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a b s t r a c t 

This article gives an introduction to optimal transport, a mathematical theory that makes it possible to 

measure distances between functions (or distances between more general objects), to interpolate between 

objects or to enforce mass/volume conservation in certain computational physics simulations. Optimal 

transport is a rich scientific domain, with active research communities, both on its theoretical aspects and 

on more applicative considerations, such as geometry processing and machine learning. This article aims 

at explaining the main principles behind the theory of optimal transport, introduce the different involved 

notions, and more importantly, how they relate, to let the reader grasp an intuition of the elegant theory 

that structures them. Then we will consider a specific setting, called semi-discrete, where a continuous 

function is transported to a discrete sum of Dirac masses. Studying this specific setting naturally leads 

to an efficient computational algorithm, that uses classical notions of computational geometry, such as a 

generalization of Voronoi diagrams called Laguerre diagrams. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

This article presents an introduction to optimal transport, and

hen focuses on a specific class of numerical methods (semi-

iscrete). Before diving into the subject, we find it important to

ention that besides semi-discrete methods, many other numeri-

al methods exist, the reader is referred to [1] and [2] for a com-

lete overview. We also mention that many alternatives exist for

omparing and interpolating between functions, such as Reproduc-

ng Kernel Hilbert Space for measures, and diffeomorphism meth-

ds for functions and shapes. 

This article summarizes and complements a series of confer-

nces given by B. Lévy between 2014 and 2017 on semi-discrete

ptimal transport. The presentations stays at an elementary level,

hat corresponds to a computer scientist’s vision of the problem.

n the article, we stick to using standard notions of analysis (func-

ions, integrals) and linear algebra (vectors, matrices), and give an

ntuition of the notion of measure. The main objective of the pre-

entation is to understand the overall structure of the reasoning 1 ,
� This article was recommended for publication by Dr M Teschner. 
∗ Corresponding author. 

E-mail addresses: Bruno.Levy@inria.fr , levy@loria.fr (B. Lévy), 

chwindt@math.cnrs.fr (E.L. Schwindt). 

URL: https://members.loria.fr/BLevy/ (B. Lévy) 
1 Teach principles, not equations. [R. Feynman] 
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nd to follow a continuous path from the theory to an efficient

lgorithm that can be implemented in a computer. 

Optimal transport, initially studied by Monge, [3] , is a very gen-

ral mathematical framework that can be used to model a wide

lass of application domains. In particular, it is a natural formula-

ion for several fundamental questions in computer graphics [4–6] ,

ecause it makes it possible to define new ways of comparing func-

ions, of measuring distances between functions and interpolating

etween two (or more) functions: 

omparing functions. Consider the functions f 1 , f 2 and f 3 in Fig. 1 .

ere we have chosen a function f 1 with a wildly oscillating graph,

nd a function f 2 obtained by translating the graph of f 1 along the

 axis. The function f 3 corresponds to the mean value of f 1 (or f 2 ).

f one measures the relative distances between these functions us-

ng the classical L 2 norm, that is d L 2 ( f, g) = 

∫ 
( f (x ) − g(x )) 2 dx, one

ill find that f 1 is nearer to f 3 than f 2 . Optimal transport makes

t possible to define a distance that will take into account that

he graph of f 2 can be obtained from f 1 through a translation (like

ere), or through a deformation of the graph of f 1 . From the point

f view of this new distance, the function f 1 will be nearer to f 2 
han to f 3 . 

nterpolating between functions:. Now consider the functions u and

 in Fig. 2 . Here we suppose that u corresponds to a certain phys-

cal quantity measured at an initial time t = 0 and that v corre-

ponds to the same phenomenon measured at a final time t = 1 .

https://doi.org/10.1016/j.cag.2018.01.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.01.009&domain=pdf
mailto:Bruno.Levy@inria.fr
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https://doi.org/10.1016/j.cag.2018.01.009
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Fig. 1. Comparing functions: one would like to say that f 1 is nearer to f 2 than f 3 , 

but the classical L 2 norm “does not see” that the graph of f 2 corresponds to the 

graph of f 1 slightly shifted along the x axis. 

Fig. 2. Interpolating between two functions: linear interpolation makes a hump 

disappear while the other hump appears; displacement interpolation, stemming 

from optimal transport, will displace the hump as expected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Given two terrains defined by their height functions u and v , symbolized 

here as gray levels, Monge’s problem consists in transforming one terrain into the 

other one by moving matter through an application T . This application needs to 

satisfy a mass conservation constraint. 

Fig. 4. Transport from a function (gray levels) to a discrete point-set (blue disks). 
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The problem that we consider now consists in reconstructing what

happened between t = 0 and t = 1 . If we use linear interpolation

( Fig. 2 , top-right), we will see the left hump progressively dis-

appearing while the right hump progressively appears, which is

not very realistic if the functions represent for instance a prop-

agating wave. Optimal transport makes it possible to define an-

other type of interpolation (Mc. Cann’s displacement interpolation,

Fig. 2 , bottom-right), that will progressively displace and morph

the graph of u into the graph of v . 
Optimal transport makes it possible to define a geometry of a

space of functions 2 , and thus gives a definition of distance in this

space, as well as means of interpolating between different func-

tions, and in general, defining the barycenter of a weighted family

of functions, in a very general context. Thus, optimal transport ap-

pears as a fundamental tool in many applied domains. In computer

graphics, applications were proposed, to compare and interpolate

objects of diverse natures [6] , to generate lenses that can concen-

trate light to form caustics in a prescribed manner [7,8] . Moreover,

optimal transport defines new tools that can be used to discretize

Partial Differential Equations, and define new numerical solution

mechanisms [9] . This type of numerical solution mechanism can

be used to simulate for instance fluids [10] , with spectacular ap-

plications and results in computer graphics [11] . 

The two sections that follow are partly inspired by [12] , [13] ,

[14] and [15] , but stay at an elementary level. Here the main goal

is to give an intuition of the different concepts, and more impor-

tantly an idea of the way the relate together. Finally we will see

how they can be directly used to design a computational algorithm

with very good performance, that can be used in practice in sev-

eral application domains. 

2. Monge’s problem 

The initial optimal transport problem was first introduced and

studied by Monge, right before the French revolution [3] . We first

give an intuitive idea of the problem, then quickly introduce the

notion of measure , that is necessary to formally state the problem

in its most general form and to analyze it. 

2.1. Intuition 

Monge’s initial motivation to study this problem was very prac-

tical: supposing you have an army of workmen, how can you trans-
2 or more general objects, called probability measures, more on this later. 

t  

b  

f  
orm a terrain with an initial landscape into a given desired target

andscape, while minimizing the total amount of work? 

Monge’s initial problem statement was as follows: 

inf 
T : X→ X 

∫ 
X 

c(x, T (x )) u (x ) dx 

subject to: 

∀ B ⊂ X, 
∫ 

T −1 (B ) 

u (x ) dx = 

∫ 
B 

v (x ) dx 

here X is a subset of R 

2 , u and v are two positive functions de-

ned on X and such that ∫ X u ( x ) dx = 

∫ 
Y v (x ) dx, and c ( · , · ) is a

onvex distance (the Euclidean distance in Monge’s initial problem

tatement). 

The functions u and v represent the height of the current land-

cape and the height of the target landscape respectively (symbol-

zed as gray levels in Fig. 3 ). The problem consists in finding (if it

xists) a function T from X to X that transforms the current land-

cape u into the desired one v , while minimizing the product of

he amount of transported earth u ( x ) with the distance c ( x , T ( x ))

o which it was transported. Clearly, the amount of earth is con-

erved during transport, thus the total quantity of earth should be

he same in the source and target landscapes (the integrals of u

nd v over X should coincide). This global matter conservation con-

traint needs to be completed with a local one. The local matter

onservation constraint enforces that in the target landscape, the

uantity of earth received in any subset B of X corresponds to what

as transported here, that is the quantity of earth initially present

n the pre-image T −1 (B ) of B under T . Without this constraint, one

ould locally create matter in some places and annihilate matter in

ther places in a counterbalancing way. A map T that satisfies the

ocal mass conservation constraint is called a transport map . 

.2. Monge’s problem with measures 

We now suppose that instead of a “target landscape”, we wish

o transport earth (or a resource) towards a set of points (that will

e denoted by Y for now on), that represent for instance a set of

actories that exploit a resource, see Fig. 4 . Each factory wishes to
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Fig. 5. A classical example of the existence problem: there is no optimal transport 

between a segment L 1 and two parallel segments L 2 and L 3 (it is always possible to 

find a better transport by replacing h with h /2). 
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eceive a certain quantity of resource (depending for instance of

he number of potential customers around the factory). Thus, the

unction v that represents the “target landscape” is replaced with

 function on a finite set of points. However, if a function v is zero

verywhere except on a finite set of points, then its integral over

 is also zero. This is a problem, because for instance one cannot

roperly express the mass conservation constraint. For this reason,

he notion of function is not rich enough for representing this con-

guration. One can use instead measures (more on this below), and

ssociate with each factory a Dirac mass weighted by the quantity

f resource to be transported to the factory. 

From now on, we will use measures μ and ν to represent the

current landscape” and the “target landscape”. These measures

re supported by sets X and Y , that may be different sets (in the

resent example, X is a subset of R 

2 and Y is a discrete set of

oints). Using measures instead of function not only makes it pos-

ible to study our “transport to discrete set of factories” problem,

ut also it can be used to formalize computer objects (meshes) and

irectly leads to a computational algorithm. This algorithm is very

legant because it is a verbatim computer translation of the math-

matical theory (see Section 7.6 ). In this particular setting, trans-

ating from the mathematical language to the algorithmic setting

oes not require to make any approximation. This is made possi-

le by the generality of the notion of measure. 

The reader who wishes to learn more on measure theory may

efer to the textbook [16] . To keep the length of this article rea-

onable, we will not give here the formal definition of a measure.

n our context, one can think of a measure as a “function” that can

e only queried using integrals and that can be “concentrated” on

ery small sets (points). The following table can be used to intu-

tively translate from the “language of functions” to the “language

f measures” : 

Function u Measure μ∫ 
B u (x ) dx μ(B ) or 

∫ 
B dμ∫ 

B f (x ) u (x ) dx 
∫ 

B f (x ) dμ

u (x ) N/A 

(Note: in contrast with functions, measures cannot be evaluated

t a point, they can be only integrated over domains). 

In its version with measures, Monge’s problem can be stated as

ollows: 

inf 
T : X→ Y 

∫ 
X 

c(x, T (x )) dμ subject to ν = T �μ (M) 

here X and Y are Borel sets (that is, sets that can be measured), μ

nd ν are two measures on X and Y, respectively such that μ(X ) =
(Y ) and c ( · , · ) is a convex distance. The constraint ν = T �μ, that

eads “T pushes μ onto ν” corresponds to the local mass conser-

ation constraint. Given a measure μ on X and a map T from X

o Y , the measure T � μ on Y , called “the pushforward of μ by T ”, is

uch that T �μ(B ) = μ(T −1 (B )) for all Borel set B ⊂ Y . Thus, the lo-

al mass conservation constraint means that μ(T −1 (B )) = ν(B ) for

ll Borel set B ⊂ Y . 

The local mass conservation constraint makes the problem very

ifficult: imagine now that you want to implement a computer

rogram that enforces it: the constraint concerns all the subsets

 of Y . Could you imagine an algorithm that just tests whether a

iven map satisfies it ? What about enforcing it ? We will see be-

ow a series of transformations of the initial problem into equiva-

ent problems, where the constraint becomes linear . We will finally

nd up with a simple convex optimization problem, that can be

olved numerically using classical methods. 

Before then, let us get back to examine the original problem.

he local mass conservation constraint is not the only difficulty:

he functional optimized by Monge’s problem is non-symmetric,

nd this causes additional difficulties when studying the existence
f solutions for problem (M) . The problem is not symmetric be-

ause T needs to be a map, therefore the source and target land-

cape do not play the same role. Thus, it is possible to merge earth

if T (x 1 ) = T (x 2 ) for two different points x 1 and x 2 ), but it is not

ossible to split earth (for that, we would need a “map” T that

ould send the same point x to two different points y 1 and y 2 ).

he problem is illustrated in Fig. 5 : suppose that you want to com-

ute the optimal transport between a segment L 1 (that symbol-

zes a “wall of earth”) and two parallel segments L 2 and L 3 (that

ymbolize two “trenches” with a depth that correspond to half the

eight of the wall of earth). Now we want to transport the wall

f earth to the trenches, to make the landscape flat. To do so, it

s possible to decompose L 1 into segments of length h , sent alter-

atively towards L 2 and L 3 ( Fig. 5 on the left). For any length h ,

t is always possible to find a better map T , that is a lower value

f the functional in (M) , by subdividing L 1 into smaller segments

 Fig. 5 on the right). The best way to proceed consists in sending

rom each point of L 1 half the earth to L 2 and half the earth to L 3 ,

hich cannot be represented by a map. Thus, the best solution of

roblem (M) is not a map. In a more general setting, this problem

ppears each time the source measure μ has mass concentrated

n a manifold of dimension d − 1 [17] (like the segment L 1 in the

resent example). 

. Kantorovich’s relaxed problem 

To overcome this difficulty, Kantorovich stated a problem with

 larger space of solutions, that is, a relaxation of problem (M) ,

here mass can be both split and merged. The idea consists in

olving for the “graph of T ” instead of T . One may think of the

raph of T as a function g defined on X × Y that indicates for each

ouple of points x ∈ X , y ∈ Y how much matter goes from x to y .

owever, once again, we cannot use standard functions to repre-

ent the graph of T : if you think about the graph of a univariate

unction x �→ f ( x ), it is defined on R 

2 but concentrated on a curve.

or this reason, as in our previous example with factories, one

eeds to use measures. Thus, we are now looking for a measure

supported by the product space X × Y . The relaxed problem is

tated as follows: 

inf 
γ

{ ∫ 
X×Y 

c(x, y ) dγ | γ ≥ 0 and γ ∈ �(μ, ν) 

}
where: 

�(μ, ν) = { γ ∈ P (X × Y ) | (P X ) �γ = μ ; (P Y ) �γ = ν} 

(K) 

here ( P X ) and ( P Y ) denote the two projections ( x , y ) ∈ X × Y �→ x

nd (x, y ) ∈ X × Y �→ y, respectively. 

The two measures ( P X ) �γ and ( P Y ) �γ obtained by pushing for-

ard γ by the two projections are called the marginals of γ .

he measures γ in the admissible set �(μ, ν), that is, the mea-

ures that have μ and ν as marginals, are called optimal trans-

ort plans . Let us now have a closer look at the two constraints

n the marginals (P ) �γ = μ and ( P ) �γ that define the set of
X X 
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Fig. 6. Four examples of transport plans in 1D. (A) a segment is translated. (B) a segment is split into two segments. (C) a Dirac mass is split into two Dirac masses; (D) a 

Dirac mass is spread along two segments. The first two examples (A and B) have the form ( Id × T ) � μ where T is a transport map. The third and fourth ones (C and D) have 

no corresponding transport map, because each of them splits a Dirac mass. 
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optimal transport plans �(μ, ν). Recalling the definition of the

pushforward (previous subsection), these two constraints can also

be written as: 

(P X ) �γ = μ ⇐⇒ ∀ B ⊂ X, 

∫ 
B 

dμ = 

∫ 
B ×Y 

dγ

(P Y ) �γ = ν ⇐⇒ ∀ B 

′ ⊂ Y, 

∫ 
B ′ 

dν = 

∫ 
X×B ′ 

dγ . (1)

Intuitively, the first constraint (P X ) �γ = μ means that everything

that comes from a subset B of X should correspond to the amount

of matter (initially) contained by B in the source landscape, and

the second one (P Y ) �γ = ν means that everything that goes into

a subset B ′ of Y should correspond to the (prescribed) amount of

matter contained by B ′ in the target landscape ν . 

We now examine the relation between the relaxed problem

(K) and the initial problem (M) . One can easily check that among

the optimal transport plans, those with the form ( Id × T ) � μ corre-

spond to a transport map T : 

Observation 1. If ( Id × T ) � μ is a transport plan, then T pushes μ

onto ν . 

Proof. ( Id × T ) � μ is in �(μ, ν), thus (P Y ) � (Id × T ) �μ = ν, or

( (P Y ) ◦ (Id × T ) ) �μ = ν, and finally T �μ = ν . �

We can now observe that if a transport plan γ has the form

γ = (Id × T ) �μ, then problem (K) becomes: 

min 

{ ∫ 
X×Y 

c(x, y ) d ( (Id × T ) �μ) 

} 

= min 

{ ∫ 
X 

c(x, T (x )) dμ

) 

(one retrieves the initial Monge problem). 

To further help grasping an intuition of this notion of trans-

port plan, we show four 1D examples in Fig. 6 (the transport plan

is then 1 D × 1 D = 2 D ). Intuitively, the transport plan γ may be

thought of as a “table” indexed by x and y that indicates the quan-

tity of matter transported from x to y . More exactly 3 , the measure

γ is non-zero on subsets of X × Y that contain points ( x , y ) such

that some matter is transported from x to y . Whenever γ derives

from a transport map T , that is if γ has the form ( Id × T ) � μ, then

we can consider γ as the “graph of T ” like in the first two exam-

ples of Fig. 6 (A) and (B) 4 in Fig. 6 . 

The transport plans of the two other examples (C) and (D) have

no associated transport map, because they split Dirac masses. The

transport plan associated with Fig. 5 has the same nature (but

this time in 2 D × 2 D = 4 D ). It cannot be written with the form
3 We recall that one cannot evaluate a measure γ at a point ( x , y ), we can just 

compute integrals with γ . 
4 Note that the measure μ is supposed to be absolutely continuous with respect 

to the Lebesgue measure. This is required, because for instance in example (B) of 

Fig. 6 , the transport map T is undefined at the center of the segment. The absolute 

continuity requirement allows one to remove from X any subset with zero measure. 

m  

w  

t

w  
 Id × T ) � μ because it splits the mass concentrated in L 1 into L 2 and

 3 . 

Now the theoretical questions are: 

• when does an optimal transport plan exist ? 
• when does it admit an associated optimal transport map ? 

A standard approach to tackle this type of existence problem is

o find a certain regularity both in the functional and in the space

f the admissible transport plans, that is, proving that the func-

ional is sufficiently “smooth” and finding a compact set of admis-

ible transport plans. Since the set of admissible transport plans

ontains at least the product measure μ�ν , it is non-empty, and

xistence can be proven thanks to a topological argument that ex-

loits the regularity of the functional and the compactness of the

et. Once the existence of a transport plan is established, the other

uestion concerns the existence of an associated transport map.

nfortunately, problem (K) does not directly show the structure

equired by this reasoning path. However, one can observe that

K) is a linear optimization problem subject to linear constraints.

his suggests using certain tools, such as the dual formulation, that

as also developed by Kantorovich. With this dual formulation, it

s possible to exhibit an interesting structure of the problem, that

an be used to answer both questions (existence of a transport

lan, and existence of an associated transport map). 

. Kantorovich’s dual problem 

Kantorovich’s duality applies to problem (K) , in its most general

orm (with measures). To facilitate understanding, we will consider

nstead a discrete version of problem (K) , where the involved enti-

ies are vectors and matrices (instead of measures and operators).

his makes it easy to better discern the structure of (K) , that is the

inear nature of both the functional and the constraints. This also

akes it easier for the reader to understand how to construct the

ual by manipulating simpler objects (matrices and vectors), how-

ver the structure of the reasoning is the same in the general case.

.1. The discrete Kantorovich problem 

In Fig. 7 , we show a discrete version of the 1D transport be-

ween two segments of Fig. 6 . The measures μ and ν are replaced

ith vectors U = (u i ) i =1 ... m 

and V = (v j ) i =1 ... n . The transport plan

becomes a set of coefficients γ ij . Each coefficient γ ij indicates

he quantity of matter that will be transported from u i to v j . The

iscrete Kantorovich problem can be written as follows: 

in 

γ
〈 C, γ 〉 subject to 

{ 

P x γ = U 

P y γ = V 

γi, j ≥ 0 ∀ i, j 
(2)

here γ is the vector of R 

m ×n with all coefficients γ ij (that is,

he matrix γ ij “unrolled” into a vector), and C the vector of R 

m ×n 

ith the coefficients c ij indicating the transport cost between point
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Fig. 7. A discrete version of Kantorovich’s problem. 

i  

t  

C  

s  

t  

u  

t  

i  

p  

a  

t  

i  

w  

r

4

 

fi

L

t  

f  

w  

t  

c

I  

m  

c

γ

T  

o  

s  

t  

t

γ

 

T  

s  

[  

p  

i  

t  

P  

w

 

v  

a  

v  

a  

n  

c  

t

4

 

t

w

 

p  

s  

o  

p  

i  

l  

i  

n  

w

 

b  

5 The functions ϕ and ψ need to be taken in L 1 (μ) and L 1 ( ν). The proof of the 

equivalence with problem (K) requires more precautions than in the discrete case, 

in particular step (4) (exchanging sup and inf), that uses a result of convex analysis 

(due to Rockafellar), see [12] chapter 5. 
 and point j (for instance, the Euclidean cost). The objective func-

ion is simply the dot product, denoted by 〈 C , γ 〉 , of the cost vector

 and the vector γ . The objective function is linear in γ . The con-

traints on the marginals (1) impose in this discrete version that

he sums of the γ ij coefficients over the columns correspond to the

 i coefficients ( Fig. 7 B) and the sums over the rows correspond to

he v j coefficients ( Fig. 7 C). Intuitively, everything that leaves point

 should correspond to u i , that is the quantity of matter initially

resent in i in the source landscape, and everything that arrives

t a point j should correspond to v j , that is the quantity of mat-

er desired at j in the target landscape. As one can easily notice,

n this form, both constraints are linear in γ . They can be written

ith two matrices P x and P y , of dimensions m × mn and n × mn,

espectively. 

.2. Constructing the Kantorovich dual in the discrete setting 

We introduce, arbitrarily for now, the following function L de-

ned by: 

 (ϕ, ψ) = 〈 C, γ 〉 − 〈 ϕ, P x γ − U〉 − 〈 ψ, P y γ − V 〉 
hat takes as arguments two vectors, ϕ in R 

m and ψ in R 

n . The

unction L is constructed from the objective function 〈 C , γ 〉 from

hich we subtracted the dot products of ϕ and ψ with the vectors

hat correspond to the degree of violation of the constraints. One

an observe that: 

sup 

ϕ,ψ 

[ L (ϕ, ψ)] = 〈 C, γ 〉 if P x γ = U and P y γ = V 

= + ∞ otherwise. 

ndeed, if for instance a component i of P x γ is non-zero, one can

ake L arbitrarily large by suitably choosing the associated coeffi-

ient ϕi . 

Now we consider: 

inf 
≥0 

[
sup 

ϕ,ψ 

[ L (ϕ, ψ)] 

]
= inf 

γ ≥ 0 

P x γ = U 

P y γ = V 

[ 〈 C, γ 〉 ] . 

here is equality, because to minimize sup [ L (ϕ, ψ)] , γ has no

ther choice than satisfying the constraints (see the previous ob-

ervation). Thus, we obtain a new expression (left-hand side) of

he discrete Kantorovich problem (right-hand side). We now fur-

her examine it, and replace L by its expression: 

inf 
≥0 

[
sup 

ϕ,ψ 

(〈 C, γ 〉 −〈 ϕ, P x γ − U〉 
−〈 ψ, P y γ − V 〉 

)]
(3) 

= sup 

ϕ,ψ 

[
inf 
γ ≥0 

(〈 C, γ 〉 −〈 ϕ, P x γ − U〉 
−〈 ψ, P y γ − V 〉 

)]
(4) 

= sup 

ϕ,ψ 

[
inf 
γ ≥0 

(〈 γ , C − P x 
t ϕ − P y 

t ψ〉 + 

〈 ϕ, U〉 + 〈 ψ, V 〉 
)]

(5) 
= sup 

ϕ, ψ 

P x 
t ϕ + P y 

t ψ ≤ C 

[ 〈 ϕ, U〉 + 〈 ψ, V 〉 ] . (6) 

The first step (4) consists in exchanging the “inf ” and “sup ”.

his exchange is possible thanks to a generalization of the clas-

ical minimax theorem due to von Neumann (see, for example

 18 , Theorem 2.7]). Then we rearrange the terms (5) . By reinter-

reting this equation as a constrained optimization problem (sim-

larly to what we did in the previous paragraph), we finally ob-

ain the constrained optimization problem in (6) . In the constraint

 x 
t ϕ + P y 

t ψ ≤ C, the inequality is to be considered component-

ise. Finally, the problem (6) can be rewritten as: 

sup 

ϕ,ψ 

[ 〈 ϕ, U〉 + 〈 ψ, V 〉 ] 
subject to ϕ i + ψ j ≤ c i j , ∀ i, j. (7) 

As compared to the primal problem (2) that depends on m × n

ariables (all the coefficients γ ij of the optimal transport plan for

ll couples of points ( i , j )), this dual problem depends on m + n

ariables (the components ϕi and ψ j attached to the source points

nd target points). We will see later how to further reduce the

umber of variables, but before then, we go back to the general

ontinuous setting (that is, with functions, measures and opera-

ors). 

.3. The Kantorovich dual in the continuous setting 

The same reasoning path can be applied to the continuous Kan-

orovich problem (K) , leading to the following problem (DK): 

(DK) sup 

ϕ,ψ 

[ ∫ 
X 

ϕdμ + 

∫ 
Y 

ψdν

] 

subject to: ϕ(x ) + ψ(y ) ≤ c(x, y ) ∀ (x, y ) ∈ X × Y, (8) 

here ϕ and ψ are now functions defined on X and Y 5 . 

The classical image that gives an intuitive meaning to this dual

roblem is to consider that instead of transporting earth by our-

elves, we are now hiring a company that will do the work on

ur behalf. The company has a special way of determining the

rice: the function ϕ( x ) corresponds to what they charge for load-

ng earth at x , and ψ( y ) corresponds to what they charge for un-

oading earth at y . The company aims at maximizing its profit (this

s why the dual problem is a “sup” rather than an “inf)”, but it can-

ot charge more than what it would cost us if we were doing the

ork by ourselves (hence the constraint). 

The existence of solutions for (DK) remains difficult to study,

ecause the set of functions ϕ, ψ that satisfy the constraint is not
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compact. However, it is possible to reveal more structure of the

problem, by introducing the notion of c-transform , that makes it

possible to exhibit a set of admissible functions with sufficient reg-

ularity: 

Definition 1. 

• For f any function on Y with values in R ∪ {−∞} and not

identically −∞ , we define its c -transform by 

f c (x ) = inf 
y ∈ Y 

[ c(x, y ) − f (y ) ] , x ∈ X. 

• If a function ϕ is such that there exists a function f such that

ϕ = f c , then ϕ is said to be c-concave ; 
• �c ( X ) denotes the set of c-concave functions on X . 

We now show two properties of (DK) that will allow us to re-

strict the problem to the class of c -concave functions to search for

ϕ and ψ : 

Observation 2. If the pair ( ϕ, ψ) is admissible for (DK), then the

pair ( ψ 

c , ψ) is admissible as well. 

Proof. {∀ (x, y ) ∈ X × Y, ϕ(x ) + ψ(y ) ≤ c(x, y ) 
ψ 

c (x ) = inf 
y ∈ Y 

[ c(x, y ) − ψ(y ) ] 

ψ 

c (x ) + ψ(y ) = inf 
y ′ ∈ Y 

[
c(x, y ′ ) − ψ(y ′ ) 

]
+ ψ(y ) 

≤ (c(x, y ) − ψ(y )) + ψ(y ) 
≤ c(x, y ) . 

�

Observation 3. If the pair ( ϕ, ψ) is admissible for (DK), then one

obtains a better pair by replacing ϕ with ψ 

c : 

Proof. 

ψ 

c (x ) = inf 
y ∈ Y 

[ c(x, y ) − ψ(y ) ] 

∀ y ∈ Y, ϕ(x ) ≤ c(x, y ) − ψ(y ) 

}
⇒ ψ 

c (x ) ≤ ϕ(x ) . 

�

In terms of the previous intuitive image, this means that by re-

placing ϕ with ψ 

c , the company can charge more while the price

remains acceptable for the client (that is, the constraint is satis-

fied). Thus, we have: 

inf (K) = sup 

ϕ∈ �c (X ) 

∫ 
X 

ϕ dμ + 

∫ 
Y 

ϕ 

c dν

= sup 

ψ∈ �c (Y ) 

∫ 
X 

ψ 

c dμ + 

∫ 
Y 

ψ dν

We do not give here the detailed proof for existence. The reader

is referred to [12] , Chapter 4. The idea is that we are now in a

much better situation, since the set of admissible functions �c ( X )

is compact 6 . 

The optimal value gives an interesting information, that is the

minimum cost of transforming μ into ν . This can be used to define

a distance between distributions, and also gives a way to compare

different distributions, which is of practical interest for some ap-

plications. 

5. From the Kantorovich dual to the optimal transport map 

5.1. The c -superdifferential 

Suppose now that in addition to the optimal cost you want to

know the associated way to transform μ into ν , in other words,
6 Provided that the value of ψ is fixed at a point of Y in order to suppress invari- 

ance with respect to adding a constant to ψ . 

T

y

hen it exists, the map T from X to Y which associated transport

lan ( Id × T ) � μ minimizes the functional of the Monge problem. A

esult characterizes the support of γ , that is the subset ∂ c ϕ ⊂ X × Y

f the pairs of points ( x , y ) connected by the transport plan: 

heorem 1. Let ϕ a c-concave function. For all ( x , y ) ∈ ∂ c ϕ, we have 

ϕ(x ) − ∇ x c(x, y ) = 0 , 

here ∂ c ϕ = { (x, y ) | ϕ(z) ≤ ϕ(x ) + (c(z, y ) − c(x, y )) , ∀ z ∈ X} 7 de-

otes the so-called c -superdifferential of ϕ. 

roof. See [12] chapters 9 and 10. �

In order to give an idea of the relation between the c -

uperdifferential and the associated transport map T , we present

elow a heuristic argument: consider a point ( x , y ) in the c -

uperdifferential ∂ c ϕ, then for all z ∈ X we have 

(x, y ) − ϕ(x ) ≤ c(z, y ) − ϕ(z) . (9)

Now, by using (9) , we can compute the derivative at x with re-

pect to an arbitrary direction w 

lim 

→ 0 + 

ϕ(x + tw ) − ϕ(x ) 

t 
≤ lim 

t→ 0 + 

c(x + tw, y ) − c(x, y ) 

t 

nd we obtain ∇ϕ(x ) · w ≤ ∇ x c(x, y ) · w . We can do the same

erivation along direction −w instead of w, and then we get

ϕ(x ) · w = ∇ x c(x, y ) · w, ∀ w ∈ X . 

In the particular case of the L 2 cost, that is with c(x, y ) =
 / 2 ‖ x − y ‖ 2 , this relation becomes ∀ (x, y ) ∈ ∂ c ϕ , ∇ϕ (x ) + y − x =
 , thus, when the optimal transport map T exists, it is given by 

 (x ) = x − ∇ϕ(x ) = ∇(‖ x ‖ 

2 / 2 − ϕ(x )) . 

ot only this gives an expression of T in function of ϕ, which is of

igh interest to us if we want to compute the transport explicitly.

n addition, this makes it possible to characterize T as the gradient

f a convex function (see also Brenier’s polar factorization theorem

19] ). This convexity property is interesting, because it means that

wo “transported particles” x 1 �→ T ( x 1 ) et x 2 �→ T ( x 2 ) will never col-

ide. We now see how to prove these two assertions ( T gradient of

 convex function and absence of collision) in the case of the L 2 
ransport (with (c(x, y ) = 1 / 2 ‖ x − y ‖ 2 ). 
bservation 4. If c ( x , y ) = 1 / 2 ‖ x − y ‖ 2 and ϕ ∈ �c ( X ), then ϕ̄ : x �→

¯ (x ) = ‖ x ‖ 2 / 2 − ϕ(x ) is a convex function (it is an equivalence if

 = Y = R 

d , see [1] ). 

roof. 

(x ) = ψ 

c (x ) 

= inf 
y 

[‖ x − y ‖ 

2 

2 

− ψ(y ) 

]

= inf 
y 

[‖ x ‖ 

2 

2 

− x · y + 

‖ y ‖ 

2 

2 

− ψ(y ) 

]
. 

hen, 

−ϕ̄ (x ) = ϕ(x ) − ‖ x ‖ 2 
2 

= inf 
y 

[ 
−x · y + 

(
‖ y ‖ 2 

2 
− ψ(y ) 

)] 
. 

r equivalently, 

ϕ̄ (x ) = sup 

y 

[ 
x · y −

(
‖ y ‖ 2 

2 
− ψ(y ) 

)] 
. 

he function x �→ x · y −
( ‖ y ‖ 2 

2 − ψ(y ) 
)

is affine in x , therefore the

raph of ϕ̄ is the upper envelope of a family of hyperplanes, there-

ore ϕ̄ is a convex function (see Fig. 8 ). �
7 By definition of the c -transform, if ( x , y ) ∈ ∂ c ϕ , then ϕ c (y ) = c(x, y ) − ϕ(x ) . 

hen, the c -superdifferential can be characterized by the set of all points ( x , 

 ) ∈ X × Y such that ϕ(x ) + ϕ c (y ) = c(x, y ) . 
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Fig. 8. The upper envelope of a family of affine functions is a convex function. 
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bservation 5. We now consider the trajectories of two parti-

les parameterized by t ∈ [0, 1], t �→ (1 − t) x 1 + tT (x 1 ) and t �→
(1 − t) x 2 + tT (x 2 ) . If x 1 � = x 2 and 0 < t < 1 then there is no collision

etween the two particles. 

roof. By contradiction, suppose there is a collision, that is there

xists t ∈ (0, 1) and x 1 � = x 2 such that 

(1 − t) x 1 + tT (x 1 ) = (1 − t) x 2 + tT (x 2 ) . 

ince T = ∇ ϕ̄ , we can rewrite the last equality as 

(1 − t)(x 1 − x 2 ) + t(∇ ϕ̄ (x 1 ) − ∇ ϕ̄ (x 2 )) = 0 . 

herefore, 

(1 − t) ‖ x 1 − x 2 ‖ 

2 + t(∇ ϕ̄ (x 1 ) − ∇ ϕ̄ (x 2 )) · (x 1 − x 2 ) = 0 . 

he last step leads to a contradiction, between the left-hand side

s the sum of two strictly positive numbers (recalling the definition

f the convexity of ϕ̄ : ∀ x 1 � = x 2 , (x 1 − x 2 ) · (∇ ϕ̄ (x 1 ) − ∇ ϕ̄ (x 2 )) >

 ) 8 �

. Continuous, discrete and semi-discrete transport 

The properties that we have presented in the previous sections

re true for any couple of source and target measures μ and ν , that

an derive from continuous functions or that can be discrete em-

irical measures (sum of Dirac masses). Fig. 9 presents three con-

gurations that are interesting to study. These configurations have

pecific properties, that lead to different algorithms for comput-

ng the transport. We give here some indications and references

oncerning the continuous → continuous and discrete → discrete

ases. Then we will develop the continuous → discrete case with

ore details in the next section. 

.1. The continuous → continuous case and Monge-Ampère equation 

We recall that when the optimal transport map exists, in the

ase of the L 2 cost (that is, c(x, y ) = 1 / 2 ‖ x − y ‖ 2 ), it can be de-

uced from the function ϕ by using the relation T (x ) = ∇ ϕ̄ =
 − ∇ϕ. The change of variable formula for integration over a sub-

et B of X can be written as: 

 B ⊂ X, 

∫ 
B 

1 dμ = μ(B ) = ν(T (B )) = 

∫ 
B 
| det J T (x ) | dμ (10)
8 Note that even if there is no collision, the trajectories can cross, that is 

1 − t) x 1 + tT (x 1 ) = (1 − t ′ ) x 2 + t ′ T (x 2 ) for some t � = t ′ (see example in [12] ). If the 

ost is the Euclidean distance (instead of squared Euclidean distance), the non- 

ntersection property is stronger and trajectories cannot cross. This comes at the 

xpense of losing the uniqueness of the optimal transport plan [12] . 

f  

s  

t

t

here J T denotes the Jacobian matrix of T and det denotes the de-

erminant. 

If μ and ν have densities u and v respectively, that is ∀ B, μ(B ) =
 

B u (x ) dx and ν(B ) = 

∫ 
B v (x ) dx, then one can (formally) consider

10) pointwise in X : 

 x ∈ X, u (x ) = | det J T (x ) | v (T (x )) . (11)

y injecting T = ∇ ϕ̄ and J T = H ϕ̄ into (11) , one obtains: 

 x ∈ X, u (x ) = | det H ϕ̄ (x ) | v (∇ ϕ̄ (x )) , (12)

here H ϕ̄ denotes the Hessian matrix of ϕ̄ . Eq. (12) is known ad

he Monge–Ampère equation . It is a highly non-linear equation, and

ts solutions when they exist often present singularities 9 . Note that

he derivation above is purely formal, and that studying the solu-

ions of the Monge–Ampère equation require using more sophis-

icated tools. In particular, it is possible to define several types of

eak solutions (viscosity solutions, solution in the sense of Bre-

ier, solutions in the sense of Alexandrov ...). Several algorithms

o compute numerical solutions of the Monge–Ampère equations

ere proposed. As such, see for instance the Benamou–Brenier al-

orithm [20] , that uses a dynamic formulation inspired by fluid dy-

amics (incompressible Euler equation with specific boundary con-

itions). See also [21] . 

.2. The discrete → discrete case 

If μ is the sum of m Dirac masses and ν the sum of n Dirac

asses, then the problem boils down to finding the m × n coeffi-

ients γ ij that give for each pair of points i of the source space

nd j of the target space the quantity of matter transported from

 to j . This corresponds to the transport plan in the discrete Kan-

orovich problem that we have seen previously Section 4 . This type

f problem (referred to as an assignment problem ) can be solved by

ifferent methods of linear programming [22] . These method can

e dramatically accelerated by adding a regularization term, that

an be interpreted as the entropy of the transport plan [23] . This

egularized version of optimal transport can be solved by highly

fficient numerical algorithms [24] . 

.3. The continuous → discrete case 

This configuration, also called semi-discrete , corresponds to a

ontinuous function transported to a sum of Dirac masses (see the

xamples of c-concave functions in [25] ). This correspond to our

xample with factories that consume a resource, in Section 2.2 .

emi-discrete transport has interesting connections with some no-

ions of computational geometry and some specific sets of convex

olyhedra that were studied by Alexandrov [26] and later by Au-

enhammer et al. [27] . The next section is devoted to this configu-

ation. 

. Semi-discrete transport 

We now suppose that the source measure μ is continuous, and

hat the target measure ν is a sum of Dirac masses. A practical

xample of this type of configuration corresponds to a resource

hich available quantity is represented by a function u . The re-

ource is collected by a set of n factories, as shown in Fig. 10 . Each

actory is supposed to collect a certain prescribed quantity of re-

ource ν j . Clearly, the sum of all prescriptions corresponds to the

otal quantity of available resource ( 
∑ n 

j=1 ν j = 

∫ 
X u (x ) dx ). 
9 This is similar to the eikonal equation, which solution corresponds to the dis- 

ance field, that has a singularity on the medial axis. 
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Fig. 9. Different types of transport, with continuous and discrete measures μ and ν . 

Fig. 10. Semi-discrete transport: gray levels symbolize the quantity of a resource 

that will be transported to 4 factories. Each factory will be allocated a part of the 

terrain in function of the quantity of resource that it should collect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

d  

i  

b  

p  

g

L

 

 

p  

I

g

�

I  

f  

i

 

c  

o  

d  

[  

r  

g  

g  

d  

[  

i  

o

O  

c

L

7

 

d  

(  

a  

o  

n  

c  

r  

e

T  

d

P

G  

a  

i  
7.1. Semi-discrete Monge problem 

In this specific configuration, the Monge problem becomes: 

inf 
T : X→ Y 

∫ 
X 

c(x, T (x )) u (x ) dx, subject to 

∫ 
T −1 (y j ) 

u (x ) dx = ν j , ∀ j. 

A transport map T associates with each point x of X one of the

points y j . Thus, it is possible to partition X , by associating to each

y j the region T −1 (y j ) that contains all the points transported to-

wards y j by T . The constraint imposes that the quantity of collected

resource over each region T −1 (y j ) corresponds to the prescribed

quantity ν j . 

Let us now examine the form of the dual Kantorovich problem.

In terms of measure, the source measure μ has a density u , and

the target measure ν is a sum of Dirac masses ν = 

∑ n 
j=1 ν j δy j , sup-

ported by the set of points Y = (y j ) 
n 
j=1 

. We recall that in its general

form, the dual Kantorovich problem is written as follows: 

sup 

ψ∈ �c (Y ) 

[ ∫ 
X 

ψ 

c (x ) dμ + 

∫ 
Y 

ψ(y ) dν
] 
. (13)

In our semi-discrete case, the functional becomes a function of

n variables, with the following form: 

F (ψ) = F (ψ 1 , ψ 2 , . . . ψ n ) (14)

= 

∫ 
X 

ψ 

c (x ) u (x ) dx + 

n ∑ 

j=1 

ψ j ν j (15)

= 

∫ 
X 

inf 
y j ∈ Y 

[
c(x, y j ) − ψ j 

]
u (x ) dx + 

n ∑ 

j=1 

ψ j ν j (16)

= 

n ∑ 

j=1 

∫ 
L ag c 

ψ 
(y j ) 

(
c(x, y j ) − ψ j 

)
u (x ) dx + 

n ∑ 

j=1 

ψ j ν j . (17)

The first step (15) takes into account the nature of the mea-

sures μ and ν . In particular, one can notice that the measure ν is

completely defined by the scalars ν j associated with the points y j ,

and the function ψ is defined by the scalars ψ j that correspond
o its value at each point y j . The integral ∫ Y ψ( y ) d ν becomes the

ot product 
j ψ j ν j . Let us now replace the c-transform ψ 

c with

ts expression, which gives (16) . The integral in the left term can

e reorganized, by grouping the points of X for which the same

oint y j minimizes c(x, y j ) − ψ j , which gives (17) , where the La-

uerre cell L ag c 
ψ 

(y j ) is defined by: 

 ag c ψ 

(y j ) = 

{
x ∈ X | c(x, y j ) − ψ j ≤ c(x, y k ) − ψ k , ∀ k � = j 

}
. 

(18)

Thus, the functional F that corresponds to the dual Kantorovich

roblem becomes a function that depends on n variables (ψ j ) 
n 
j=1 

.

n this case, the set �c ( Y ) can be characterized as the subset of R 

n 

iven by (thanks to Theorems 3 and 4 ) 

c (Y ) = 

{
(ψ 1 , . . . , ψ n ) : μ(L ag c ψ 

(y j )) > 0 , ∀ j 
}
. 

t is possible to show that �c ( Y ) is a non-empty open convex set,

or the discrete case see [28] . The proof in the semi-discrete case

s follows similarly. 

The Laguerre diagram, formed by the union of the Laguerre

ells, is a classical structure in computational geometry. In the case

f the L 2 cost c(x, y ) = 1 / 2 ‖ x − y ‖ 2 , it corresponds to the power

iagram , that was studied by Aurenhammer at the end of the 80’s

29] . One of its particularities is that the boundaries of the cells are

ectilinear, making it reasonably easy to design computational al-

orithms to construct them. For other costs, the boundaries are in

eneral not rectilinear, and computing the diagram is much more

ifficult. Several implementations in 2D exist for some costs ( L 1 ) in

30] . An interesting alternative is to use a piecewise-linear approx-

mation on a background mesh and study convergence in function

f mesh size. 

bservation 6. Let ψ = (ψ 1 , . . . , ψ n ) and let κ = (κ, . . . , κ) be a

onstant of R 

n . We consider φ = ψ + κ, then for all j ∈ { 1 , . . . , n } 
 ag c ψ 

(y j ) = L ag c φ(y j ) . 

.2. Concavity of F 

The objective function F is a particular case of the Kantorovich

ual, and naturally inherits its properties, such as its concavity

that we did not discuss yet). This property is interesting both from

 theoretical point of view, to study the existence and uniqueness

f solutions, and from a practical point of view, to design efficient

umerical solution mechanisms. In the semi-discrete case, the con-

avity of F is easier to prove than in the general case. We summa-

ize here the proof by Aurenhammer et al. [27] , that leads to an

fficient algorithm [5] , [31] , [32] . 

heorem 2. The objective function F of the semi-discrete Kantorovich

ual problem (13) is concave in �c ( Y ) . 

roof. Consider the function G defined by: 

 (A, [ ψ 1 , . . . ψ n ] ) = 

∫ 
X 

(
c(x, y A (x ) ) − ψ A (x ) 

)
u ( x ) dx, (19)

nd parameterized by a surjective assignment A : X → [1 . . . n ] , that

s, a function that associates with each point x of X the index j of
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Fig. 11. The objective function of the dual Kantorovich problem is concave, because its graph is the lower envelope of a family of affine functions. 
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ne of the points y j . If we denote A 

−1 ( j) = { x | A (x ) = j } , then G can

e also written as: 

G (A, ψ) = 

∑ 

j 

∫ 
A −1 ( j) 

(
c(x, y j ) − ψ j 

)
u (x ) dx 

= 

∑ 

j 

∫ 
A −1 ( j) 

c(x, y j ) u (x ) dx −∑ 

j 

ψ j 

∫ 
A −1 ( j) 

u (x ) dx. 

(20) 

The first term does not depend on the ψ j , and the second one is

 linear combination of the ψ j coefficients, thus, for a given fixed

ssignment A , ψ �→ G ( A , ψ) is an affine function of ψ . Fig. 11 de-

icts the appearance of the graph of G for different assignment.

he horizontal axis symbolizes the components of the vector ψ 

of dimension n ) and the vertical axis the value of G ( A , ψ). For a

iven assignment A , the graph of G is an hyperplane (symbolized

ere by a straight line). 

Among all the possible assignments A , we distinguish A 

ψ that

ssociates with a point x the index j of the Laguerre cell x belongs

o 10 , that is: 

 

ψ (x ) = arg min 

j 

[
c(x, y j ) − ψ j 

]
. 

For a fixed vector ψ = ψ 

0 , among all the possible assign-

ents A , the assignment A 

ψ 

0 
minimizes the value G ( A , ψ 

0 ), be-

ause it minimizes the integrand pointwise (see Fig. 11 on the

eft. Thus, since G is affine with respect to ψ , the graph of the

unction ψ → G ( A 

ψ , ψ) is the lower envelope of a family of hy-

erplanes (symbolized as straight lines in Fig. 11 on the right),

ence ψ → G ( A 

ψ , ψ) is a concave function. Finally, the objective

unction F of the dual Kantorovich problem can be written as

 (ψ) = G (A 

ψ , ψ) + 

∑ 

j ν j ψ j , that is, the sum of a concave func-

ion and a linear function, hence it is also a concave function. �

.3. The semi-discrete optimal transport map 

Let us now examine the c -superdifferential ∂ c ψ , that is, the set

f points ( x ∈ X , y ∈ Y ) connected by the optimal transport map. We

ecall that the c -superdifferential ∂ c ψ can be defined alternatively

s ∂ c ψ = 

{
(x, y j ) | ψ 

c (x ) + ψ j = c(x, y j ) 
}

. Consider a point x of X

hat belongs to the Laguerre cell L ag c 
ψ 

(y j ) . The c -superdifferential

 ∂ c ψ ]( x ) at x is defined by: 

 ∂ c ψ](x ) = { y k | ψ 

c (x ) + ψ k = c(x, y k ) } (21) 

= 

{ 
y k | inf 

y l 
[ c(x, y l ) − ψ l ] + ψ k = c(x, y k ) 

} 
(22) 

= 

{
y k | c(x, y j ) − ψ j + ψ k = c(x, y k ) 

}
(23) 
10 A is undefined on the set of Laguerre cell boundaries, this does not cause any 

ifficulty because this set has zero measure. 

L

= 

{
y k | c(x, y j ) − ψ j = c(x, y k ) − ψ k 

}
(24) 

= 

{
y j 
}
. (25) 

In the first step (22) , we replace ψ 

c by its definition, then we

se the fact that x belongs to the Laguerre cell of y j (23) , and fi-

ally, the only point of Y that satisfies (24) is y j because we have

upposed x inside the Laguerre cell of y j . 

To summarize, the optimal transport map T moves each point

 to the point y j associated with the Laguerre cell L ag c 
ψ 

(y j ) that

ontains x . The vector (ψ 1 , . . . , ψ n ) is the unique vector, up to con-

tant (see Observation 6 ), that maximizes the discrete dual Kan-

orovich function F such that ψ is c-concave. It is possible to show

hat ψ is c-concave if and only if no Laguerre cell is empty of mat-

er, that is the integral of u is non-zero on each Laguerre cell. In-

eed, we have the following results: 

heorem 3. Let Y = { y 1 , . . . , y n } be a set of n points. Let ψ be any

unction defined on Y such that L ag c 
ψ 

(y i ) are not empty sets. Then ψ 

s a c-concave function. 

roof. By definition, for i = 1 , 2 , . . . , k 

(ψ 

c ) c (y i ) = inf 
x ∈ X 

[ c(x, y i ) − ψ 

c (x ) ] 

= inf 
x ∈ X 

[
c(x, y i ) −

(
inf 
y j ∈ Y 

[
c(x, y j ) − ψ(y j ) 

])]

= inf 
x ∈ X 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ψ(y i ) , if x ∈ L ag c 
ψ 

(y i ) 

c(x, y i ) − ( 

< (c(x,y i ) −ψ(y i )) ︷ ︸︸ ︷ 
c( x, y j ) − ψ( y j ) ) , 

if x ∈ L ag c 
ψ 

(y j ) ( j � = i ) 

= ψ(y i ) . 

his allows to conclude that ψ is a c -concave function (see

1] , Proposition 1.34). �

Moreover, the converse of the theorem is also true: 

heorem 4. Let Y = { y 1 , . . . , y n } be a set of n points. Let ψ be a c-

oncave function defined on Y. Then the sets L ag c 
ψ 

(y i ) are not empty

or all i = 1 , . . . , n . 

roof. Reasoning by contradiction, we suppose that ψ is a

 -concave function and there exist i 0 ∈ { 1 , . . . , n } such that

 ag c 
ψ 

(y i 0 ) = ∅ . Then, from definition 

∀ x ∈ X, ∃ j ∈ { 1 , . . . , n } with j � = i 0 , and ε j > 0 such that 
c(x, y i 0 ) − ψ(y i 0 ) ≥ c(x, y j ) − ψ(y j ) + ε j . 
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We will write x = x j . Thus, 

c(x j , y i 0 ) −
(

inf 
y j ∈ Y 

[
c(x j , y j ) − ψ(y j ) 

])
≥ c(x j , y i 0 ) −

(
c(x j , y i 0 ) − ψ(y i 0 ) − ε j 

)
= ψ(y i 0 ) + ε j . (26)

Therefore, 

(ψ 

c ) c (y i 0 ) = inf 
x ∈ X 

[
c(x, y i 0 ) −

(
inf 
y j ∈ Y 

[
c(x, y j ) − ψ(y j ) 

])]

= inf 
j 

[
c(x j , y i 0 ) −

(
inf 
y j ∈ Y 

[
c(x j , y j ) − ψ(y j ) 

])]
= inf 

j 

[
ψ(y i 0 ) + ε j 

]
> ψ(y i 0 ) . 

This contradicts the fact that ψ is a c-concave function, because

[1] , Proposition 1.34. �

We now proceed to compute the first and second order deriva-

tives of the objective function F . These derivatives are useful in

practice to design computational algorithms. 

7.4. First-order derivatives of the objective function 

Since it is concave, F admits a unique (up to constant, see

Observation 6 ) maximum ψ 

∗, characterized by ∇F (ψ 

∗) = 0 where

∇F denotes the gradient. Let us now examine the form of the gra-

dient ∇ F = ∇ 

(
G (A 

ψ , ψ) + 

∑ n 
j=1 ψ j ν j 

)
. By replacing G ( A 

ψ , ψ) with

its expression (20) , one obtains: 

∂G 

∂ψ j 

(ψ) = lim 

t→ 0 

G (ψ + te j ) − G (ψ) 

t 

= lim 

t→ 0 

1 

t 

{ ∫ 
X 

inf 
[
c(x, y 1 ) − ψ 1 , . . . , c(x, y j ) − ψ j 

−t, . . . , c(x, y n ) − ψ n ] 

− inf 
i 

[ c(x, y i ) − ψ i ] u (x ) dx 

} 
. 

Let x ∈ L ag c 
ψ 

(y m 

) , then for t small enough we have 

inf 
[
c(x, y 1 ) − ψ 1 , . . . , c(x, y j ) − ψ j − t, . . . , c(x, y k ) − ψ n 

]
= c(x, y m 

) − ψ m 

. 

Indeed, since c(x, y m 

) − ψ m 

< c(x, y i ) − ψ i for all i � = m , in par-

ticular, if m � = j : c(x, y m 

) − ψ m 

< c(x, y j ) − ψ j . Thus, for t small

enough 

c(x, y m 

) − ψ m 

≤ c(x, y j ) − ψ j − t. 

In the case that m = j, 

inf 
[
c(x, y 1 ) − ψ 1 , . . . , c(x, y j ) − ψ j − t, . . . , c(x, y k ) − ψ k 

]
= c(x, y j ) − ψ j − t. 

Consequently, we obtain that 

∂G 
∂ψ j 

(ψ) = − ∫ L ag c 
ψ 

(y j ) 
u (x ) dx. 

Recalling that the objective function F is given by F (ψ) =
G (A 

ψ , ψ) + 

∑ 

j ν j ψ j , we finally obtain: 

∂F 

∂ψ j 

(ψ) = ν j −
∫ 

L ag c 
ψ 

(y j ) 

u (x ) dx. (27)

Since the objective function F is concave, it admits a unique (up

to constant, see Observation 6 ) maximum. At this maximum, all
he components of the gradient vanish, this implies that the quan-

ity of matter obtained at y j , that is the integral of u on the La-

uerre cell of y j , corresponds to the prescribed quantity of matter,

hat is ν j (see also [31 , Theorem 3]). Moreover, since ν j are sup-

osed to be strictly positive, from (18) , this maximum is reached

o the interior of �c ( Y ). 

.5. Second order derivatives of the objective function 

In order to compute de second order derivatives, since the do-

ain of integration in (27) depends on variable of derivation, we

ill apply the transport theorem (see [33 , page 131]). We do not

etail the computations for length considerations, but give the fi-

al result. 

∂ 2 G 

∂ ψ l ∂ ψ j 

(ψ) = 

∫ 
L ag c 

ψ 
(y l ) ∩ L ag c 

ψ 
(y j ) 

u (x ) 

‖∇ x c(x, y j ) − ∇ x c(x, y l ) ‖ 

dx ( l � = j) , 

nd 

∂ 2 G 

∂ψ 

2 
j 

(ψ) = −
∑ 

l � = j 

∂ 2 G 

∂ ψ l ∂ ψ j 

(ψ) . 

ere, we have used that the unit outward normal to L ag c 
ψ 

(y j ) at

 ∈ L ag c 
ψ 

(y l ) ∩ L ag c 
ψ 

(y j ) is the vector 

 (x ) = 

∇ x c(x, y j ) − ∇ x c(x, y l ) 

‖∇ x c( x, y j ) − ∇ x c(x, y l ) ‖ 

. 

Hence, we deduce that Hessian matrix of G is a symmetric ma-

rix. Furthermore, from the formulae for the second order deriva-

ives we deduce that the mixed derivatives are non-negative and

hen all main diagonal entries of Hessian matrix are negative.

herefore, Hessian matrix of G , Hess ( G ), is negative semi-definite. 

In the particular case of the L 2 cost, that is c(x, y ) = 1 / 2 ‖ x −
 ‖ 2 , the second-order derivatives, for l � = j , are given by: 

∂ 2 G 

∂ ψ l ∂ ψ j 

(ψ) = 

∫ 
L ag c 

ψ 
(y l ) ∩ L ag c 

ψ 
(y j ) 

u (x ) 

‖ y l − y j ‖ 

dS(x ) . (28)

.6. A computational algorithm for L 2 semi-discrete optimal transport

With the definition of F ( ψ), the expression of its first order

erivatives (gradient ∇F ) and second order derivatives (Hessian

atrix ∇ 

2 F = 

(
∂ 2 F /∂ ψ i ∂ ψ j 

)
i j 

), we are now equipped to design

 numerical solution mechanism that computes semi-discrete op-

imal transport by maximizing F , based on a particular version

32] of Newton’s optimization method [34] : 

Input : − a mesh that supports the source density u 

− the points (y j ) 
n 
j=1 

− the prescribed quantities (ν j ) 
n 
j=1 

. 

Output : the (unique) Laguerre diagram L ag c 
ψ 

such that: ∫ 
L ag c 

ψ 
(y j ) 

u (x ) dx = ν j , ∀ j. 

• Step 1 : ψ ← [0 . . . 0] 
• Step 2 : While convergence is not reached 

• Step 3 : Compute ∇ F and ∇ 

2 F 

• Step 4 : Find p ∈ R 

n such that ∇ 

2 F (ψ) p = −∇F (ψ) 
• Step 5 : Find the descent parameter α
• Step 6 : ψ ← ψ + αp 
• Step 7 : End while 

The source measure is given by its density, that is a positive

iecewise linear function u , supported by a triangulated mesh (2D)

r tetrahedral mesh (3D) of a domain X . The target measure is dis-

rete, and supported by the pointset Y = (y j ) 
n 
j=1 

. Each target point
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Fig. 12. (A) transport between a uniform density and a random pointset; (B) transport between a varying density and the same pointset; (C) intersections between meshes 

used to compute the coefficients; (D) transport between a measure supported by a surface and a 3D pointset. 

Fig. 13. Interpolation of 3D volumes using optimal transport. 

w  

s  ∫
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v  

g  
ill receive the prescribed quantity of matter ν j . Clearly, the pre-

criptions should be balanced with the available resource, that is
 

X u (x ) dx = 

∑ 

j ν j . The algorithm computes for each point of the

arget measure the subset of X that is affected to it through the

ptimal transport, T −1 (y j ) = L ag c 
ψ 

(y j ) , that corresponds to the La-
uerre cell of y j . The Laguerre diagram is completely determined

y the vector ψ that maximizes F . 

Step 2 needs a criterion for convergence. The classical con-

ergence criterion for a Newton algorithm uses the norm of the

radient of F . In our case, the components of the gradient of F
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Fig. 14. Computing the transport between objects of different dimension, from a sphere to a cube. The sphere is sampled with 10 million points. The cross-section reveals 

the formation of a singularity that has some similarities with the medial axis of the cube. 

Fig. 15. An application of optimal transport to fluid simulation: numerical simulation of the Taylor–Rayleigh instability using the Gallouët–Mérigot scheme. 

Fig. 16. Numerical simulation of an incompressible bi-phasic flow in a bottle. 
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11 http://alice.loria.fr/software/geogram/doc/html/index.html 
have a geometric meaning, since ∂ F / ∂ ψ j corresponds to the dif-

ference between the prescribed quantity ν j associated with j and

the quantity of matter present in the Laguerre cell of y j given by∫ 
L ag c 

ψ 
(y j ) 

u (x ) dx . Thus, we can decide to stop the algorithm as soon

as the largest absolute value of a component becomes smaller than

a certain percentage of the smallest prescription. Thus we con-

sider that convergence is reached if max | ∇F j | < εmin j ν j , for a user-

defined ε (typically 1% in the examples below). 

Step 3 computes the coefficients of the gradient and the Hes-

sian matrix of F , using (27) and (28) . These computations involve

integrals over the Laguerre cells and over their boundaries. For the

L 2 cost c(x, y ) = 1 / 2 ‖ x − y ‖ 2 , the boundaries of the Laguerre cells

are rectilinear, which dramatically simplifies the computations of

the Hessian coefficients (28) . In addition, it makes it possible to

use efficient algorithms to compute the Laguerre diagram [35,36] .

Their implementation is available in several programming libraries,
uch as GEOGRAM 

11 et CGAL 12 . Then one needs to compute the in-

ersection between each Laguerre cell and the mesh that supports

he density u . This can be done with specialized algorithms [31] ,

lso available in GEOGRAM. 

Step 4 finds the Newton step p by solving a linear system. We

se the Conjugate Gradient algorithm [37] with the Jacobi precon-

itioner. In our empirical experiments below, we stopped the con-

ugate iterations as soon as ‖∇ 

2 F p + ∇F ‖ / ‖∇F ‖ < 10 −3 . We vali-

ated this threshold on small to medium-size problems by com-

aring with the results of a direct solver (SuperLU). 

Step 5 determines the descent parameter α. A result due to

itagawa et al. [32] ensures the convergence of the Newton algo-

ithm if the measure of the smallest Laguerre cell remains larger
12 http://www.cgal.org 

http://alice.loria.fr/software/geogram/doc/html/index.html
http://www.cgal.org
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Fig. 17. Top: Numerical simulation of the Taylor–Rayleigh instability using a 3D ver- 

sion of the Gallouët–Mérigot scheme, with a cross-section that reveals the internal 

structure of the vortices. Bottom: A closeup that shows the interface between the 

two fluids, represented by the Laguerre facets that bound two Laguerre cells of dif- 

ferent fluid elements. 
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han a certain threshold (that is, half the smallest prescription ν j ).

here is also a condition on the norm of the gradient ‖∇F ‖ that

e do not repeat here (the reader is referred to Kitagawa, Mérigot

nd Thibert’s original article for more details). In our implementa-

ion, starting with α = 1 , we iteratively divide α by two until both

onditions are satisfied. 

Let us now make one step backwards and think about the orig-

nal definition of Monge’s problem (M) . We wish to stress that the

nitial constraint (local mass conservation) that characterizes trans-

ort maps was terribly difficult. It is remarkable that after sev-

ral rewrites (Kantorovich relaxation, duality, c-concavity), the final

roblem becomes as simple as optimizing a regular ( C 2 ) concave

unction, for which computing the gradient and Hessian is easy in

he semi-discrete case and boils down to evaluating volumes and

reas in a Laguerre diagram. We wish also to stress that the com-

utational algorithm did not require to make any approximation or

iscretization. The discrete, computer version is a particular setting

f the general theory, that fully describes not only transport be-

ween smooth objects (functions), but also transport between less

egular objects, such as pointsets and triangulated meshes. This is

ade possible by the rich mathematical vocabulary (measures) on

hich optimal transport theory acts. Thus, the computational algo-

ithm is an elegant, direct verbatim translation of the theory into

 computer program. 

We now show some computational results and list possible ap-

lications of this algorithm. 

. Results, examples and applications of L 2 semi-discrete 

ransport 

Fig. 12 shows some examples of transport in 2D, between a uni-

orm density and a pointset (A). Each Laguerre cell has the same

rea. Then we consider the same pointset, but this time with a

ensity u (x, y ) = 10(1 + sin (2 πx ) sin (2 πy )) (image B). We obtain

 completely different Laguerre diagram. Each cell of this diagram

as the same value for the integrated density u . (C): the coeffi-

ients of the gradient and the Hessian of F computed in the pre-

ious section involve integrals of the density u over the Laguerre

ells and over their boundaries. The density u is supported by a

riangulated mesh, and linearly interpolated on the triangles. The

ntegrals of u over the Laguerre cells and their boundaries are eval-

ated in closed form, by computing the intersections between the

aguerre cells and the triangles of the mesh that supports u . (D):

he same algorithm can compute the optimal transport between a

easure supported by a 3D surface and a pointset in 3D. 

Fig. 13 shows two examples of volume deformation by opti-

al transport. The same algorithm is used, but this time with 3D

aguerre diagrams, and by computing intersections between the

aguerre cells and a tetrahedral mesh that supports the source

ensity u . The intermediary steps of the animation are generated

y linear interpolation of the positions (Mc. Cann’s interpolation).

ig. 14 demonstrates a more challenging configuration, computing

ransport between a sphere (surface) and a cube (volume). The

phere is approximated with 10 million Dirac masses. As can be

een, transport has a singularity that resembles the medial axis of

he cube (rightmost figure). 

Fig. 15 demonstrates an application in computational fluid dy-

amics. A heavy incompressible fluid (in red) is placed on top of a

ighter incompressible fluid (in blue). Both fluids tend to exchange

heir positions, due to gravity, but incompressibility is an obsta-

le to their movement. As a result, vortices are created, and they

ecome faster and faster (Taylor–Rayleigh instability). The numer-

cal simulation method that we used here [10] directly computes

he trajectories of particles (Lagrangian coordinates) while taking

nto account the incompressibility constraint, which is in general

nnatural in Lagrangian coordinates. Due to length considerations,
t would not be reasonable to fully detail the method here, but

e give the general idea. In a nutshell, the method decomposes

he fluid into Laguerre cells parameterized by their sites x i and

eights ψ i . The weights are computed by Algorithm in Section 7.6 ,

n such a way that each Laguerre cell has a prescribed volume

hat remains constant during the simulation. The trajectory of each

ite x i is determined by Newton’s equations, considering that it

s submitted to gravity and to an “elastic force” that pulls it to-

ards the centroid of its Laguerre cell. The combined actions of

ravity applied to the sites and the elastic force that connects the
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site to the centroid result in gravity being applied to the centroid

while the incompressibility constraint is enforced through the con-

trolled volumes of the Laguerre cells 13 . Using some efficient geo-

metric algorithms for the Laguerre diagram and its intersections

[31] , the Gallouët–Mérigot numerical scheme for incompressible

Euler scheme can be also applied in 3D to simulate the behavior

of non-mixing incompressible fluids ( Fig. 16 ). The 3D version of the

Taylor–Rayleigh instability is shown in Fig. 17 , with 10 million La-

guerre cells. More complicated vortices are generated (shown here

in cross-section). 

The applications in computer animation and computational

physics seem to be promising, because the semi-discrete algorithm

behaves very well in practice. It is now reasonable to design simu-

lation algorithms that solve a transport problem in each time step

(as our early computational fluid dynamics of the previous para-

graph do). With our optimized implementation that uses a multi-

core processor for the geometric part of the algorithm and a GPU

for solving the linear systems, the semi-discrete algorithm takes no

more than a few tens of seconds to solve a problem with 10 mil-

lions unknown. This opens the door to numerical solution mecha-

nisms for difficult problems. For instance, in astrophysics, the Early

Universe Reconstruction problem [38] consists in going “backward

in time” from observation data on the repartition of galaxy clus-

ters, to “play the Big-Bang movie” backward. Our numerical exper-

iments tend to confirm Brenier’s point of view that he expressed in

the 20 0 0’s, that semi-discrete optimal transport can be an efficient

way of solving this problem. 

To ensure that our results are reproducible, the source-code as-

sociated with the numerical solution mechanism used in all these

experiments is available in the EXPLORAGRAM component of the

GEOGRAM programming library 14 . 
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