

where C depends on Ω, T and ‖κ‖L∞(Ω).

3. Stability and uniqueness results for optimal controls

In this section we first give a stability result for the optimal solution with respect to the source and with 
respect to the observation data and we provide a uniqueness result.

Theorem 3.1. Let S1, S2 ∈ L2(Q) two sources and pobs
1 , pobs

2 ∈ H1(0, T ; L2(ω)) the (corresponding) measured 
pressure on ω× [0, T ]. For all μi ∈ Uad solution of the optimality system (2.2)–(2.1), (2.5)–(2.7) with source 
Si and measurement pobs

i , i = 1, 2, we have the following estimation

‖μ1 − μ2‖L2(Ω) ≤
C

2α
(
‖S1 − S2‖L2(Q) + ‖μ1 − μ2‖L2(Ω) + ‖pobs

1 − pobs
2 ‖L2(Q)

)
(3.1)

where C = C
(
d,Ω, T, μmin, μmax, vmin

s , vmax
s , c, ‖Γ‖L∞ , ‖Si‖L2(Q)

)
, i = 1, 2.

Proof. We consider two sources S1, S2 ∈ L2(Q). Let us write Ii, pi, q1i and q2i the respective solutions 
of equations (2.1)–(2.2), (2.5)–(2.6). From Theorem 2.2 there exist μ1, μ2 ∈ Uad (not necessarily unique) 
solutions of problems (P1), (P2) respectively. With these notations, p := p1 − p2 satisfies the system
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2p

∂t2
− div(v2

s∇p) = Γ (μ1I1 − μ2I2) in (0, T ) × B
p = 0 on (0, T ) × ∂B
p(0, ·) = ∂p

∂t
(0, ·) = 0 in B,

(3.2)

and I := I1 − I2 satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
c

∂I

∂t
+ μ1I − ΔI = S1 − S2 + I2(μ2 − μ1) in (0, T ) × Ω

I = 0 on (0, T ) × ∂Ω

I(0, ·) = 0 in Ω

I = 0 in (0, T ) × B \ Ω.

(3.3)

Similarly q1 := q11 − q12 satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2q1
∂t2

− div(v2
s∇q1) = 1ω(p− pobs) in (0, T ) × B

q1 = 0 on (0, T ) × ∂B

q1(T, ·) = ∂q1
∂t

(T, ·) = 0 in B,

(3.4)

where pobs := pobs
1 − pobs

2 . And q2 := q21 − q22 is solution to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1
c

∂q2
∂t

+ μ1q2 − Δq2 = Γμ1q1 + (μ2 − μ1)(q22 − Γq12) in (0, T ) × Ω

q2 = 0 on (0, T ) × ∂Ω

q2(T, ·) = 0 in Ω.

(3.5)

We note that, after the change of variables (t, x) �→ (T − t, x), Theorem 2.4 can be applied to the systems 
(2.5) and (3.4). Similarly, Theorem 2.3 can be applied to the systems (2.6) and (3.5). In the sequel, we will 
use this fact many times.

From Theorem 2.2, μ1, μ2 satisfy, for every ξ ∈ Uad

〈 T∫
0

(Γq11 − q21)I1 dt + 2αμ1, ξ − μ1

〉
L2(Ω)

≥ 0 (3.6)

and

〈 T∫
0

(Γq12 − q22)I2 dt + 2αμ2, ξ − μ2

〉
L2(Ω)

≥ 0. (3.7)

Taking ξ = μ2 in (3.6) and ξ = μ1 in (3.7) and adding the two inequalities give:

0 ≤
∫
Ω

⎡
⎣ T∫

0

(Γq11 − q21) · I1 dt−
T∫

0

(Γq12 − q22) · I2 dt + 2α(μ1 − μ2)

⎤
⎦ (μ2 − μ1) dx

=
∫ ⎡

⎣ T∫
(Γq11 − q21) · I1 dt−

T∫
(Γq12 − q22) · I2 dt

⎤
⎦ (μ2 − μ1) dx− 2α‖μ1 − μ2‖2

L2(Ω).
Ω 0 0
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Then, applying Cauchy–Schwarz inequality, we have

‖μ1 − μ2‖L2(Ω) ≤

∥∥∥∥∥∥
1
2α

T∫
0

(Γq11 − q21) I1 dt− 1
2α

T∫
0

(Γq12 − q22)I2 dt

∥∥∥∥∥∥
L2(Ω)

= 1
2α

∥∥∥∥∥∥
T∫

0

(Γq1 − q2)I1 dt +
T∫

0

(Γq12 − q22)I dt

∥∥∥∥∥∥
L2(Ω)

. (3.8)

Let us estimate the right hand side of (3.8):
∥∥∥∥∥∥

T∫
0

(Γq1 − q2)I1 dt +
T∫

0

(Γq12 − q22)I dt

∥∥∥∥∥∥
L2(Ω)

≤

∥∥∥∥∥∥
T∫

0

Γq1I1 dt

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥
T∫

0

q2I1 dt

∥∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥∥
T∫

0

(Γq12 − q22)I dt

∥∥∥∥∥∥
L2(Ω)

.

Using Theorem 2.4 and Theorem 2.3 we get that q1 ∈ L∞(0, T ; H2(Ω)), p ∈ H1(0, T ; L2(Ω)) and I1 ∈ L2(Q). 
Then, from regularity of Γ, Sobolev inequalities, estimate (2.9) for q1 and estimate (2.8) for I1, we obtain

∥∥∥∥∥∥
T∫

0

Γq1I1 dt

∥∥∥∥∥∥
2

L2(Ω)

≤ T

T∫
0

∫
Ω

|Γq1|2|I1|2 dx dt

≤ C‖Γ‖2
L∞(Ω)‖q1‖2

L∞(H2(Ω))‖I1‖2
L2(Q)

≤ C‖Γ‖2
L∞(Ω)‖p− pobs‖2

H1(L2(ω))‖S1‖2
L2(Q). (3.9)

Applying Theorem 2.3 for I and I2 we obtain that I ∈ L2(Q) and I2 ∈ L2(0, T ; H2(Ω)). Hence, from 
estimate (2.9) for p, estimate (2.8) for I and I2 and Sobolev inequalities we get

‖p− pobs‖H1(L2(ω)) ≤ ‖Γ (μ1I + I2(μ1 − μ2)) ‖L2(Q) + ‖pobs‖H1(L2(ω))

≤ C‖Γ‖L∞(Ω)
(
‖I‖L2(Q)+

+C‖I2‖L2(H2(Ω))‖μ1 − μ2‖L2(Ω)
)

+ ‖pobs‖H1(L2(ω))

≤ C‖Γ‖L∞(Ω)
(
‖S1 − S2‖L2(Q)+

+ 2C‖I2‖L2(H2(Ω))‖μ1 − μ2‖L2(Ω)
)

+ ‖pobs‖H1(L2(ω))

≤ C‖Γ‖L∞(Ω)
(
‖S1 − S2‖L2(Q)+

+ C‖S2‖L2(Q)‖μ1 − μ2‖L2(Ω)
)

+ ‖pobs‖H1(L2(ω)). (3.10)

Replacing this last inequality in (3.9), we obtain

∥∥∥∥∥∥
T∫

0

Γq1I1 dt

∥∥∥∥∥∥
2

L2(Ω)

≤ C
(
‖S1 − S2‖2

L2(Q) + ‖μ1 − μ2‖2
L2(Ω) + ‖pobs

1 − pobs
2 ‖2

H1(L2(ω))

)
. (3.11)

Next, applying Theorem 2.3 for q2, q22 and I1 and Theorem 2.4 for q1 and p give q2 ∈ L∞(0, T ; L2(Ω)), 
q22 ∈ L2(0, T ; L∞(Ω)), I1 ∈ L2(0, T ; H2(Ω)), q1 ∈ L2(Q) and p ∈ L2(Q). So, once again
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∥∥∥∥∥∥
T∫

0

q2I1 dt

∥∥∥∥∥∥
2

L2(Ω)

≤ T

T∫
0

∫
Ω

|q2|2|I1|2 dx dt

≤ C‖q2‖2
L∞(L2(Ω))‖I1‖2

L2(H2(Ω))

≤ C‖q2‖2
L∞(L2(Ω))‖S1‖2

L2(Q)

≤ C‖S1‖2
L2(Q)‖Γμ1q1 + (μ2 − μ1)(q22 − Γq12)‖2

L2(Q)

≤ C‖S1‖2
L2(Q)

(
‖Γ‖2

L∞(Ω)‖q1‖2
L2(Q)+

+ ‖μ2 − μ1‖2
L2(Ω)‖q22 − Γq12‖2

L2(L∞(Ω))

)
≤ C‖S1‖2

L2(Q)

(
‖Γ‖2

L∞(Ω)‖p− pobs‖2
L2(L2(ω))+

+ ‖μ2 − μ1‖2
L2(Ω)‖q22 − Γq12‖2

L2(L∞(Ω))

)
. (3.12)

Similarly, using again Theorem 2.3 and Theorem 2.4 we get q22 ∈ L2(0, T ; H2(Ω)), q12 ∈ L2(0, T ; H2(Ω))
and p2 ∈ H1(0, T ; L2(Ω)) and

‖q22 − Γq12‖L2(L∞(Ω)) ≤ ‖q22‖L2(L∞(Ω)) + ‖Γ‖L∞(Ω)‖q12‖L2(L∞(Ω))

≤ C‖q22‖L2(H2(Ω)) + ‖Γ‖L∞(Ω)‖q12‖L2(H2(Ω))

≤ C‖Γμ2q12‖L2(Q) + ‖Γ‖L∞(Ω)‖q12‖L2(H2(Ω))

≤ C‖Γ‖L∞(Ω)‖q12‖L2(H2(Ω))

≤ C‖Γ‖L∞(Ω)‖p2 − pobs
2 ‖H1(L2(ω))

≤ C‖Γ‖L∞(Ω)
(
‖Γ‖L∞(Ω)‖S2‖L2(Q) + ‖pobs

2 ‖H1(L2(ω))
)
. (3.13)

By using (3.10) and (3.13) in (3.12), we deduce

∥∥∥∥∥∥
T∫

0

q2I1 dt

∥∥∥∥∥∥
2

L2(Ω)

≤ C
(
‖S1 − S2‖2

L2(Q) + ‖μ1 − μ2‖2
L2(Ω) + ‖pobs

1 − pobs
2 ‖2

L2(L2(ω))

)
. (3.14)

Eventually, inequality (3.13) and Theorem 2.3 applied to I yield

∥∥∥∥∥∥
T∫

0

(Γq12 − q22)I dt

∥∥∥∥∥∥
2

L2(Ω)

≤ T

T∫
0

∫
Ω

|Γq12 − q22|2|I|2 dx dt

≤ T ‖Γq12 − q22‖2
L2(L∞(Ω))‖I‖2

L∞(L2(Ω))

≤ C‖Γ‖2
L∞(Ω)

(
‖Γ‖2

L∞(Ω)‖S2‖2
L2(Q) + ‖pobs

2 ‖2
H1(L2(ω))

)
(
‖S1 − S2‖2

L2(Q) + ‖I2‖2
L2(H2(Ω))‖μ1 − μ2‖2

L2(Ω)

)
≤ C

(
‖S1 − S2‖2

L2(Q) + ‖S2‖2
L2(Q)‖μ1 − μ2‖2

L2(Ω)

)
≤ C

(
‖S1 − S2‖2

L2(Q) + ‖μ2 − μ1‖2
L2(Ω)

)
. (3.15)
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Using estimates (3.11), (3.14) and (3.15) in (3.8) give

‖μ1 − μ2‖L2(Ω) ≤
C

2α
(
‖S1 − S2‖L2(Q) + ‖μ1 − μ2‖L2(Ω) + ‖pobs

1 − pobs
2 ‖L2(L2(ω))

)
.

In the previous estimates the generic constant C depends on d, Ω, T, μmin, μmax, vmin
s , vmax

s , c, ‖Γ‖L∞ ,

‖S1‖L2(Q), ‖S2‖L2(Q) and ‖pobs
2 ‖H1(L2(ω)). �

As a consequence of Theorem 3.1 we deduce the uniqueness of the optimal solution that satisfies the 
optimality system (2.2)–(2.1), (2.5)–(2.7).

Corollary 3.1 (Uniqueness). Let α > C/2 with C as in Theorem 3.1. If the sources are the same S1 = S2
then the optimal control given by Theorem 2.2 is unique.

Proof. As S1 = S2 it follows that the measurements pobs
1 = pobs

2 and the optimality systems are the same. 
Let μ1, μ2 be two solutions of (2.2)–(2.1), (2.5)–(2.7), then from inequality (3.1) we deduce

‖μ1 − μ2‖L2(Ω) ≤ 0,

which concludes the proof. �
4. Computation of the derivative of the optimal control with respect to the source and the observation

In this section, we investigate two particular cases corresponding to practical issues. In the first one, we 
assume that we have an object to image, for instance a biological tissue (in the case of breast tumors) at a 
fixed date. The reconstruction process is sensitive to the sources and we can control the process as shown in 
the previous section. In this case, we assume that the measured pressure variation pobs

1 − pobs
2 is controlled 

by the source variation S1 − S2. We are going to make this precise in next subsection.
In the second case, we decide to illuminate two different objects with the same source: it is the case, for 

example in a calibration process. Usually, physicists perform acquisitions by difference when the object is 
hard to recover. They image the background without the object and the background with the object. Of 
course, the measurements are different but for many situations quite close (when the object is difficult to 
locate). In addition to such calibration processes, consider a biological tissue we want to image in a large 
time scale, to check micro-tumors that could appear for example. In this case, the objects to image are 
close (if the acquisition dates are close enough, and the disease not too severe) and we want to estimate the 
difference between the two objects, namely the new tumors or those that have disappeared.

In both case, the goal can be achieved by characterizing the derivative of μ with respect to the source S
and/or the observation pobs.

4.1. Derivative with respect to the source S

In this section we are interested in characterizing the derivative of μ with respect to the source S. We 
slightly change the notations in what follows: we fix S ∈ L2(Q) and write S0 = S. Then we consider 
S̃ ∈ L2(Q) such that ‖S̃‖L2(Q) ≤ 1. For λ > 0, we set Sλ = S0 +λS̃. As the previous section we write Ii, pi, 
q1i and q2i the respective solutions of Equations (2.1)–(2.2), (2.5)–(2.6), and pobs

i the measured pressure on 
ω × [0, T ] when the source signal is Si (i = 0, λ), we will assume that pobs

i ∈ H1(0, T ; L2(ω)). As the object 
is unchanged, we also suppose that

‖pobs
0 − pobs

λ ‖L2(L2(ω)) ≤ C‖S0 − Sλ‖L2(Q) (H)
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for some constant C and λ small enough (say |λ| ≤ λmax for example). This is realistic form a practical 
point of view. From Theorem 2.2 and Theorem 3.1 there exist unique μ0, μλ ∈ Uad solutions of Problems 
(P0), (Pλ) respectively. From inequality (3.1), with α large enough, we can conclude that the map

T : L2(0, T ;L2(Ω)) → L2(Ω)

S �→ μ

is locally Lipschitz continuous. There exists an extensively literature devoted to the study of the differ-
entiability of Lipschitz continuous maps between Banach spaces, more precisely in obtaining an extension 
of Rademacher’s Theorem, and we refer to [4,17,14,6,16,19,21,24] for this purpose. Following the results 
obtained in the previous papers we can deduce that T is Gâteaux differentiable at S for all S ∈ L2(Q) \A, 
where A is the class of exceptional sets, this sets take the place of sets of Lebesgue measure 0 in finite 
dimensional spaces. We refer to [4, Chapter 1] for the definition and properties of sets A.

The derivative is the map μ̇ : L2(Q) → T (L2(Q); L2(Ω)) given by

μ̇(S; S̃) = lim
λ→0

T (S + λS̃) − T (S)
λ

, (4.1)

where T (X; Y ) denotes the set of all maps on X in Y . We note that the previous limit is uniform in S̃ on 
each compact set. As the domain space and the image space of T are separable Hilbert spaces the limit 
holds in the sense of the strong topology on L2(Ω) (see for example [4, Theorem 1]). Then from (4.1) we 
have

μλ = μ0 + λμ̇ + o(λ) (4.2)

with ‖o(λ)‖L2(Ω)/λ → 0 as λ → 0.
In the same way, from estimates given by Theorem 2.3 and Theorem 2.4, we can deduce that the maps: 

S �→ I, S �→ p, S �→ q1 et S �→ q2 are Lipschitz continuous. As before, we deduce that these maps are 
Gâteaux differentiable and then there exist İ, ṗ, q̇1 and q̇2 such that

Iλ = I0 + λİ + o(λ), pλ = p0 + λṗ + o(λ),

q1λ = q10 + λq̇1 + o(λ), q2λ = q20 + λq̇2 + o(λ),

with ‖o(λ)‖L2(Q)/λ → 0 as λ → 0. In addition, from the hypothesis made on pobs we can conclude the 
existence of ṗobs such that

pobs
λ = pobs

0 + λṗobs + o(λ),

with ‖o(λ)‖L2(Q)/λ → 0 as λ → 0.
Furthermore İ, ṗ, q̇1 and q̇2 satisfy:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
c

∂İ

∂t
+ μ̇I0 + μ0İ − Δİ = S̃ in (0, T ) × Ω

İ = 0 on (0, T ) × ∂Ω

İ = 0 in (0, T ) × B \ Ω

İ(0, ·) = 0 in Ω

(4.3)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2ṗ

∂t2
− div(v2

s∇ṗ) = 1ΩΓ
(
μ̇I0 + μ0İ

)
in (0, T ) × B

ṗ = 0 on (0, T ) × ∂B

ṗ(0, ·) = ∂ṗ

∂t
(0, ·) = 0 in B,

(4.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2q̇1
∂t2

− div(v2
s∇q̇1) = 1ω(ṗ− ṗobs) in (0, T ) × B

q̇1 = 0 on (0, T ) × ∂B

q̇1(T, ·) = ∂q̇1
∂t

(T, ·) = 0 in B,

(4.5)

and

⎧⎪⎪⎨
⎪⎪⎩

−1
c

∂q̇2
∂t

+ μ0q̇2 − Δq̇2 = Γ(μ̇q10 + μ0q̇1) − μ̇q20 in (0, T ) × Ω

q̇2 = 0 on (0, T ) × ∂Ω

q̇2(T, ·) = 0 in Ω.

(4.6)

Now, we define

mλ := − 1
2α

T∫
0

(1ΩΓq1λ − q2λ) · Iλ dt; (4.7)

so from (2.7), the optimal control μλ is equal to PUad
(mλ), where PUad

denotes the projection in L2(Ω) onto 
Uad. Moreover, the calculations made in the previous section show that the map

L2(Q) → L2(Ω)

S �→ m

is Lipschitz continuous. Then, repeating the above argument, we deduce that there exists ṁ ∈ L2(Ω) such 
that

mλ = m0 + λṁ + o(λ) (4.8)

with ‖o(λ)‖L2(Ω)/λ → 0 as λ → 0. It is easy to check that

ṁ = − 1
2α

⎛
⎝ T∫

0

(1ΩΓq̇1 − q̇2)I0 dt +
T∫

0

(1ΩΓq10 − q20)İ dt

⎞
⎠ (4.9)

with İ, ṗ, q̇1 and q̇2 satisfying (4.3)–(4.6) respectively. From [23, Lemma 2.1] it follows that there exists 
ν ∈ L2(Ω) such that

PUad
(mλ) = PUad

(m0) + λν + o(λ)

with ‖o(λ)‖L2(Ω)/λ → 0 as λ → 0. From (4.2) and the above equality, we deduce

μ̇ = ν.
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Definition 4.1. Let H be a Hilbert space, K ⊂ H a closed convex subset. For every ζ ∈ K, we set

CK(ζ) =
⋃
ξ>0

ξ(K − ζ).

CK(ζ) is called the tangent cone at point ζ.

Theorem 4.1. The derivative of the optimal control μ0 at point S0 in the direction of S̃ given by (4.1) satisfies 
the following properties:

1. μ̇ ∈ CUad
(μ0), where A denotes the closure in L2(Ω) of a set A.

2. μ̇ ∈ {μ0 −m0}⊥, where A⊥ denotes the orthogonal set to A.
3. 〈μ̇− ṁ, μ̇〉L2(Ω) ≤ 0.
4. For all w ∈ CUad

(μ0) ∩ {μ0 −m0}⊥ we have

〈μ̇− ṁ, w〉L2(Ω) ≥ 0.

Proof. Item (1) follows directly from (4.2): μ̇ = lim
λ→0

1
λ

(μλ − μ0) and the fact that μλ ∈ Uad for all λ ≥ 0.
From Theorem 2.2 and equations (2.7), (4.7), we get for every λ > 0 and ξ ∈ Uad

〈μλ −mλ, ξ − μλ〉L2(Ω) ≥ 0 (4.10)

and

〈μ0 −m0, ξ − μ0〉L2(Ω) ≥ 0. (4.11)

Taking ξ = μ0 in (4.10), dividing by λ and taking limit as λ → 0 we obtain

〈μ0 −m0, μ̇〉L2(Ω) ≤ 0.

Similarly, taking ξ = μλ in (4.11), dividing by λ and taking limit as λ → 0 we obtain

〈μ0 −m0, μ̇〉L2(Ω) ≥ 0.

Hence, we have item (2). Similarly, taking ξ = μ0 in (4.10) and ξ = μλ in (4.11), adding the two inequalities, 
dividing by λ2 and passing to the limit as λ → 0 gives 〈μ̇− ṁ, μ̇〉L2(Ω) ≤ 0.

In order to prove item (4) let us choose λn → 0 as n → +∞. First, we check that

0 ≥ 〈mλ − μλ, ξ − μλ〉L2(Ω)

= 〈m0 + λnṁ− μ0 − λnμ̇ + o(λn), ξ − μ0 − λnμ̇ + o(λn)〉L2(Ω)

= 〈m0 − μ0, ξ − μ0〉L2(Ω) − 〈m0 − μ0, λnμ̇〉L2(Ω) +

+ 〈λn(ṁ− μ̇), ξ − μ0〉L2(Ω) − 〈λn(ṁ− μ̇), λnμ̇〉L2(Ω) + o(λn). (4.12)

Here we used (4.10), (4.2), (4.8) and that λn → 0. Now, we consider ξ ∈ Uad such that (ξ−μ0) ∈ {μ0−m0}⊥, 
the inequality (4.12) yields

λn 〈ṁ− μ̇, ξ − μ0〉 2 ≤ λn 〈m0 − μ0, μ̇〉 2 + λ2
n 〈ṁ− μ̇, μ̇〉 2 + o(λn).
L (Ω) L (Ω) L (Ω)



1150 M. Bergounioux, E.L. Schwindt / J. Math. Anal. Appl. 431 (2015) 1138–1152
Dividing by λn > 0 taking limit as n → +∞ and using item (2), we get

〈ṁ− μ̇, ξ − μ0〉L2(Ω) ≤ 0.

Now, choose w ∈ CUad
(μ0) ∩ {μ0 −m0}⊥: there exist τ > 0 and ξ ∈ Uad such that w = τ(ξ − μ0). So, we 

have

0 = 〈m0 − μ0, w〉L2(Ω) = τ 〈m0 − μ0, ξ − μ0〉L2(Ω) .

As ξ ∈ Uad and (ξ − μ0) ∈ {μ0 − m0}⊥, the previous computation shows that 〈μ̇− ṁ, ξ − μ0〉L2(Ω) ≤ 0. 
Since τ > 0, we obtain the inequality of item (4) for all w ∈ CUad

(μ0) ∩ {μ0 −m0}⊥.
Passing to the limit for appropriate sequences, we obtain the last inequality for all w in the closure of 

CUad
(μ0) ∩ {μ0 −m0}⊥. This concludes the proof of the theorem. �

Corollary 4.1. The Gâteaux-derivative μ̇ of the optimal control μ at S0 with respect to the source, can be 
characterized as the unique function in L2(Ω) that verifies the optimality system (4.3)–(4.6) and

∀w ∈ CUad
(μ0) ∩ {μ0 −m0}⊥, 〈μ̇− ṁ, w − μ̇〉L2(Ω) ≥ 0 (4.13)

with ṁ given by (4.9).

Proof. The demonstration follows immediately from Theorem 4.1, items (3) and (4). The inequality (4.13)
says that μ̇ is the projection of ṁ in L2(Ω) onto CUad

(μ0) ∩ {μ0 −m0}⊥. �
This corollary will be used to perform the numerical computation.

4.2. Derivative with respect to the observation

In this subsection, we consider the case where the source is unchanged and discuss the stability of the 
optimal solution of Problem (P) with respect to the observation pobs.

Let S ∈ L2(Q) be fixed. For any fixed p̃ ∈ L2(0, T ; L2(ω)), we consider pobs
0 and pobs

λ = pobs
0 + λp̃ two 

observations on [0, T ] ×ω and call μ0, μλ the unique corresponding solutions of optimality systems (2.1)–(2.2), 
(2.5)–(2.7). For example, p̃ can be equal to (pobs

1 − pobs
0 )/‖pobs

1 − pobs
0 ‖L2 where pobs

1 is a measurement of the 
pressure corresponding to another abject, and λ = ‖pobs

1 − pobs
0 ‖L2 . We will denote Ii, pi, q1i and q2i the 

respective solutions of Equations (2.1)–(2.2), (2.5)–(2.6), when the observation data is pobs
i with i = 0, λ.

Relation (3.1) of Theorem 3.1 yields that the map T : pobs → μ is Lipschitz continuous (if α is large 
enough). With the same arguments as in Subsection 4.1 we deduce there exists μ̇(p̃) ∈ L2(Ω) such that

μ̇(pobs
0 ; p̃) = lim

λ→0

T (pobs
0 + λp̃) − T (pobs

0 )
λ

,

and

μλ = μ0 + λμ̇ + o(λ)

with ‖o(λ)‖L2(Ω)/λ → 0 as λ → 0. We also get the existence of İ, ṗ, q̇1 and q̇2 such that

Iλ = I0 + λİ + o(λ), pλ = p0 + λṗ + o(λ),

q1λ = q10 + λq̇1 + o(λ), q2λ = q20 + λq̇2 + o(λ),

with ‖o(λ)‖L2(Q)/λ → 0 as λ → 0. Then we can prove similarly
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Theorem 4.2. The Gâteaux-derivative μ̇ of the optimal control μ at pobs
0 with respect to the observation, can 

be characterized as the unique function in L2(Ω) that verifies the following optimality system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
c

∂İ

∂t
+ μ0İ − Δİ = −μ̇I0 in (0, T ) × Ω

İ = 0 on (0, T ) × ∂Ω

İ = 0 in (0, T ) × B \ Ω

İ(0, ·) = 0 in Ω,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2ṗ

∂t2
− div(v2

s∇ṗ) = 1ΩΓ
(
μ̇I0 + μ0İ

)
in (0, T ) × B

ṗ = 0 on (0, T ) × ∂B

ṗ(0, ·) = ∂ṗ

∂t
(0, ·) = 0 in B,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2q̇1
∂t2

− div(v2
s∇q̇1) = 1ω(ṗ− p̃) in (0, T ) × B

q̇1 = 0 on (0, T ) × ∂B

q̇1(T, ·) = ∂q̇1
∂t

(T, ·) = 0 in B,⎧⎪⎪⎨
⎪⎪⎩

−1
c

∂q̇2
∂t

+ μ0q̇2 − Δq̇2 = Γ(μ̇q10 + μ0q̇1) − μ̇q20 in (0, T ) × Ω

q̇2 = 0 on (0, T ) × ∂Ω
q̇2(T, ·) = 0 in Ω,

and

∀w ∈ CUad
(μ0) ∩ {μ0 −m0}⊥, 〈μ̇− ṁ, w − μ̇〉L2(Ω) ≥ 0

where ṁ is given by (4.9).

5. Conclusions

We have proved the uniqueness of the solution of the optimal control problem studied in [12] and given 
a stability result. We also provide a characterization of the derivative of the optimal control with respect 
both to the source and the observation. Furthermore, this characterization leads to a numerical scheme for 
the computation of these derivatives. This numerical aspect will be discussed in a forthcoming paper.

Open questions remain, as the stability of the optimal control with respect to the sound speed. The study 
of the uniqueness and stability in the case when the diffusion coefficient D is not constant will be studied 
in future work.
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