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THÈSE

présentée et soutenue publiquement le 15 décembre 2015
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1.1 Ambient Intelligence

Ambient Intelligence is a branch of Artificial Intelligence, which is centered on autonomous
perception and actuation inside delimited environments. It is charged with the supervision and
control of the entrusted space, monitoring events and human well-being, recognizing human
activities through a network of heterogeneous sensors, and providing support through its robotic
actuators. Ambient Intelligence may be applied in domestic environments — to allow safe ageing
at home, in healthcare facilities (hospitals and retirement homes) — to continually diagnose the
inhabitants and detect emergencies, in transportation — to control the comfort level inside
cabins.

Among the various types of sensors employed in the perception of the environment, load
sensors can measure the forces exerted by humans and objects on their surroundings. Floors
equipped with such sensors can sense things and living beings by their weight profile. This thesis
will explore and analyse the capabilities of such load-sensing floors. More formally, it will explore
the paradigms applicable for the analysis of sensing information coming from an omnipresent
floor-pressure sensor, located inside a delimited physical space.

As domain of application, we will center on assisted living facilities for elderly people, to allow
them to age comfortably at home, and also to reduce the workload of the medical personnel in
hospitals, retirement homes and similar facilities. However, these developments are not domain-
specific, and can be applied for generic systems managing environments.

3



Chapter 1. Introduction

1.2 Ageing societies: national problems

Population ageing is a consequence of longer life expectancy, which increases the number of
dependent people over the age of 65, and lower birth rate, which decreases the number of eco-
nomically active people in the next generation. The potential support ratio (the ratio of people
aged 25-64, and those over 65) for Western Europe stood at 3.6 in 1995, is currently at 2.7 in
2015, and is projected to reach 1.9 by 2030, and 1.6 by 2050, according to the world population
prospects of the United Nations Department of Economic and Social Affairs [186]. Countries like
Germany, Austria, France, Belgium, and the U.K. are expected to be among the most affected
(see Table 1.1). The population projections for two of the most affected countries, Japan and
Germany, are shown in Figures 1.1 and 1.2. If these low potential support ratios will prove to
be economically unsustainable, this may impose more stress on the economically active part of
the society, which will have to provide for the non-active members.

Table 1.1 – The evolution and projection (medium variant) of the potential support ratio
(ratio of population aged 25-64 per population 65+) for a selection of countries.

Source: United Nations Department of Economic and Social Affairs [186]

Potential support ratio

Country 1995 2015 2030 2050

Austria 3.6 2.9 2.1 1.5

China 8.3 6.3 3.3 1.8

France 3.4 2.7 2.0 1.7

Germany 3.7 2.6 1.8 1.4

Japan 3.8 1.9 1.6 1.2

Republic of Korea 8.9 4.5 2.3 1.3

Russian Federation 4.3 4.4 2.7 2.4

Singapore 9.0 5.1 2.3 1.4

Switzerland 3.8 3.1 2.2 1.6

United Kingdom 3.3 2.9 2.3 1.9

United States of America 4.1 3.6 2.4 2.2

1.3 Economical impact of population ageing on societies

The economical impact of population ageing can be estimated by analysing the total expenditure
in the sectors adressing the needs of the elderly (e.g. senior housing, assisted living), which are
now collectively referred to as the Silver Economy [142].

According to a 2013 report [86] made by the National Center for Health Statistics, the an-
nual expenditures for long-term care services in the United States of America are estimated
to be between $210.9 billion and $306 billion. Long-term care services include assistance with
activities of daily living (e.g. dressing, bathing, toileting), instrumental activities of daily living
(e.g. medication management and housework), and health maintenance tasks. The mentioned

4
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ically active part of the society is highlighted in green. Source: United Nations Department
of Economic and Social Affairs [186]
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Chapter 1. Introduction

expenditures include services provided by home health agencies, adult day services centers, as-
sisted living communities, and institutions like nursing homes.

In the European Union, according to a 2008 report by Ernst & Young [43], the public expenses
on senior housing equalled e8.7 billion in Italy (2005), e10.3 billion in the United Kingdom
(2004), e7.6 billion in Germany, and e1.32 billion in Belgium (2003). In France, the market size
of the personal assistance services was evaluated at e12 billion in 2007.

According to a report by KPMG dating from 2013 [77], the average duration of stay in a
retirement home in France is 46 months, with an average age of 85 for the internees. The average
monthly cost of living inside a retirement home in France was 1857 euros in 2013.

1.4 The search for technical solutions for senile care

A part of the costs related to human assistance can be reduced through the automatisation of the
relevant tasks (e.g. continuous diagnosis of health-state, surveillance and fall detection, assistance
with fetching things). An environmentally-embedded ambient intelligence could reconstruct a
model of the environment that would be used for spatial reasoning, perceive the events taking
place inside it through a network of sensors, and react to changes by using its robotic actuators
— assistant robots. The assistant robots would also perform the physical interaction tasks for
the humans that they serve. This can be conceptually seen as living inside a robot-house.

The search for technical solutions to these problems is an opportunity to advance the state-
of-the-art in ambient intelligence and adjacent fields of artificial intelligence and robotics, such
as computer vision, multi-modal sensing, object recognition, manipulation of objects, robotic
navigation in populated environments, and activity recognition.

Although the automatisation of these personnal assistance tasks would cut costs by reducing
the need for constant supervision by medical personnel, it also has its weaknesses. The sensor
network necessary for perceiving the environment requires hardware and installation costs, as
well as occasional maintenance. Its cost is also directly proportional to the size of the supervised
environment, which influences the complexity of the sensor network required to cover it.

1.5 Practical aspects of the introduction of ambient intelligence
systems

Ambient intelligence technology could be employed both for the automatisation of retirement
homes, as well as for enabling safe ageing at home. In conditions of private use, these technologies
for ageing at home could be used by every generation. The perceived value of the technological
solution being indicated by its rate of use, economically viable ageing-at-home solutions should
be low cost. More complex and expensive technological solutions could become economically
viable when used for a longer period of time, as when integrated into a more general home-
surveillance system, including applications for child security. Such technical solutions could be
either bought, or used on long-term leasing.

On the other hand, healthcare institutions, like retirement homes, which are guaranteed to
intensively exploit such systems for senile care, could find it rational to acquire more sentient,
robust and complex solutions. Quicker reaction times in cases of emergency would be guaranteed
by a constant supervision by the ambient intelligence system. The detection of falls allows to
react faster, which is important because the bigger is the time delay between the fall and the
medical intervention, the heavier are the consequences for the victim. Not only would automatic

6



1.6. Ambient Intelligence projects around the world

supervision enhance the safety levels in healthcare institutions, it would also reduce the number
of human employees performing safety rounds, as well as diagnose patients’ health-state.

1.6 Ambient Intelligence projects around the world

Numerous projects are developed all over the world on the topic of remote domestic medical
surveillance (also called monitoring). They aim to test a remote surveillance system on a specific
category of patients (people with heart or pulmonary failure, asthma, diabetes, Alzheimer’s
disease, etc.) or to conceive habitats with home automation, or sensors to install in a habitat or
worn by a person, or alarm systems adapted to the requirements of remote medical surveillance.
Several examples of projects are listed below, sorted by their geographical location.

In France, Thomesse [161] have developed the Tissad project, that has the objective to define
a generic architecture for remote monitoring systems, that would be modular and open. Diatélic
[162] has developed systems for remote medical monitoring of dialysed persons in their homes,
an effort in which the Inria teams Temps réel et interopérabilité (Real time and interoperability)
(TRIO) and Machines Intelligentes Autonomes (MAIA) have participated.

The Casper project [111] creates tools for intelligent monitoring of elderly people, and for
their communication with their families and healthcare professionals. In particular, Casper aims
do develop an innovative system which would be able to follow the domestic activities of elderly
or handicapped people, using specific autonomous sensors, so as to provide solutions that would
improve their life at home through an adapted behavioural analysis and social assistance. The
Prosafe project [31] targets patients suffering from Alzheimer’s disease. The Actidom project
(Domestic Activity monitoring) [36] has the objective to measure the activity of fragile elderly
persons in their day-to-day life, so as to determine the evolution of their state of dependence.
The Gerhome [113], CIU-santé (CIU-health) [33, 64], Sweethome [127], and ParaChute projects
[60] have also tackled the problem of an automated, objective evaluation of the frailty of elderly
persons, using fixed cameras and experimental sensors

In the United States of America, the University of Colorado at Boulder has developed the Ad-
aptive Control of Home Environments (ACHE) project [97] to automatically control the temper-
ature, heating and the lighting levels inside a building. The system supervises the environment,
observes the actions taken by the residents on the lights and thermostats, and then constructs a
model that allows to predict their future actions, using reinforcement learning based on neural
networks. The projects MavHome [38] of the University of Arlington, House of Matilda [57] and
Gator Tech Smart House of the University of Florida [71], Aware Home Research [58] of the
Georgia Institute of Technology are similar projects having the objective to optimise the comfort
and security of elderly people at home.

Microsoft has also proposed a system for following residents, developed for the EasyLiving
project [25]. The system uses cameras coupled to movement detectors placed on the walls for
tracking and locating humans through image processing techniques. Finally, the Hat project [45]
was developped for people suffering from asthma.

In Asia, at the University of Ibaraki in Japan, an intelligent environment was developed, called
SELF (Sensorized Environment for LiFe) [101]. It aims to supervise the state of health of persons,
by analysing several physiological criteria. The system registers and analyses the physiological
data, and then provides a daily report on the physiological activities of the concerned person.
The systems developed by the University of Tokyo [102] and the intelligent house of Osaka [89]
are other Japanese examples of intelligent homes similar to SELF. In South Korea, the Intelligent
Sweet Home project [79] proposes an intelligent house dedicated to persons with reduced mobility.
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Chapter 1. Introduction

The goal is to assist persons with going to bed, sitting down in an armchair, and so on.
In Europe, the CarerNet system [184] has been proposed in the United Kingdom, with the aim

of offering several healthcare services at home, such as the alarm, tracking of health procedures,
and e-health. In the Netherlands, the Senior Citizens Technology Centre has equipped a house
with a system for surveilling people, and with assistive technologies [175]. Movement detectors
measure the activity of individuals and signal all suspicious inactivity and intrusions.

In Spain, a platform for domestic medical care has been developed, to aid patients suffering
from specific pathologies to live inside their homes. The platform was composed of two parts:
a client application for the local processing of data, and a medical call-center [56]. Rodriguez
et al. [128] have developed a generic architecture of a remote medical surveillance system for
the European Prototype for Integrated Care project (EPIC).

In Norway, the SmartBo house [42] was built specifically for elderly people. The main elements
of the house are controlled automatically: the lighting, doors, windows, window blinds, etc. In
Finland, an automated house environment called Terva [76] has been developed to simultaneously
supervise several psycho-physiological criteria, exploiting physiological measurements and the
behavioural states of persons. The intelligent houses of British Telecom and Anchor Trust [14]
in England are other examples of this type of platforms in Europe, having the goal to remotely
survey and measure the activity of elderly people.

Efforts are currently made to integrate ambient intelligence solutions into habitats and build-
ings in their design and construction phases, to avoid the more expensive retro-fitting. Together
with the Office d’Hygiène Sociale (OHS) (Office of Social Hygiene) 1 and Pharmagest Diatelic 2,
we are developing a project for designing and building a retirement home equipped with an am-
bient intelligence system, exploiting complementary technologies like non-intrusive load-sensing
floors, depth cameras, and mobile assistant robots which act as sensing platforms for inspection
of space outside of the system’s surveillance area (i.e. in case of occlusions by furniture).

Privacy issues are avoided by automatically processing all the perceived sensing data on the
spot, without transmitting sensitive data outside the local network. Outside help is sought in
case of emergency, or whenever there is the need for it.

1.7 Background of the thesis

This thesis places itself within the Personally Assisted Living (PAL) initiative, and was financed
by an Inria CORDI-S grant. The Large Scale initiative Action PAL is a research infrastructure
that proposes technological solutions to improve the quality of life of frail people and their
immediate family and caregivers. These solutions come in the form of smart sensors, robotics,
and home automation systems. They aim to improve the security and the autonomy of elderly,
allow them to remain in their own homes, and to preserve or restore their daily-life necessary
functions.

The PAL initiative gathers 9 Inria teams associated with 6 research partners (technological,
medical or social), which work together on three main issue guidelines: mobility assistance,
assessing the degree of frailty of the persons, and home activities analysis. The systems proposed
by the teams communicate with each other, in order to exchange information about the persons
and their environment. This constitutes a sensors/actuators network, which is adapted to the
physical and cognitive situation of the person.

1Office d’Hygiène Sociale: http://www.social.nancy.fr/pagint/fiche.php?cid=464
2Pharmagest Diatelic: http://www.diatelic.com/
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1.8. Structure of the thesis

Our research team has been involved in several actions in the domain of assistance technolo-
gies: the PAL project on the development of technologies for assisted living, the Agence Nationale
de la Recherche (French National Research Agency) (ANR) Parachute project on fall prevention,
the Contrat de plan État-Région (planning agreement between the national and regional gov-
ernments) (CPER) InfoSitu project on pervasive computing, the Living Assistant Robot (LAR)
project on the development of a low-cost navigation system for a robot evolving in an indoor en-
vironment, the Whole-Body Compliant Dynamical Contacts for Cognitive Humanoids (CoDyCo)
project on the control and cognitive understanding of robust, goal-directed whole-body motion
interaction with multiple contacts, and the SATELOR project on providing autonomous medical
surveillance at home (a project). This has resulted in several doctoral theses:

• Development of a system for passive 3D tracking of human movement through particle
filtering (by Jamal Saboune, 2008),

• Stochastic modeling for medical reasoning and its applications in e-health (by Cédric Rose,
2011),

• Frailty measurement and fall detection for maintaining elderly people at home (by Aman-
dine Dubois, 2014),

• Object and human tracking, and robot control through a load sensing floor (by Mihai
Andries, 2015),

• Robust posture tracking using a depth camera (by Abdallah Dib, ongoing work).

1.8 Structure of the thesis

The scientific objective of this thesis is to explore sensing floors’ capabilities as a sensor for ambi-
ent intelligence: both for creating a representation of the events happening inside the supervised
scene, and as an artificial environment for supporting robotic navigation and exploration. This
thesis, which constitutes this scientific exploration, is structured in 3 parts, organised as follows.

Part I is dedicated to a general presentation of load-sensing floors. In Chapter 2, we provide
an overview of the existing sensing floors, and of the methods developed for human recogni-
tion. Chapter 3 presents the sensing floor prototype developed at Inria Nancy, which was used
throughout this thesis. Chapter 4 introduces the software developed for processing the data
generated by our sensing floor, the sensor calibration procedure, and analyses the possibility of
simulating such a sensing floor.

Part II presents our contributions on the use of sensing floors for perception of the environ-
ment. Chapter 5 introduces a new technique for scanning the pressure distribution inside the
surface of objects in contact with the ground by using sub-pixel shifting. Chapter 6 presents a
new method for tracking and localising objects on load-sensing floors, using a mix of inference
and combinatorial search techniques.

Part III presents novel ways of integrating sensing floors with ambient intelligence systems,
to provide navigation services for assistant robots (Chapter 7), as well as environment-embedded
memory capacities for stigmergic exploration algorithms (Chapter 8). A general conclusion is
drawn in Chapter 9, together with perspectives for future research.

9
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Chapter 1. Introduction

1.9 Key contributions of this thesis

This thesis provides several contributions, which consist in innovative approaches for using a load-
sensing floor. We develop new techniques, some inspired from the field of computer vision, for
perceiving objects and activities happening on the floor. We also develop new ways of interaction
between robots and the ambient intelligence environment, by using the capabilities of a sensing
floor. More precisely, we provide in this thesis:

• a method for high-resolution pressure sensing of objects on a low-resolution load-sensing
floor (Chapter 5),

• a technique for localising and recognising objects on a load-sensing floor (Chapter 6),

• an aid to robotic navigation, by generating and providing the safest navigation paths
through the environment using sensing floors (Chapter 7),

• an algorithm for distributed robotic exploration of environments with embedded memory
capacities (Chapter 8).

1.10 Publication list

This thesis contains parts that have been published in international journals, or presented at
international conferences, as well as extracts from yet unpublished, ongoing work.

Journal articles

• Localisation of humans, objects and robots interacting on load-sensing floors.
Mihai Andries, Olivier Simonin, François Charpillet
IEEE Sensors Journal, 2015

Conference articles

• High resolution pressure sensing using sub-pixel shifts on low resolution load-sensing tiles.
Mihai Andries, François Charpillet, Olivier Simonin
Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA
2015)

• Multi-robot taboo-list exploration of unknown structured environments.
Mihai Andries, François Charpillet
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2015)

• Multi-robot exploration of unknown environments with identification of exploration com-
pletion and post-exploration rendez-vous using ant algorithms.
Mihai Andries, François Charpillet
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2013)
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1.10. Publication list

Papers in preparation

• Roadmap extraction service provided by a sensing floor network for robotic navigation.
Nassim Kaldé, Mihai Andries, François Charpillet, Olivier Simonin

• Probabilistic sensor data processing for robot localisation on load-sensing floors.
Maxime Rio, Francis Colas, Mihai Andries, François Charpillet
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Sensing floors: existing prototypes and
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2.1 Sensing floors as sensors for ambient intelligence

Sensing floors are floors equipped with sensors for various practical applications, like perception
of the environment, health-monitoring, security, and entertainment. Most of these challenges are
related to the field of ambient intelligence, in which an artificial entity perceives, reasons, and
controls an environment placed under its responsibility.

The use of floor-sensors in ambient intelligence contexts began in the late 1990’s, with pro-
jects like the ORL active floor [3] by Addlesee et al. , the Magic carpet [105] by Paradiso et al.,
and the Smart floor [104] by Orr and Abowd, where they provided information for reasoning
about the observed space. These floors were later on integrated into smart environments, aimed
at delivering assistance services like continuous diagnosis of users’ health. These smart envir-
onments also integrated assistive robotic technologies with sensing networks. Examples of such
environments include the Gator Tech Smart House made by the University of Florida [58], the
Aware Home introduced by the Georgia Institute of Technology [71, 104], the RoboticRoom
system [95, 136] developed by the University of Tokyo, and the ActiSen activity-aware sensor
network [39] jointly developed by researchers from several US universities. Further advances were
brought by research on human footprint biometrics [100, 121, 78], which allowed sensing floors
to recognise humans by extracting features from footprints and human gait.
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Chapter 2. Sensing floors: existing prototypes and related work

This chapter first presents the strengths and weaknesses of sensing floors, and then continues
on to a listing of the existing floor prototypes, together with the applications developed by various
research groups on these floor sensors.

2.2 Advantages of sensing floors

Sensing floors present a series of advantages compared to other types of sensors, both in terms of
privacy and perception. Perception happens in the plane of the floor, allowing a direct detection
of objects on its surface. They do not suffer from occlusion, as in the case of vision-based
cameras. Load-sensing floors can record the pressure profiles of static and dynamic entities
(objects and living beings) evolving on the floor. The pressure profiles allow to track, localise
and recognise these entities. We can make assumptions about the conservation of weight in a
scene (except when entities enter or exit the scene), which helps in tracking the number of objects
present in the scene. Compared to vision cameras that suffer from distinct lighting conditions
and shadows, sensing floors can simply work in the dark. They are also less intrusive, providing
sensing information in a format which is not natural for human understanding.

2.3 Disadvantages of load-sensing floors

At the same time, being installed inside or under the floor, the load sensors also have some
downsides. They perceive only a projection of the forces involved in human daily activities,
which leaves space for ambiguities in weight sensing, and subsequent tracking and recognition.
Thus, whenever floor sensors are insufficient for any of the three tasks (localisation, tracking
and identification), additional sensors can be used to solve emerging data ambiguities from a
multi-modal perspective. Sensing floors have been combined with radio-frequency identification
(RFID) systems [94], pyroelectric infrared sensors (PIR) (for calculating the body surface area)
[4], wearable accelerometers [146, 63], audio capture systems [147], and cameras [29, 191]. As
the sensors are under regular strain, the precision of their measurements degrades over time.

2.4 Existing prototypes of sensing floors

In this section, we present the developed sensing floor prototypes in chronological order, sub-
dividing them into floors with binary pressure-sensing capacity, and floors with the capacity to
measure the intensity of the applied pressure. Each category is futher subdivided into monolithic
and modular prototypes. We also present in a separate category several prototypes of sensing
floors that perceive the environment through forces other than pressure (section 2.4.3). A com-
pact listing of the floor prototypes described in the related literature is given in Table 2.1. In
another table at the end of this section, Table 2.2, we list the floors on which more advanced
applications have been developed, such as multi-target tracking and human recognition, together
with the features they extract and the methods they employ for human and object recognition.
This table updates the lists previously presented in [116] and [171].

2.4.1 Binary pressure-sensing floors

Monolithic binary pressure-sensing floors

Griffith and Fernström developed a sensing floor that contained a matrix of optical proximity
sensors, and which was used as interface for musical instruments [55]. The prototype had a
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surface of 1.76m2, with a pressure-sensing resolution of 40 mm.
Middleton et al. [91] designed a 3 m by 0.5 m sensor mat, consisting of perpendicular wires

held appart by foam, which act as binary pressure switches (see figure 2.3). They identified people
by their stride length, stride cadence, and time-on-toe to time-on-heel ratio, using a standard
distance metric of similarity.

Glaser et al. developed a textile-based large-area sensor network, integrated into a carpet of
size 2.4 m by 2m [53]. Flexible textile-based conductive material is shaped into 15 cm by 15 cm
constructions (see figure 2.1). The carpet could be produced in a reel-to-reel process, and cut in
arbitrary shapes. Savio and Ludwig used this floor for detecting footsteps and calculating user
trajectories [137].

(a) Microprocessor modules integrated into a fabric
with interwoven silver-plated copper wires.

(b) An interwoven sensor and a node on the fabric.

Figure 2.1 – The sensing carpet presented by Glaser et al. in [53].

Shen and Shin developed a sensing floor using an optical fiber sensor, which employed Bril-
louin optical correlation domain analysis (BOCDA) to detect the strain deviation along a fiber
caused by pressure events [141] (see figure 2.2). A 40m fiber was embedded between two layers
of soft material, forming a sensing surface of size 1.6m by 4m. The floor was divided into 160
blocks, each of size 20 cm by 20 cm. The resolution of the floor could be changed by modifying
the placement of the optical fiber under the floor. With the suitable data-processing algorithms,
the floor was able to detect and track human occupants.

(a) The sensing floor prototype (b) Structure of the sensing floor

Figure 2.2 – A sensing floor which employs BOCDA
technology, presented by Shen and Shin in [141].

Figure 2.3 – The sensor
mat presented by
Middleton et al. in [91].
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Table 2.1 – Load-sensing floors and the sensing technologies employed

Authors Publ.
Year Floor sensor Modular

Reilly et al. [122] 1991 magnetorestrictive delay lines X
Pinkston [108] 1994 FSR
Addlesee et al. [3] 1997 strain gauge load cells X
Paradiso et al. [105] 1997 piezoelectric wire sensors
Griffith and Fernström [55] 1998 optical proximity sensors
Orr and Abowd [104] 2000 strain gauge load cells X
Schmidt et al. [138] 2002 strain gauge load cells
Morishita et al. [96] 2002 pressure switches X
Pirttikangas et al. [110, 109, 152, 150,
153] 2003 EMFi X
Yun et al. [192] 2003 on/off switch sensors X
Jung et al. [65, 66] 2003 pressure mats X
Yin and Pai [190] 2003 pressure mat X
Leikas et al. [82] 2003 N/A X
Lee et al. [81] 2004 FSR X
Murakita et al. [98] 2004 pressure switch sensor X
Richardson et al. [123] 2004 FSR sensors X
Middleton et al. [91] 2005 FSR mats
Yun et al. [194, 195, 193] 2005 photo interrupter sensors X
Glaser et al. [53, 137] 2007 sensing wire
Suutala et al. [154] 2008 pressure switch sensors X
Rangarajan et al. [119, 120, 115, 116] 2008 FSR mats X
Bose and Helal [23] 2008 piezoelectric force sensors X
Wen-Hau et al. [182] 2008 N/A X
Vera-Rodriguez et al. [173, 170, 171] 2009 piezoelectric force sensors X
Shen and Shin [141] 2009 optical fiber sensor
Visell et al. [177, 179] 2010 FSR X
Anlauff et al. [11] 2010 FSR X
Chang et al. [32] 2010 piezoresistive force sensor X
Klack et al. [73] 2011 piezoelectric force sensors X
Lombardi et al. [85] 2013 conductive polymer between

aluminium stripe electrodes X
Al-Naimi et al. [4] 2014 FSR X
Heller et al. [59] 2014 strain gauge load cells X
Inria SmartTiles [9] 2015a strain gauge load cells X
a Floor built in 2012, article published in 2015.
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2.4. Existing prototypes of sensing floors

Modular binary pressure-sensing floors

Reilly et al. developed an imaging walkway capable of sensing foot-to-ground contact for gait
analysis using magnetorestrictive delay lines [122]. This technology was originally developed for
memory storage in early computers. The prototype was a modular floor, consisting of panels
0.32 m by 0.64 m, assembled into a 2.5 m by 0.64 m walkway.

Morishita et al. presented a modular high-resolution floor sensor, composed of 0.5m square
tiles, each equipped with 4096 pressure switches in a 64x64 array [96], which provided binary
information about the presence or absence of load on them. Its high resolution allowed to obtain
sharp images of the surfaces in contact with the floor, such as footprints or shoe soles, suggesting
that automatic distinction between walking barefoot and in shoes should be possible.

Murakita et al. [98] used the InfoFloor system VS-SS-F, developed by Vstone Corporation
from Osaka, Japan. The floor has 1140 binary pressure sensors, of size 18 cm by 18 cm. The
authors used a Markov Chain Monte Carlo (MCMC) method to perform human tracking. The
prediction model was modeled in 2 ways: a generic linear model for predicting the position at
time t (using the position at time t�1, the current velocity, and a Gaussian noise), and a bipedal
model of sensor activations while walking (based on which foot was put forward). Tracking would
fail whenever two or more targets crossed their paths, generating tracking ambiguity. Attempts
were made to solve this problem by fusing the information from the floor sensors with that from
on-body acceleration sensors [63].

Yun et al. worked on several sensing floor prototypes. Their first prototype, the UbiFloorI
[192] consisted of 144 on/off switch sensors fitted onto a cushioned carpet, with a walking area
of 3m by 1 m (see figure 2.4a). The UbiFloorII [194, 195, 193] was a 12x2 array of wooden tiles,
each measuring 30 cm x 30 cm and each containing 64 uniformly-distributed photo-interrupter
sensors (see figure 2.4b). These floors were used for user identification based on the extracted
gait features (stride length, foot angle, heel strike time, etc.).

(a) UbiFloorI, presented by Yun
et al. in [192].

(b) The UbiFloorII presented by Yun et al. in [194, 195, 193], and a
close-up of a tile.

Figure 2.4 – The UbiFloor series of prototypes

Suutala et al. used Gaussian Process Joint Particle Filtering to track multiple humans on
a tiled floor equipped with binary switch sensors (a VS-SF55 InfoFloor sensor system made by
Vstone Corporation, Japan) [151]. The floor contained 12 tiles of size 0.5 m by 0.5 m, and each
tile included 25 binary switch sensors of size 10 cm by 10 cm. The floor data was collected at a
16 Hz sampling rate. They also performed person identification on this floor, using gait features
and Gaussian Process classification [154].
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2.4.2 Floors made of pressure intensity sensors

In the case of floors measuring pressure intensity, we can also exploit the weight information to
evaluate the generated tracking hypotheses, and to recognise the entities located on the floor.
This section introduces examples of such floors.

Monolithic pressure-sensing floors

Pinkston developed a pressure-sensing floor, called MIDI Dance Floor, consisting of four strips
of heavy duty plastic sheeting, each of size 4.87 m by 1.21 m and with 32 embedded FSR sensors
of size 0.6 m by 0.6 m, for a total of 128 embedded FSR sensors [108]. It was used as an interface
for musical instruments.

Paradiso et al. used a pressure-sensing floor as an interface for a musical instrument, meas-
uring the foot pressure and position [105]. The floor was based on a 16x32 grid of piezo-electric
wires hidden under a 3 m by 1.8m carpet (see figure 2.5). It was coupled with a pair of Doppler
radars to track the movement of the arms and upper body.

Schmidt et al. analysed the use of pressure-sensing surfaces in general, including floors,
tables, and shelves [138]. Their sensing floor was monolithic, 2.4 m by 1.8 m in size, mounted on
4 load cells located in the corners (see figure 2.6). It could locate and track a single person in
the environment, identify the addition and removal of single objects from the scene, as well as
recognise when objects were being knocked over.

Figure 2.5 – The Magic Carpet presented
by Paradiso et al. in [105].

(a) The floor in upright
position.

(b) An enlarged view of
the load cell supporting
the floor.

Figure 2.6 – Monolithic sensing floor
presented by Schmidt et al. in [138].

Modular pressure-sensing floors

Addlesee et al. developed the ORL active floor [3], which is a modular sensing floor made of
tiles with load cells in the corners. Each load cell supports the corners of four adjacent load
tiles (or two and one tiles for the sides and the corners of the floor, respectively), as shown in
Fig. 2.7. The tiles are 0.5m x 0.5 m in size, rigid, being made of 18 mm thick plywood with a
3 mm mild steel plate on top. The data sampling frequency was 500 Hz. The authors then used
Hidden Markov Models (HMMs) to classify the detected footstep traces, in order to recognise
the walking persons.

20
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Orr and Abowd used a prototype composed of a single tile, 50 cm x 50 cm in size, made of
a ⇡ 1 cm thick steel plate, placed on 4 load cells, located in the corners (see Fig. 2.8). They
recognised users by creating their footstep models, and then employing the Nearest-Neighbor
algorithm in a multi-dimensional space for user identification [104]. The user models were based
on their footstep profile features, such as the maximal load value during heel strike and during
toe push-off, and the minimal load value recorded during the weight transfer from heel to toe.

Figure 2.7 – A load cell sup-
porting two tiles of the ORL
active floor. Presented by
Addlesee et al. in [3].

Figure 2.8 – Sensing floor plate and load cell presented
by Orr and Abowd in [104].

Pirttikangas et al. from the University of Oulu developed a pressure-sensitive floor as part
of a smart living room [110]. The 100 m2 floor was made of stripes of EMFi material (30 vertical
and 34 horizontal stripes, each 30 cm wide), which make up a 30x34 matrix of cells of size 30 cm x
30 cm, with a sampling rate of 100 Hz (see figure 2.9). It was used for the automatic recognition
of occupants using the pressure pattern of their gait and discrete HMMs [110], Learning Vector
Quantization (LVQ) [109], Distinction-sensitive Learning Vector Quantization (DSLVQ) [152],
and multiple classifiers [150, 153].

Figure 2.9 – The sensing floor composed
of EMFi stripes, presented by Pirttikan-
gas et al. in [110].

Figure 2.10 – The structure of the FSR
floor presented by Lee et al. in [81].

Leikas et al. developed an immersive virtual environment containing a modular pressure-
sensing floor [82]. The floor was made of 49 pressure-sensitive tiles, each having 4 sensors (one
in each corner) of unspecified type.

Jung et al. tracked and recognised people walking on a TechStorm foot analyzer mat-type
pressure sensor (TechStorm Inc., Korea) using HMM and Levemberg-Marquart learning [65], as
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well as HMM and a Neural Network [66]. The size of the sensor was 0.8 m by 0.4 m, containing
80x40 sensors with a sampling frequency of 30Hz, as shown in figure 2.11.

Figure 2.11 – The TechnStorm foot ana-
lyzer pressure-sensing mat, employed
by Jung et al. in [66].

Figure 2.12 – The Xsensor pressure
sensing pad used by Yin and Pai in
[190].

Yin and Pai presented an intuitive animation interface, FootSee, that uses a pressure sensor
pad, through which users control avatars for video games [190]. The sensor employed was a
XSensor pressure pad [187], of size 2m by 0.8 m, containing a 160x64 grid of pressure sensors
as shown in figure 2.12, with a data sampling frequency of 6 Hz. The authors used an offline
training phase to map full body motions to corresponding foot-ground pressure distributions on
the sensor pad, and then employed inverse kinematics to calculate the posture of the human from
the sensing data provided by the floor. The employed features are the velocity of the center of
pressure (COP), contact area of both feet, and Hu invariant moments.

Lee et al. [81] presented a FSR floor, 7.2 m x 6.6 m in size, subdivided into blocks of 0.6m x
0.6 m, each supported by 4 sensors located in its corners (see figure 2.10). They explored its use
for tracking humans and as an interface for human-computer interaction. For instance, a visual
interface was projected onto the floor, with which the users could interact by tapping buttons,
and by changing their location and speed on the floor.

Richardson et al. developed a modular floor, consisting of a tesselation of interlocking tiles
[123]. Each tile consists of 20 hexagonal FSR sensors, arranged in a shape that allows them to be
self-holding, as shown in figure 2.13. The tiles contained within all the circuitry. The deployment
of these tiles in sensing environments, including the self-localisation of the tiles composing the
floor, was described in [90].

Figure 2.13 – Several interconnected Z-Tiles, presented by Richardson et al. in [123].

Rangarajan et al. designed a pressure-sensing floor consisting of 96 networked pressure-
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sensing mats, arranged in a rectangular matrix of 12 rows by 8 columns, covering a surface of
⇠ 16 m2, and with a sampling frequency of 43 Hz (see figure 2.14) [119, 120]. Each sensing mat
is 0.48 m by 0.43 m in size, and is embedded with a 48x42 array of 2016 FSRs, resulting in a
resolution of approximately 1 sensor per cm2. Each FSR is 6mm by 6mm in size, leaving little
space between the sensors of the grid. The sensing resolution of the floor was high enough to
allow the direct detection of the heel and toes. This floor was later used by Qian et al. to identify
humans based on features of their gait [115, 116].

Figure 2.14 – The sensing floor developed by Rangarajan et al. in [119]

Wen-Hau et al. [182] developed a floor containing 25 sensing tiles of size 60 cm by 60 cm,
with a single load sensor under each tile, and with a spacing of 20 cm between neighbouring
tiles. This spacing left blanks in the sensing surface of the floor. To counter this, tracking of
the inhabitants was performed using an algorithm called Probability Data Association (PDA),
which is based on the Kalman filter. The inhabitants were tracked with an error of less than
28 cm between their estimated and real location.

Bose and Helal presented a tiled floor [23] for detecting humans and analysing their gait,
developed for the Gator Tech Smart House [58]. Each tile of the floor had a piezoelectric force
sensor embedded under the tile, attached to its central support (see figure 2.15).

Figure 2.15 – Pressure-sensing tile
presented by Bose and Helal in [23].

Figure 2.16 – The tacTiles presented by
Anlauff et al. in [11].

Vera-Rodriguez et al. described a high-resolution pressure-sensing floor, which employs piezo-
electric sensors mounted on a printed circuit board, and placed under a conventional mat [170].
Each mat was 0.3m by 0.45 m in size, and contained 88 piezoelectric sensors. The floor was
made of two such mats. The system extracted features from the footstep’s ground reaction force
(GRF) and it’s footprint, and employed a Support Vector Machine (SVM) to recognise the users
[172, 173, 170, 171].
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Chapter 2. Sensing floors: existing prototypes and related work

Visell et al. used a tiled load-sensing floor as a human-computer interface [177, 179, 176],
where an image of the interface is overlayed on the floor, on which users can press virtual buttons
with their feet (see figure 2.17). The floor was composed of 36 tiles, each 0.3 m x 0.3 m x 2 cm in
size, supported by 4 FSR sensors in the corners of the tile, as shown in figure 2.17a. The tiles
were also equipped with vibro-tactile actuators beneath the plate, that could provide feedback
to the users. This floor was used for 3D human posture tracking using Bayesian filters [118], and
for providing the illusion of walking on materials such as gravel, snow, and sand [178].

(a) The locations of sensors
under a tile.

(b) The floor pressure-sensing
interface.

(c) A user interacting with floor-based
interface widgets.

Figure 2.17 – The sensing floor presented by Visell et al. in [177].

Chang et al. introduced an interactive floor [32] with a total surface of 2.6m by 2.2 m,
composed of a 4x2 array of screens, each of size 1.096 m by 0.64 m. All these screens were
supported by frames with 4 piezoresistive pressure sensors (one in each corner) for tracking the
users’ footsteps on the floor, as shown in figure 2.18. User identification was performed using an
RFID system.

Figure 2.18 – The inter-
active floor presented by
Chang et al. in [32].

Figure 2.19 – The sensing floor presented by Heller
et al. in [59]

Anlauff et al. developed pressure-sensing tiles, called tacTiles, using paper-based FSR [11].
Each tile was 0.4 m by 0.4 m in size, and incorporated a total of 64 FSR sensors placed in a 8x8
grid (see figure 2.16).

Klack et al. developed a tiled sensing floor [73], measuring 20 m2 and composed of 64 wooden
tiles (0.6 m by 0.6 m by 40mm in size), mounted on a solid steel frame to allow free space for the
wiring and devices underneath the floor (see Fig. 2.20). The tiles were equipped with piezoelectric
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sensors in the corners. It was used to detect characteristic walking patterns, fall events and other
abnormal movement behaviours that would suggest an emergency situation [83].

Figure 2.20 – The interactive floor presented by Klack et al. in [73].

Lombardi et al. [85] developed a tiled sensing floor, where each tile contains sensing stripes
(see figure 2.21). The tiles are 0.6 m x 0.6 m large and 4.5 mm thick, and are made of ceramic. A
sandwich sensing structure is placed under the ceramic tile: a conductive polymer is put between
aluminium stripe electrodes. When a pressure is applied on top of the tile, the conductive rubber
is compressed between the electrodes surface, increasing the contact area between the rubber
and the electrodes, and decreasing proportionally the resistance between them. This resistance
is acquired by a capturing board, which interprets it as a pressure value. The thin tile is flexible
enough to avoid distributing the pressure equally over the sensors, allowing to recognise the
shape of a foot placed on the tile. A hierarchical communication network connects all the tiles
composing the floor. The authors were inspired by the computer vision community in their
development of spatio-temporal techniques descriptors for the recognition of human behaviour.
They used Randomised Tree classifiers to discriminate between the presence of an object and a
person on a tile, as well as between human postures (standing, walking, jumping, lying), based on
features that do not depend on the position of a person within a tile, like the matrix of pressures
sensed by the tile, the mean pressure value and its variance over a temporal interval, and the
movement of the barycenter.

(a) The installed floor prototype (b) The contact-sensing stripes (c) The capturing board

Figure 2.21 – The sensing floor presented by Lombardi et al. in [85].

Al-Naimi et al. presented a sensing environment combining a tiled pressure-sensing floor
with a ceiling with PIR sensors, that was employed for the detection and tracking of humans.
[4]. The floor was made of plywood tiles of size 0.5 m by 0.5 m by 0.022 m, each with 16 FSR
sensors placed in a 4x4 array layout onto the plywood, and covered by a 6 mm medium-density
fibreboard (MDF).
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Table 2.2 – Features and techniques for human recognition using load-sensing floors

Authors

Publ.

Year

Floor sensor Major features Classifier

Addlesee et al. [3] 1997 strain gauge
load cells Pressure profile over a footstep HMM

Orr and Abowd [104] 2000 strain gauge
load cells Key points from pressure profile K-nearest neighbors

(KNN)

Schmidt et al. [138] 2002 strain gauge
load cells Weight None

Pirttikangas et al.
[110] 2003 EMFi Pressure profile over the entire

floor during walking HMM

Pirttikangas et al.
[109] 2003 EMFi Pressure profile over the entire

floor during walking
Learning vector quant-
ization (LVQ)

Yun et al. [192] 2003 pressure switch
sensor

Compensated foot centers over
5 consecutive footsteps

Multi-layer perceptron
(MLP)

Jung et al. [65] 2003 pressure mats 2D trajectories of COP HMM

Yin and Pai [190] 2003 pressure mat COP velocity, feet contact area,
Hu invariant moments Inverse Kinematics

Jung et al. [66] 2004 pressure mats 2D positional trajectories of
COP

HMM, Neural Network
(HMM-NN)

Suutala and Röning
[152] 2004 EMFi Features from spatial, frequency

domain over a footstep DSLVQ

Middleton et al. [91] 2005 FSR mats Stride length, stride cadence,
heel-to-toe ratio

standard distance met-
ric of similarity

Yun et al. [194] 2005 photo inter-
rupter sensors

Compensated foot centers and
heel-strike and toe-off time over
5 consecutive footsteps

MLP

Suutala and Roning
[150] 2005 EMFi Features from spatial, frequency

domain over a footsteps MLP, LVQ

Yun et al. [195] 2008 photo inter-
rupter sensors

The footprint pattern and the
sampled transitional footprints
over combinations of 2 or 4 foot-
steps

MLP

Suutala and Röning
[153] 2008 EMFi

Pressure and time features ex-
tracted from pressure profile
over a footstep

MLP, SVM

Suutala et al. [154] 2008 on/off switch
sensors

Single footstep: length, width,
duration, number of pixels in
the binary map, (min, max,
mean, std) from the gray-level
duration map; Between foot-
steps: stride, length, stride ca-
dence

Gaussian Process

Qian et al. [115] 2008 FSR mats
2D trajectories of the Center of
pressure, Pressure profile over
time

Fisher linear discrimin-
ant (FLD)

Vera-Rodriguez et al.
[173] 2009 piezoelectric

force sensors
Geometric and holistic footstep
data SVM

Qian et al. [116] 2010 FSR mats Mean pressure, stride length FLD
Vera-Rodriguez et al.
[170] 2010 piezoelectric

sensor mat Holistic pressure-time info SVM

Yun [193] 2011 photo inter-
rupter sensors

Foot centers, heel-to-toe time,
footprint geometric data MLP

Vera-Rodriguez et al.
[171] 2013 piezoelectric

sensor mat
Fusion of time and holistic pres-
sure info SVM

Inria SmartTiles [9] 2015

strain gauge

load cells

Weight over time Knapsack algorithm
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2.4. Existing prototypes of sensing floors

Heller et al. developed a modular sensing floor of size 3 m x 3 m, consisting of 36 inter-
connected force-sensing tiles [59], each having the dimensions 0.5 m x 0.5 m, with strain gauge
single axis load cells in each of the 4 corners (see Fig. 2.19). A short throw projector was used
to project a visual interface on the surface of the floor. The floor was developed to study and
train the dynamic balance of athletes. Interactive applications were also developed to fight child
obesity, and to help rehabilitate elderly people for preventing falls.

Table 2.2 presents the floors on which human recognition experiments were made, together
with the features extracted and the methods employed for recognition.

2.4.3 Other sensing floors

Sensing floors have been developed, that perceive the environment in ways different from pressure
sensing. Valtonen et al. presented a 2D human positioning and tracking system, called TileTrack
[169], which used a low-frequency electric field to locate humans on the floor. The system could
only detect conductive objects, and did not provide information about the weight of objects.
Braun et al. introduced a floor with capacitive sensors, called CapFloor [24], that can localise
humans using low-intensity electric fields, and which was also used for fall detection. Ropponen
et al. used a floor with a low-frequency RFID location system, based on a matrix of quad
antennae under the floor surface [130, 131]. This floor was used for tracking people [124], and
for detecting human falls [125].

2.4.4 Commercially available sensing floors

Some sensing floors are already commercially available today. Products like the SensFloor [80,
146] (a floor network of capacitive proximity sensors, see Fig. 2.25), and FloorInMotion [156] by
Tarkett are being commercialised by companies mainly for the senior care industry.

Figure 2.22 – Kistler portable
multi-component force plate
for 10 kN, Type 9286B [72]

Figure 2.23 – The GAITRite Surface pressure-
sensing floor [50]

Load-sensing surfaces are also employed in biomechanical and medical laboratories. Examples
include the GAITRite gait analysis system [50], which is an electronic walkway (see figure 2.23),
the Tekscan force measurement and tactile sensors [159, 87], the TechStorm foot scan pressure-
sensing mat [157] (see figure 2.11), the XSensor pressure pads [187] (see figure 2.12), and the
Kistler force plates [72] (see figure 2.22), which are used for sports and performance diagnostics,
as well as for gait and balance analysis. The Active Gaming company proposed the pressure
sensitive Lightspace Floor [160], which is an interactive gaming platform combining pressure
sensors with LEDs for visual feedback, as shown in figure 2.24.
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Chapter 2. Sensing floors: existing prototypes and related work

Figure 2.24 – The Lightspace Floor presented
by the Active Gaming company [160].

Figure 2.25 – The SensFloor, presen-
ted by Lauterbach et al. in [80].

2.5 Conclusion

The domain of sensing floors has been in rapid expansion in the last twenty years, with ap-
plications evolving from entertainment to health monitoring and surveillance. The concept of
force-sensing plates, with a non-negligible cost and only available in the doctor’s office, is now
being transformed into a vision where low-cost sensors cover the entire floor of a living environ-
ment.

Modular floors became more widespread, due to easier data intepretation and maintenance,
and despite their more difficult installation as compared to sensing carpets. For a complete
representation of the pressure exerted on the floor, and to make use of physical properties like
mass conservation inside a scene with a constant composition of objects, the floor must perceive
all the forces exerted on it. No sensing holes should be left inside the observed perimeter.
Compared to flexible floor surfaces, where pressure sensors are required to cover the entire surface,
rigid tiles allow to have fewer pressure sensors per unit of surface, by distributing the pressure
to their supports.

Floors that perceive pressure information, as opposed to only presence detection, can be
exploited for improved object tracking and recognition, by providing a way to check the hypo-
theses on the localisation of objects by verifying the presence of corresponding weights in their
expected locations. Pressure-sensing floors also provide information for (multi-modal) activity
recognition. Accelerometers can detect impacts with the floor (e.g., falls, ball bounces), although
their location under the floor prevents them from detecting soft or low-intensity impacts.

Although existing floors have limited capabilities, being able to detect people lying on the
ground and tracking those walking in the environment, they have the potential to become a
versatile sensor for ambient intelligence. Invisible in their interaction with the users, they can
provide space occupancy information for robot navigation, data on human localisation, and
derivated analytics like activity monitoring, and health diagnosis for the continuous supervision
of the well-being of persons. Today, sensing floor models with limited capacities are commercially
available, mostly developed for the health care sector. However, much more can be done both in
developing sensing and analytical capacities of floor sensors, and in their proliferation for usage
in robotic systems.

This chapter has presented the existing sensing floor prototypes, including descriptions of
their modularity, and of the sensors they use. The next chapter will introduce the sensing floor
prototype designed by our research team at Inria, developed both for the perception and analysis
of human activities, and for interaction with robots in their navigation and exploration tasks.
This floor is used for all the applications presented in this thesis.
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The Inria SmartTiles prototype
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In the previous chapter we have surveyed the literature on existing sensing floor prototypes.
This chapter will introduce the sensing floor prototype developed at Inria Nancy, which will be
used throughout the rest of this thesis.

The Inria SmartTiles is a sensing floor prototype, conceived as a part of a bigger study of
the habitat of the future. The floor is integrated into an artificial apartment (Fig. 3.1), where it
provides spatially localised pressure sensing, memory and computing power, as it will be shown
in the following sections.
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Chapter 3. The Inria SmartTiles prototype

Figure 3.1 – A 3D model of the "Intelligent Apartment" prototype located at Inria Nancy

3.1 Origins of the project

This floor was developed to meet a double objective: (1) to serve as a pressure sensing floor for an
ambient intelligence, and (2) to serve as a medium of interaction for bio-inspired robots. The floor
is a discretized environment composed of tiles with embedded memory, capable of supporting bio-
inspired navigation algorithms for mobile autonomous robots. Each tile composing the floor can
store a limited amount of information, like the virtual pheromone trails laid by ant algorithms.
This information can be later retrieved by other agents, or be used by the tiles to update their
internal state, like in the case of pheromone propagation or evaporation. Robots evolving on
the floor can peform tasks such as navigation, patrol, and exploration, using pheromone-based
algorithms. The original idea of of a floor with communicating tiles for the implementation of
environment-based multi-agent models of behavior was presented by Pepin et al. in [107].

The sensing floor was constructed according to the specifications drawn by leaders of the
InfoSitu project, D.R. François Charpillet and Pr. Olivier Simonin, and engineers Dr. Olivier
Rochel and Dr. Lionel Havet. The prototype was built by the company Hikob3 and installed at
its current location in the Inria Nancy Grand-Est research center at the end of 2012.

The project was funded by the Region Lorraine, the InfoSitu4 project (standing for In-
formatique Située, i.e. Spatially Localised Computing), the Inria project-lab Personally Assisted
Living5, and the SATELOR project.

3.2 Architecture of the Inria SmartTiles prototype

The Inria SmartTiles prototype is a tiled sensing floor. The tiles are rigid, and have a size of
0.6 m by 0.6 m. Each tile can sense pressure, as well as memorise, compute and transmit data.
Besides being equipped with a set of sensors, each tile also has an on-board processing unit, as
well as a wireless and wired connection, which also provides electric power. These components
are detailed in the following sections.

3http://www.hikob.com/
4InfoSitu http://infositu.loria.fr/
5Personally Assisted Living https://pal.inria.fr/
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3.2. Architecture of the Inria SmartTiles prototype

3.2.1 Processing units

Each tile is equipped with two ARM processors (Cortex m3 and a8), and a wired connection to
the four neighbouring tiles, thus forming a sensor network (see Fig. 3.3). The wired RJ45 network
connection also provides electric power. Both centralized and decentralized applications can be
supported, thanks to the computing units embedded in the tiles, as shown in their architecture
diagram (Fig. 3.2). The processing units were manufactured by Hikob.
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Figure 3.2 – Tile architecture. Low-level firmware is the violet block, blue blocks form the
middleware, while high-level software blocks are in yellow.

3.2.2 Communication

Communication between the tiles

The tiles are wired in a grid, similar to a cellullar automaton. This allows to use neighbourhood
relationships between tiles for algorithms that employ stigmergy, like the diffusion of virtual
pheromone traces. It can also support wavefront propagation algorithms for the exploration of
unknown environments [16].
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(a) Top view (b) Bottom view (c) Tiles in their context of use

Figure 3.3 – The load-sensing tiles. The bottom view shows the sensors located in the
corners, as well as the CPU visible in the center. The black cables feed 16 light emitting
diodes (LEDs) that are used for providing visual feedback.

Communication with the surrounding ambient intelligence

In our ambient intelligence architecture, all the sensor data is aggregated and centralized, in
order to allow high-level reasoning tasks. The various nodes that we employ in our ambient
intelligence tasks use Robot Operating System (ROS) 6 for intercommunication.

Communication with the mobile robots on the floor

For general purposes, the tiles can also communicate with other entities through either wired
or wireless communication. This allows them, for instance, to provide navigation aid for mobile
robots, as detailed in Chapter 7.

Figure 3.4 – PeKeeII robot communicating with an interactive sensing floor

3.2.3 Sensors embedded in the tile

Each tile is equipped with:

• 4 pressure sensors located at the corners of the tile;
6http://www.ros.org/
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• 1 accelerometer in the center of the tile;

• 1 magnetometer.

The pressure sensors employed (strain gauge load cells) measure the load forces exterted on
the floor. The embedded accelerometers detect shocks, that can be caused by objects or humans
falling on the ground. The magnetometers serve to detect metallic masses located on the tiles,
such as robots. Each tile also has 16 light-emitting diodes which provide visual feedback. The
sensors are queried periodically for measurement data, with a frequency of 50 Hz. The format
of the data sent by each tile is as follows:

Sensor type Sender IP msg ID Timestamp Load Data (s1 s2 s3 s4)
Gauge 192.168.1.24 7090 1378368585070 1639 1973 1690 2092

Table 3.1 – Format of data package containing pressure measurements.

Sensor
type

Sender IP
address

msg ID Timestamp Acceleration
(x y z)

Magnetic
field (x y z)

Temp

Lsm 192.168.1.24 7091 1378368585080 -26 25 -1059 8 -11 92 1696

Table 3.2 – Format of a data package containing acceleration, magnetic field, and temper-
ature measurements.

The data packet contains two lines of information: one for the load cells, and one for the
combined data of the accelerometer, magnetometer, and thermometer. The header of each
message includes the type of the sensor providing the data, the IP address of the tile sending
these data, the identification number of the message, and the Unix time in milliseconds of
recording. The Gauge line contains the force values measured by the 4 pressure sensors, in their
own conventional units. The Lsm line contains the acceleration values for 3 axes, the magnetic
field values for 3 axes, as well as the temperature sensed by the tile.

My work was concentrated on the pressure sensors, which are presented in more detail below.

3.2.4 Specification of the load sensor

The Inria SmartTiles employ load sensors of the brand SparkFun SEN-10245, illustrated in Fig.
3.5). The specification of this sensor is shown in Fig. 3.6.

3.2.5 Load measurement linearity

The function that converts the conventional pressure units measured by the sensor to an equi-
valent value in newtons has a linear shape for the employed load sensors. This was checked by
recording the pressure measurements for a series of known weights placed at rest on the center
of the tile. These measurements showed a linear correspondence between the measured and real
values (see Fig. 3.7), with a slope of 7.49 (i.e. a static load of 1 kg corresponds to an increment
of 7.49 conventional sensor units).

3.2.6 Measurement noise

The load sensors of the tile are subjected to noise, as visible in Fig. 3.8a. The measurement
error of individual sensors is comprised between ±1.25 kg, with the combined measurement error
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Figure 3.5 – Images of the SparkFun
SEN-10245 load sensor. Source:
https://www.sparkfun.com/

products/10245

Figure 3.6 – Specification of the
SparkFun SEN-10245 load sensor.
Source: https://www.sparkfun.
com/products/10245

typically oscillating between ±2 kg, as seen in figures 3.8 and 3.9.
The frequency distribution of the noise registered by the sensors is non-Gaussian, as seen in

Fig. 3.9a. However, when summing the pressure values measured by the sensors of a tile (which
are finite-variance random variables), the obtained frequency distribution of the total pressure
intensity resembles a Gaussian, as suggested by the central limit theorem (see Fig. 3.9b).

The measurement error influences the localisation precision of forces exerted on the ground,
as seen in the next section.

3.2.7 Localisation error

Localisation of static objects

The floor can locate the exerted punctual pressures, with a higher accuracy than the size of a tile.
Punctiform pressures can be located through a calculation of the center of pressures measured
by the load sensors, using the formula:

Center of Pressure =
1

P
total sensors

i

| ~R
i

|
total sensorsX

i

⇣
~R
i

⇥ coords(Sensor
i

)
⌘

(3.1)

where ~R
i

is the reaction force measured by the ith sensor supporting the tile, and the "⇥" symbol
is the vector product operator. Equation 3.1 is obtained from the static equilibrium equations,
as further detailed in section 4.4.3.
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Figure 3.7 – Load measure linearity for a tile with 4 SparkFun SEN-10245 load sensors.
The intervals that can be seen instead of expected dots are due to measurement noise. The
calculated slope of the line is 7.49 conventional units for 1 kg of static load.

In Fig. 3.10, we show the localisation precision for a vertically standing barbell, with weight
disks screwed onto it. The localisation precision is influenced by the signal/noise ratio: a 7 kg
punctiform load can be located with a ±10 cm precision, while a 20 kg load can be located with
a precision of ±4 cm.

Localisation of moving objects

The tiles can also locate moving objects. To gain an understanding of the baseline precision of
the floor sensor, we performed an experiment with a non-holonomic 4-wheeled robot (robuLAB-
10 by Robosoft7) weighing 35.7 kg, rolling on the floor of the apartment (see Fig. 3.11). The
idea was to track the fluid movement of an autonomous robot, as compared to the saccadic
movements of the COP which are characteristic for the human gait.

As we had no ground truth for the localisation of robot’s center of pressure, we used an
approximation using the data from a Qualisys 8 motion tracking system. Given that the robot is
rigid, we could estimate the position of its COP using the least squares method, by calculating
the point which minimized the quadratic distance error between itself and the center of pressure
calculated by the sensing floor. The localisation precision for different types of trajectories is
presented in Fig. 3.12.

We performed the same experiments with a lighter Turtlebot 2 robot, weighing only 6.3 kg
(see Fig. 3.11c). The robot trajectories included: statically standing on the spot, making a
rotation on the spot, riding in a straight line, in a rectangle-shaped trajectory, and in a figure
eight trajectory. These trajectories were recorded in a rectangular area covered by a 3 by 5 grid of
sensing tiles. The localisation was performed using three different methods: a direct estimation
of the center of pressure using all the pressure forces sensed by the tiles that detected a non-zero
load (DE-TS, standing for Direct Estimation with Tile Selection); a Kalman filter (KF) that

7http://www.robosoft.com/
8http://www.qualisys.com/
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(a) Intensity of the noise measured on the 4 sensors of a tile, shown here in mass equivalent. The amount of noise
varies across sensors, but is generally below ±1.25 kg.
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(b) The measurement noise values for the 4 sensors
presented above in Fig. 3.8a, shown here together
on a common scale.
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(c) Combined measurement noise for the 4 sensors
presented above in Fig. 3.8a. Summing the meas-
urement values over multiple sensors increases the
intensity of noise, reaching here an equivalent of
nearly ±2 kg.

Figure 3.8 – Tile load measurement noise: noise intensity for individual sensors, and for all
4 sensors combined. Data obtained by recording the pressure data of a tile with no load
on top. The weight of the tile itself, supported by the sensors, was 10.7 kg.
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3.2. Architecture of the Inria SmartTiles prototype

(a) The frequency distribution (histogram) of the pressure values measured by the sensors of a tile. Conventional
pressure units (proper to the sensors) are shown on the horizontal axis, while the vertical axis indicates the
frequency of the obtained measurement. Measured weight was 15 kg. The sensor has a randomly preset offset for
zero pressure. 7.5 arbitrary units of pressure approximately correspond to 1 kg of load. The noise distribution is
non-Gaussian.

(b) Frequency distribution (histogram) of the combined sensor measurement noise, based on the 4 sets of sensor
measurements presented above in Fig. 3.9a. Due to the central limit theorem, the frequency distribution of the
combined sensor noise measurements has approximately the shape of a normal distribution.

(c) Q-Q plot for the combined sensor measurements, comparing the experimental data to a normal distribution.

Figure 3.9 – Statistical analysis of the tile load-measurement noise.
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Chapter 3. The Inria SmartTiles prototype

Figure 3.10 – The precision for the localisation of static objects. The weighed object was
a vertically standing barbell, with weight disks screwed onto it. The thick black square
represents the load-sensing tile. The scattering of the calculated center of pressure is caused
by the sensor noise. Scattering is shown for 3 different loads (7 kg, 12 kg and 20 kg) at 16
different locations of the exerted punctual pressure, marked by black circles. The higher
is the ratio of signal to noise, the less scattering is observed. The indicated load does not
include the weight of the tile itself, which is 10.7 kg.

tracked the position of the robot through time from the noisy direct estimates; and an Extended
Kalman filter (EKF) that also tracked the position of the robot and which incorporated the force
value at time t into the state of the filter.

The localisation results, classified by trajectory type and localisation method are given in
Table 3.3. The localisation error distributions are presented in Fig. 3.13. All the compared
methods were capable of tracking the robots with an average error of approximately 6 cm. The
KF outperformed the two other models, having 1 cm less in average error. This result is statist-
ically significant at p-value  0.01, assessed by a bootstrap test for the difference between two
sample means (2000 samples). A graphic comparison between the ground truth and the robots’
trajectories computed by the floor is shown in Fig. 3.14 A co-authored paper on these probab-
ilistic localisation techniques using a tiled sensing floor that details these results was submitted
to the International Conference on Robotics and Automation (ICRA) 2016 [126].

3.2.8 Synchronisation between tiles

The tiles send data packets at a frequency of 50 Hz. The tiles are synchronised using Network
Time Protocol [92], with a resulting desynchronization of approximately 2 milliseconds among
the 100 tiles composing the floor. This allows to assemble the data into pressure images of the
entire floor, one image per 20ms time-window.

3.3 Floor capabilities

The main emphasis of our research on this floor sensor is on its sensing capabilities for interop-
erating with an ambient intelligence, and its analytical capabilities for performing a continuous
evaluation of the healt state of inhabitants, using the biomedical data that it can extract. Several
functionalities have already been implemented on this prototype floor, including weight measure-
ment, fall detection, extraction and tracking of footsteps, as well as entertainment games, which
are detailed below. However, more research and engineering effort is required for integrating all
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3.3. Floor capabilities

(a) A nonholonomic robuLAB-10 robot by
RoboSoft, used in our experiment, weighing

35.7 kg. Source: www.robosoft.com

(b) A robuLAB-10 robot navigating on
the sensing floor.

(c) A Turtlebot 2 robot,
weighing 6.3 kg with the

notebook computer.
Source:

www.turtlebot.com

Figure 3.11 – Image from an experiment for calculating the precision of localisation for
mobile objects rolling on the floor. A heavy RobuLAB-10 robot (35.7 kg) and a light
Turtlebot 2 robot (6.3 kg) were used.

Turtlebot Methods

Trajectories DE-TS KF EKF

all 7.1 cm (±6.4) 5.9 cm (±2.8) 6.7 cm (±6.1)
static 6.9 cm (±4.9) 6.2 cm (±2.4) 5.8 cm (±2.6)
rotation 5.8 cm (±7.4) 4.7 cm (±2.5) 4.4 cm (±2.1)
straight line 7.6 cm (±8.3) 6.0 cm (±2.6) 7.8 cm (±8.1)
rectangle 6.9 cm (±6.2) 5.7 cm (±2.9) 6.8 cm (±6.8)
figure eight 7.6 cm (±5.7) 6.2 cm (±2.7) 6.7 cm (±4.9)

Robulab Methods

Trajectories DE-TS KF EKF

all 5.6 cm (±2.9) 4.6 cm (±2.7) 6.1 cm (±4.9)
static 1.5 cm (±1.1) 1.3 cm (±0.5) 1.4 cm (±0.8)
rotation 5.3 cm (±2.6) 5.3 cm (±2.5) 5.3 cm (±2.5)
straight line 6.1 cm (±1.5) 5.0 cm (±1.1) 6.7 cm (±3.8)
rectangle 5.9 cm (±3.3) 5.0 cm (±3.4) 7.3 cm (±6.5)
figure eight 5.8 cm (±2.4) 4.5 cm (±1.6) 5.4 cm (±2.2)

Table 3.3 – Summary values for the evaluation of the localisation methods, as mean errors
(± sd.) in centimeters. Top: with the light robot. Bottom: with the heavy robot.
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Chapter 3. The Inria SmartTiles prototype

(a) Robot navigating in a straight line, being supported by 2 tiles at most at any given
time.

(b) Robot following a rectangle-shaped trajectory, being supported by 2 tiles at most at
any given time.

(c) Robot freely navigating on the floor, alternatively supported by 1-2-3-4 tiles.

Figure 3.12 – The precision for the localisation of a mobile object (a robuLAB-10 robot
navigating on the floor). On the left, the robot trajectories (ground truth) are shown in
red, while the localisation given by the floor is in blue. On the right, the Tukey box plots
show the floor’s localisation error, depending on the number of tiles supporting the robot
at the time of localisation.
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Figure 3.13 – Comparison of localisation error distributions for all models, in the figure
eight scenario. Left: on the light robot; right: on the heavy robot.
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(a) RobuLAB-10 robot, with a mass of 35.7 kg.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

x position (meter)

0.5

1.0

1.5

2.0

2.5

y
p
os

it
io

n
(m

et
er

)

DE-TS

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

x position (meter)

y
p
os

it
io

n
(m

et
er

)

KF

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

x position (meter)

y
p
os

it
io

n
(m

et
er

)

EKF

(b) Turtlebot 2 robot, with a mass of 6.3 kg.

Figure 3.14 – Estimated trajectories in a figure eight scenario. Black line: ground truth
trajectory; blue line: estimated trajectory. Grey circle: starting point; grey triangle:
stopping point. Top row: the heavy robot; bottom row: the light robot.
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the functionalities into a single piece of software, which is expected to be based on high level
reasoning.

3.3.1 Weighing scales

Each tile can be used as a weighing scale. The tiles provide feedback about the weight placed on
them, using the LEDs and a color code (red light = 10 kg, yellow light = 5 kg, green light = 1
kg). The user can then sum up the corresponding values to obtain the final result (see Fig. 3.15).

Figure 3.15 – Using the load-sensing tiles as weighing scales. The LEDs encore different
units of weight with different colors (red = 10 kg, yellow = 5 kg, green = 1 kg).

3.3.2 Extraction of footsteps

This floor is capable of detecting and measuring footsteps with high accuracy (see Fig. 3.16),
extracting them using the variations in the translation speed of the center of pressure, as de-
scribed by Ballaz et al. [13]. We also implemented real-time multi-user localisation (without user
identification) based on the Nearest Neighbor heuristic using this prototype floor. This tracking
and footstep-extraction capabilities open the door for the analysis of the human gait, as usually
performed in the literature [185].

3.3.3 Evaluation of a person’s frailty

In the medical domain, frailty is defined as a clinical syndrome, in which three or more of the
following criteria are present: unintentional weight loss (5 kg in the past year), self-reported
exhaustion, weakness (grip strength), slow walking speed, and low physical activity [49]. Among
these 5 criteria, our sensing floor can detect 3: weight variation over time, changes in walking
speed, and the overall physical activity. Therefore, it can be used as a tool for evaluating the
frailty of a person.
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3.3. Floor capabilities

Figure 3.16 – Extraction of footsteps by tracking the evolution of the center of mass of
a person using the load-sensing floor. The steps are overlayed on a 2d top view of our
prototype apartment.

3.3.4 Fall detection

The tiles composing the floor have embedded accelerometers, which allow them to detect and
localise hard falls, as shown in Fig. 3.17. However, the problem persists for soft falls, in which a
person slowly collapses instead of suddenly hitting the ground. This makes soft falls difficult to
detect with accelerometers embedded into the floor.

3.3.5 Visual guidance during night-time

The floor can calculate shortest paths through the unobstructed environment between the loc-
ation of a person and the facilities usually used at night (e.g. bathroom, kitchen). These paths
can then be displayed on the floor using the LEDs embedded into the tiles (see Fig. 3.18).

3.3.6 Tracking breathing when sleeping in bed

Load sensors placed under the bed can track the breathing of a person in order to detect anomalies
such as sleep apnea, or simply to identify the presence of breathing [18]. They can also track the
lying position of the person in bed [19], which may be helpful for training individuals to sleep in a
particular position, as in the case of people with positional sleep apnea, or with gastroesophageal
reflux disease.

3.3.7 Entertainment

The floor may also be used for entertainment. For instance, there are enough LEDs to serve as
a screen for a low-resolution game like Tetris (Fig. 3.19). One of the tiles is used as a controller,
which detects the position of the player’s center of mass. It allows the player to move the
incoming figures sideways by relying more on the left/right leg, to turn them by leaning forward
on the toes, or to accelerate them by leaning back on the heels.
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Chapter 3. The Inria SmartTiles prototype

Figure 3.17 – The floor detects and localises hard falls using its accelerometers

3.4 Conclusion

In this chapter, we have presented the sensing floor prototype developed at Inria. Compared to
the previous sensing floor prototypes, we have the additional capacity to store information and
perform distributed computations on the tiles of this modular floor. The tiles being rigid, and
supported by pressure sensors (in the corners of the tile), they are able to detect and measure
pressure exerted in any place on the tile. Thus, rigid tiles demand a lower number of sensors per
unit of surface, compared to traditional flexible sensing mats.

Due to this property, objects on the floor can be located with a resolution higher than the size
of a tile, using a computation locating the center of pressure (COP) on the tile. This provides
a cheap way to precisely locate objects on the floor. However, compared to high-resolution
sensing mats, where footsteps can be detected by segmenting the corresponding footprints, other
solutions have to be used for low-resolution tiled floors. We currently perform it by tracking the
velocity of the COP on the ground, whose saccadic movement corresponds to the walking phases.

We also provided an overview of the preliminary applications already implemented in our
laboratory setting. More advanced applications developed on this floor during this thesis will be
presented later in Part II and Part III, together with directions for future work in Chapter 9.

In the next chapter, we will describe the software that we developed for processing and
interpeting the raw information generated by our sensing floor.
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Figure 3.18 – The floor providing visual guidance to the bathroom at night

Figure 3.19 – Playing Tetris on the load-sensing floor.
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In this chapter, we will introduce the software developed for working with our sensing floor
prototype, presented in Chapter 3. The software was built for processing and visualising the
data sent by the sensing floor. We also attempted to build a simulator, that would compute the
distribution of exerted forces on the sensors supporting the tiles, considering them infintely rigid
for simplicity. However, due to the number of sensors supporting a tile, we ran into difficulties
with computing analytical solutions to this problem. These aspects are detailed in the sections
below.

4.1 Architecture of the data processing software

The data processing software is composed of 3 types of functional units: the parser of the raw
data incoming from the floor, the containers of the processed floor data, and the analytical units
that segment, track, and locate objects on the floor. They are presented in different colors in
the software architecture diagram, in Fig. 4.1.

The data parser sends the processed data to the container of the floor video, which groups
the tile pressure data by their recording timestamps into snapshots of the entire floor. It uses
prior knowledge on the positions of tiles and their sensors, which correspond to the ones shown
in Fig. 4.2. The floor video container displays chronologically ordered 2D views of the floor,

47



Chapter 4. Processing and simulating data from the load-sensing floor

with its occupancy state, measured pressure, and the located objects, as shown in Fig. 4.3. The
analytical units process these floor snapshots, using centralised algorithms for segmenting, track-
ing and localising objects. Decentralising these algorithms and avoiding the data aggregation
is a direction for future work. Finally, the software provides information on the localisation of
objects, by publishing it to a ROS topic.

The software was written using the Java programming language, and it uses rosjava for its
ROS communication. The program runs on a Linux Ubuntu 12.04 Precise Pangolin distribution,
with ROS Hydro Medusa.

Sensing floorSensing floor

Floor data processing softwareFloor data processing software

Floor data parser

tilePositions : HashMap<int, Coord2D>
tileSensorsPositions :

HashMap<int, Array<Coord2D>>
unitsToPressureConversionCorrectionConstants :

HashMap<int, float>

processTileData(String) : TileDataUnit

ROS interface
Raw data, 1
packet per tile
Raw data, 1
packet per tile

Floor video

floorVideo: List <FloorSnapshot>
layersOfObjects : List<FloorSnapshot>

addTileDataUnitToFloorVideo(TileDataUnit) : void
getFloorSnapshot(Timestamp) : FloorSnapshot
drawFloor() : void

Floor snapshot

tileStates : SortedMap<int, TileDataUnit>
snapshotMeasurementTime : long

addTileDataUnit(TileDataUnit) : void
getTileDataUnit(int) : TileDataUnit
blobEvolutionHypotheses :

List<BlobEvolutionHypothesis>

Blob segmentator

getSegmentedBlobs
(FloorSnapshot, List<KnownObject>) :
List <Blob>

Blob evolution tracker

getTopBlobEvolutionHypotheses
(FloorSnapshot, FloorSnapshot, int) :
List <BlobEvolutionHypothesis>

Object locator

getMostProbableAssignmentsOfObjectsToBlobs() :
List<AssignmentOfObjectsToBlobs>

getPossibleAssignmentsOfObjectsToBlobs
FromBlobEvolutionTrackingHypothesis
(BlobEvolutionTrackingHypothesis) :
List<AssignmentOfObjectsToBlobs>

ROS interface

Figure 4.1 – The architecture of the floor data processing software. The data processing
software is composed of 3 types of functional units: the parser of the raw data incoming
from the floor (shown in blue), the containers of the processed floor data (orange), and the
analytical units that segment, track, and locate objects on the floor (violet). For clarity
reasons, only the important classes are shown here.
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Figure 4.2 – A schematic view of the tiles composing the sensing floor, with their identifiers.
The red dots indicate the positions of the sensors. The walls are shown in black. The
tiles under the furniture in the sleeping room (top left room), under the toilet in the
bathroom (top middle room), and under the kitchen furniture (top right room) have been
left unequipped with sensors, and are shown here in grey.

4.1.1 Processing the raw sensing-floor data

The data generated by the floor can be passed to the software either as a recorded .txt file, or
through a ROS publisher/listener interface by publishing it on the corresponding topic. The data
processing software treats the data packets sent by the tiles, which have the format indicated in
Tables 3.1 and 3.2, on page 33. The data packets arrive in disorder, as the network provides no
guarantees on the order of arrival of packets. In addition, although the tiles are synchronised
using Network Time Protocol, there is still some desynchronisation between the tiles in the order
of milliseconds.

Each tile sends data packets regularly, every 20 milliseconds (50 Hz). The received packets are
grouped by their recording time, generating a frame of the entire floor every 20 ms (see Fig. 4.3).
For real-time processing with a limited amount of memory, the oldest frames are removed to free
space for the frames to come. This guarantees an upper bound of memory consumption.

The working principle for the modules performing the segmentation, tracking and localisation
of objects on the floor will be covered in Chapter 6.

4.1.2 The floor-data player

The player allows to visualise the pressure data recorded by the floor, and aggregated by the
data processing software (see Fig. 4.3). For displaying the tiles and their sensors, it uses prior
knowledge about their positions. The tiles that have sent data in the time window that corres-
ponds to the visualised floor frame are present in the graph. The ones that have failed to send
data in this time window are absent. The timeline extends itself in accordance with the length
of the recording.
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Figure 4.3 – Screenshot of the floor data processing software. The sensors are shown in
black, interconnected here with their neighbouring sensors from the tile. The displayed
positions of sensors and tiles correspond to their real location (see Fig. 4.2). Some tiles
failed to send their data in the given 20 ms time frame, and are shown as missing here.
A localised robot is displayed in green, together with its measured mass, and the location
of its center of pressure (COP). A timeline on the bottom allows to scroll through the
recorded floor frames.
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4.2. Calibration of the tiles

4.2 Calibration of the tiles

Before performing any processing of the floor pressure data, a calibration of the pressure sensors
has to be performed, that would determine the function converting arbitrary sensor units to new-
tons. The conversion function is located in a two-dimensional plane, where one axis corresponds
to the ground truth load measurements in newtons, and the other one corresponds to the load
measurements in arbitrary sensor units. As presented in Section 3.2.5 on the linearity of load
measurements, the data conversion function for transforming the perceived conventional units of
pressure into newtons is linear. This implies that the conversion function can be determined by
identifying a point through which it passes, and its slope. Two calibration values are enough to
determine the linear data conversion function on each tile: one value is obtained when recording
the measured pressure when there is nothing on the floor, and the other one can be obtained
by placing on each tile a known calibration weight. This calibration procedure is illustrated in
Fig. 4.4.

Ideally, each sensor should be calibrated separately. This involves the precise positioning of
the calibration weight on the tile, in a place where the distribution of the exerted load onto the
supporting sensors is known in advance. For instance, a load placed in the center of a square
tile is expected to be equally distributed among the sensors located in the corners of the tile.
Considering the large number of tiles contained in a floor, and the time it takes to precisely
position a weight, the procedure can become lengthy. A quicker joint calibration of the 4 sensors
of a tile can be done, assuming that they all have the same slope of their functions converting
arbitrary sensor units to newtons.
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Figure 4.4 – Graphical illustration of the calibration procedure. First, the weight of the
empty floor is measured, to identify the zero-weight offset. Then, the calibration weight
is used to identify the slope of the function that converts arbitrary sensor units to new-
tons. In our case, the conversion correction factor is 0.77, which corresponds to 1 sensor
measurement unit per 1.3 newtons of force.
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The calibration weight can even be that of a static person, measured in advance on high-
precision scales. Thus, if the sensors’ zero-values that correspond to the state of an empty floor
are recalculated at each launch of the algorithm, a quick calibration can be made by using the
recorded data of a person walking and stopping on each tile. The recorded values are then used
to calculate the constant correction factors applicable for the four sensors of each tile.

4.3 Calculation of the center of pressure on a tile

The processing of floor pressure data often involves the localisation of objects on the floor.
Given the rigidity of the tiles forming the modular sensing floor, even if several pressure forces
are applied on a tile, only the resultant force can be measured by the sensors underneath the tile.
As mentioned earlier in Section 3.2.7, the floor can locate the position of a punctiform pressure
exerted on a tile by calculating the center of pressures measured by the load sensors, using the
formula:

Center of Pressure =
1
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total sensors
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| ~R
i

|
total sensorsX

i

⇣
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i

⇥ coords(Sensor
i

)
⌘

(4.1)

where ~R
i

is the reaction force measured by the ith sensor supporting the tile, and the "⇥" symbol
is the vector product operator. Equation 4.1 is obtained from the static equilibrium equations,
as further detailed in section 4.4.3.

This identification of a force’s value and point of application on a tile when given the sensors’
measurements, which is used in the processing of sensing data, has a complementary, inverse
problem. The inverse problem, which is that of calculating the distribution of a pressure exerted
on a tile onto the sensors supporting it, is relevant for simulation purposes, as we will se in the
next section.

4.4 Inverse problem: calculating the load distribution on the
sensors

For simulation purposes, it is relevant to compute the distribution of a pressure exerted on a tile
on the sensors supporting it. This is useful, for instance, when combining human gait models
with a simulation of the sensing floor, in order to obtain simulated floor pressure data. The
problem can be formulated as follows: knowing the shape of the tile, the coordinates of the load
sensors beneath the tile, and given a pressure force applied on the tile at a given location, how
to calculate the values of the forces exerted on each sensor? The number of unknown reaction
forces is equal to the number of load sensors underneath the tile. We therefore need as many
independent equations as there are unknown forces, in order to identify their values.

Let us pursue this analysis of the distribution of forces on a support, by starting with the
simplest form of a 2D support, a beam, and gradually increment its complexity.

4.4.1 Statically determinate beam

A beam is said to be in a statically determinate equilibrium when all the reaction forces on the
beam can be calculated using the equations of mechanical equilibrium. These equations are:

• the vector sum of all forces is zero (applied forces and reaction forces);
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4.4. Inverse problem: calculating the load distribution on the sensors

• the sum of all torques is zero.

In a 2D setting, in the case of a force applied perpendicularly to a beam, the number of
available equations equals 2, which imposes a limitation on the number of unknown variables
(values of reaction forces) that can be identified. An example of a statically determinate beam
is given in Fig. 4.5. The available equations are:
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Figure 4.5 – Reaction forces on a statically determinate beam

In a frame of reference with the origin set in point B, the reaction forces can be calculated
as follows:
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4.4.2 Statically indeterminate beam

A structure is considered statically indeterminate when the static equilibrium equations are not
sufficient to find the reaction forces on the structure, because there are too many unknowns. A
simple example is shown in fig. 4.6, where only 2 equations can be extracted (the sum of forces
equals zero and the sum of torques equals zero). This is insufficient for calculating the 3 reaction
forces arising from the supporting points of the beam. The problem is underconstrained and has
an infinite number of solutions. Therefore, additional constraints have to be introduced in order
to solve this system.

Several methods exist for solving this problem, such as: the flexibility method, the slope
deflection method, the method of sections (for truss structures), and the moment distribution
method [37] (for statically indeterminate beams and frames). For instance, the slope deflection
method employs equilibrium equations for each node of the structure, in terms of deflections and
rotations. It then uses moment-displacement relations to calculate the moments of force, and
reduce the structure to a determinate structure. Let us now continue to the 3-dimensional case.
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ReactionForce1
ReactionForce2ReactionForce3

Force

Sensor1 Sensor2
Sensor3

Figure 4.6 – Reaction forces on a statically indeterminate beam

4.4.3 Weight distribution on a triangular tile

In a 3-dimensional environment, we have 6 equations available for calculating the conditions of
static equilibrium: the sum of forces equals zero (in 3 projections), and the sum of torques equals
zero (in 3 projections). However, in the case of a force applied perpendicularly to the plane of
a tile, the projection of forces on two of the axes (those in the plane of the tile, i.e. x and y) is
equal to zero. In addition, as all the forces are vertical (they are parallel to the z-axis), there is
no torque around the vertical, z-axis.

Sensor1(0, 0, 0)
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Figure 4.7 – Load distribution on an isostatic tile

Let us consider a given frame of reference, ⌦. Let R
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]T be the force vectors
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in the frame of reference ⌦, with N
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being the number of
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]T in the frame of reference ⌦.
Let F = [d
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]T be the force vectors applied on the tile in the frame of reference ⌦,
j = 1..N

f

, with N
f

being the number of forces applied on the tile (or the number of points of
support of an object placed on the tile) (N
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= 1 in the analysed case). These force vectors are
respectively applied at points U

j

with coordinates U
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, z
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]T in the frame of reference ⌦.
The static equilibrium of forces and torques can be formulated as:
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where the "⇥" symbol is the vector product operator. For N
c

= 3, and N
f

= 1 we obtain the
following equations expressed at the point (0, 0, 0)T :
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In our case, the tiles are considered as rigid and flat. By placing the frame of reference ⌦ in
such a way that its ~z axis is perpendicular to the plane of the tile, we obtain that z = w1 = w2 =
w3 = 0. In addition, the forces F and reaction forces R

i

applied on the tile are perpendicular to
its plane. Only the force components following the ~z axis of the force vectors are non nil. Thus,
we will only consider equations 3, 4, 5 of the system of equations 4.7. This leaves us with the
following system of equations:
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Let us rewrite again this equation, by reminding the meaning of each variable:
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where |R
i

| are the scalar values of reaction forces, |F | is the scalar value of the applied
pressure, and S

i

are the sensors that support the tile. This can be refactored and rewritten as
the following matrix equation:
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This equation allows to calculate the pressure distribution on 3 supports (see Fig. 4.7). It is
an equation having the form A⇥R = F , where matrix A (containing the positions of the sensors)
and matrix F (containing the intensity of the exerted pressure on the tile, and its position) are
known. The matrix R, containing the values of the forces that act on the sensors, is unknown.

The value of the R matrix can be obtained by rewriting the equation in the following way:
R = A�1⇥F . A solution to this equation exists only if the A matrix is invertible. The matrix A
is invertible if and only if its determinant is not equal to 0. The determinant of matrix A shown
in equation 4.10 is given by
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If we consider that the sensor S1 is located in the origin of our frame of reference, namely
(0, 0, 0)T , we obtain:

Det(A) = S2
y

· S3
x

� S2
x

· S3
y

(4.12)

If we further consider that the sensor S2 is located on one of the axes of our frame of reference,
having one of its coordinates equal to 0, we obtain:

Det(A) = S2
y

· S3
x

if S2
x

= 0, or
Det(A) = �S2

x

· S3
y

if S2
y

= 0

This determinant equals zero only if the surface of the tile is zero. Given that the surface of
our tile is non zero, the matrix A is always invertible. Therefore, the distribution of the forces
applied to a point on the tile can be calculated for any given triangular tile, that is supported
by sensors located in its corners.

Example for a particular triangular tile

In the case of the triangular tile presented in Fig. 4.7, the reaction forces can be calculated by
applying the equations of static equilibrium:

• The sum of external forces applied to an object is equal to the null vector.
X
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= ~0 (4.13)

In the case of a tile, this means: X
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• The sum of torques exerted at points P
i

with respect to to a random point O is equal to
the null vector. As a reminder, the moment of a force (or the torque) R

i

, applied at a point
P
i

, calculated with respect to a point O, is given by
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where the "⇥" symbol is the vector product operator. In the case of a triangular tile sup-
ported by 3 sensors, we have three reaction forces, R1, R2, R3, applied at points P1, P2, P3,
and the force applied on the tile with the resultant force F , located in the center of pressure
G. We therefore have: X
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This gives us:
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We can therefore calculate the reaction forces:
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If there are more that 3 points of support (sensors in our case) under the tile, we have to
solve an underdetermined linear system, that allows for an infinity of solutions. An approximate
solution of Moore-Penrose type may be used in this case.

4.4.4 Weight distribution on a square tile

Each tile of the Inria SmartTiles prototype is supported by 4 load sensors, as shown in Fig. 4.8.
Therefore, in order to identify the values of the forces that are measured by the load sensors, 4
equations are required. The previous section has shown that only 3 force equations are available
in our case. This renders the tile statically indeterminate (or hyperstatic). Determining analyt-
ically the distribution of a force onto the sensors supporting the hyperstatic tile is not possible
with the existing analytical tools, as the problem is underconstrained and has an infinite num-
ber of solutions. Techniques such as the Finite Element Method are usually employed to find
approximate solutions to this problem, by considering the tile as being flexible.

Sensor1(0, 0, 0)

Sensor2(0, L, 0)

Sensor3(L, 0, 0) Sensor4(L,L, 0)

F
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Figure 4.8 – Distribution of a punctiform pressure on a square tile with 4 supporting
sensors.
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4.5 Conclusion

This chapter has introduced the software developed for processing and simulating the pressure-
sensing floor. We presented its architecture in terms of functional modules, that perform the
parsing, sorting and storage of the incoming load data, and analyse it to detect, track and locate
objects and humans. We also offered a graphical representation of the activities that take place
on the floor, as perceived from the floor’s perspective.

We introduced the calibration procedure for identifying the function converting arbitrary
sensor units to newtons. The measured weight values can be interpreted as the mass of static
objects located on the floor.

In our endeavour to create a simulator of the pressure-sensing floor, with the intent of coupling
it to models of human activities, we have seen that it is not currently possible to analytically
compute the distribution of a load on the sensors supporting a tile, if this tile is hyperstatic.
However, approximate solutions can be obtained by considering the tile flexible, and applying
methods such as the Finite Element Analysis. We conclude that in this respect, triangular
isostatic tiles are more appropriate, but even they can have singularity points, which prevent the
computation of an analytical solution to the problem of force distribution.

Part I has presented the existing prototypes of pressure-sensing floors, as well as the Inria
SmartTiles prototype used throughout this thesis. We have seen the characteristics of the sensors
used in our prototype, and the impact they have on pressure measurements and localisation of
static and mobile objects. We introduced the data processing pipeline used to analyse the floor’s
raw data. It is now time to pursue onto an exploration of the capabilities of sensing floors.

Part II will present the services that a modular sensing floor can provide. We will first see
how to extract the surface of an object in contact with the ground, with the goal of using it
for object recognition (Chapter 5). Then, we will solve the problem of tracking and localising
objects, robots and humans on our noisy, low-resolution sensing floor in Chapter 6.
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5

Object surface pressure scanning
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5.1 Introduction

Ambient intelligence explores how sensing environments can interact with their inhabitants. We
are interested in employing the sensors embedded in the environment for analyzing the activity
of humans inhabiting it. In this sense, the recognition of objects with which humans interact
plays an important role for the recognition of human activities.

In this chapter, we explore how to extract an object’s surface in contact with the ground,
with the goal of using it for object recognition. We present a pressure scanning technique, which
employs sub-pixel shifting to make a series of low-resolution scans, which are then assembled
into a high-resolution scan. It exploits the information contained in the differences between the
shifted scans, and aggregates this information to compute a composite pressure scan.

The proposed pressure scanner architecture is composed of 4 load-sensing tiles. It calculates
the weight transfer between the tiles when the analysed object slides over them. By using only
the recorded mass and changements in the position of the center of mass, the scanner is able to
reconstruct the contact surface of the object that slid on it. It also calculates the distribution of
weight inside the surface of contact.

This chapter is organized into 4 sections. Section 5.2 presents the previous work on sub-pixel
shifting and other related techniques. Section 5.3 describes the scanning equipment required for
obtaining pressure scans, and introduces the algorithm that aggregates the scanning data. In
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section 5.4, we describe our results obtained through simulation on a noiseless platform, as well
as results obtained experimentally, on a physical platform subject to noise. Section 5.5 draws a
conclusion and presents the perspectives of this work for home automation and its applications
for industrial settings. This chapter is based on a publication [8] presented at the ICRA 2015.

5.2 Related work

High-resolution pressure scanning is usually performed using high-resolution pressure sensing
devices (such as [96] and [148]). These often have a non-negligible price, due to the high number
of embedded sensors. In this chapter we demonstrate that high-resolution pressure scanning is
also feasible using a low-resolution sensor and techniques such as sub-pixel shifting, something
which has not yet been attempted, to our knowledge.

Similarities can be identified between the pressure-sensing and imaging domains. The pres-
sure perceived by a load-sensing surface is analogous to the amount of light perceived by an
image-recording sensor. Both in imaging and pressure sensing, the sensor can be shifted by less
than a pixel width to register a slightly different part of the incoming light or pressure. Two such
sub-pixel shifted images, aligned along one of the two axes of the scan, can be assembled into
a higher-resolution image, using the information gathered by the sub-pixel shift. Such imaging
techniques that construct a high-resolution image from several low-resolution images containing
sub-pixel shifts have been proposed by Peleg et al. [106], Keren et al. [69], Tekalp et al. [158] and
Tom et al. [166].

The pressure sensor can also be composed of only one load-sensing tile, within a grid of
other tiles that simply serve as physical support for the scanned object. Depending on how
the object is placed on the sensing tile, the scanner will perceive new pressure data with every
object placement that differs from the previous ones. Coupled with a system for identifying
the displacement of an object’s bounding box (e.g., a cartesian coordinate robot), it can be
considered as the canonical scanner of such type, as it consists of a single detection element. A
scanner equivalent in functionality while lacking the cartesian robot will be described in section
5.3.1.

The 1-sensing-tile scanner can be viewed as a single detection element scanner, for which
the tiles that simply support the scanned object have the role of an aperture, that decides what
portion of the object will be detected. This idea has been exploited in imaging, where a grid-like
aperture was used to selectively allow light to pass through the aperture grid.

For instance, Huang et al. [61] used an LCD screen as an aperture in their implementation
of the single detection element camera. The pixels of the LCD screen could turn transparent
or non-transparent (black) to the incoming light, allowing different parts of the image to be
perceived. The resolution of the obtained composite image was dependent on the resolution of
the LCD screen used as apperture.

Both technologies (single detection element with a high-resolution aperture, sub-pixel shifts
of the aperture) can potentially be combined to compute images with even higher resolution.

5.3 Methodology for high-resolution pressure sensing

5.3.1 Scanning equipment

The instrument we use for scanning is constructed of 4 isostatic load-sensing tiles (see Fig.
5.1). The benefit of isostatic load-sensing tiles is the capability to calculate unambiguously the
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Sensor2(0, L, 0)

Sensor3(L, 0, 0)

F
R1

R2

R3

x

y

Figure 5.1 – Load distribution on an isostatic tile

Scanning area

(a) Scanner with 4 isostatic tiles, which employs
only half of the tiles’ scanning surface.

(b) Scanner with 8 isostatic tiles, which employs all
the scanning surface of the tiles.

Figure 5.2 – Examples of scanners with isostatic load-sensing tiles. The load sensors are
represented as red dots. The scanner in Fig. 5.2a requires fewer sensors per sensing pixel
(3 instead of 6), as compared to the scanner presented in Fig. 5.2b. Using fewer sensors
has the benefit of generating less uncertainty in the measured value.

distribution of load on the sensors supporting the tile. The tiles are assembled so as to have
vertical and horizontal frontiers between them, that will measure the flow of mass between the
tiles (see Fig. 5.2). This type of scanner architecture can scan the contact surface of objects
with size up to one fourth of the total scanning surface.

For clarity reasons, in the rest of the chapter we will consider that the scanner is composed
of only 4 square scanning parts, corresponding to the effective scanning area seen in Fig. 5.2a.

5.3.2 Scanning procedure and its particularities

The object to be scanned is slid in a boustrophedon manner, i.e. with alternative horizontal and
vertical translation movements over the plates (see Fig. 5.3a), allowing the entire object surface
to be scanned. After each translation movement, the tiles measure the weight and calculate the
coordinates of the center of pressure for the object portion standing on them (see Fig. 5.3b).
Thus, at each step, the 4 tiles generate a low-resolution 4-sliced image of the load on the contact
surface. These images are then assembled into a single grid-like high-resolution image of the
contact surface (see Fig. 5.4b).

The displacement brought by each translation can be measured by tracking the center of
pressure of the object on the scanning surface. The coordinates of the object’s center of pressure
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(a) Sliding the object in a boustrophedon manner
over the scanning surface. The object’s bounding
box is highlighted in red.

w1 w2

w3w4

(b) Each scan generates a 4-sliced image of the
weight-distribution inside the object’s bounding
box.

Figure 5.3 – Object scanning methodology
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(a) Overlapping of two low-resolution load images.

w2
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x1
x2 � w2or
w1 � x1

x3 � w3or
w4 � x4

x4

(b) Aggregate of two overlapping low-resolution
load images.

Figure 5.4 – Construction of a high-resolution image from low-resolution images.

will correspond to the coordinates of the center of mass of a system of particles composed by
the sensors of the scanner, where each particle’s mass is proportional to the weight perceived by
the corresponding sensor. The distance travelled by the object’s center of pressure corresponds
to the distance travelled by its bounding box.

The translation movements can be performed by a cartesian coordinate robot (like the one
presented in [145]), if the goal is to achieve high precision. For less precise scanning, the object
can even be translated by hand, and scanned once the translation movement is completed and
no exterior forces act on the object.

The problem can be schematically reduced to determining the weight of each pixel in the
load-image representing the contact surface of the analysed object (see Fig. 5.4). Any given two
load images can be assembled into a higher resolution image if both are subdivided by a common
x or y line. This line is used for aligning the two images, creating the additional high-resolution
image subdivisions.

The scanning resolution can be modified by changing the object shifting step: bigger steps
lead to less gathered information, and therefore to lower-resolution final scans, and vice versa.
The maximum spatial resolution depends on three factors: the precision of the object translation,
the sensitivity of the pressure sensor, and the sensor noise. The noise level of the sensor must
be inferior to the recorded pressure value in each pixel. This means that a noisy sensor will be
able to make high-resolution scans only for heavy objects.

The object translation movements must not be accompanied by rotations, as they skew
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(a) The expected scan figure, without skewing. (b) Example of scan image skewing, obtained while
scanning with a 10% chance of rotating the figure
by 5 degrees.

Figure 5.5 – Example of skewing a scan image by rotation of the scanned object. Positive
pressure values are represented in grayscale, while negative pressure values are shown
in shades of red. Skewing generates negative pressure values, that counterbalance the
additional pressure points detected.

the scanned load images, preventing them from aggregating into a sharp, non-ambiguous load-
distribution image. Considering the gradual calculation of the pressure scan image, the errors are
cumulative, propagating themselves through the scan. Fig. 5.5 presents an example of skewing
due to object rotation.

The scanning speed depends on the speed of object manipulation, and on the measuring
frequency of the sensor. Due to the presence of sensor noise, several measurement must be made
from which the most probable pressure value is calculated.

For example, a system able to translate the scanned object at a speed of 1 translation per
second, and taking 1 second to measure the weight of the object on the scanner, scanning an
object of size 1 m2, with a resolution of 1 cm2, would require 10 000 measurements, which would
take 5.5 hours to record. Scanning the same object at a resolution of 10 cm2 would require 100
measurements, and take only 3 minutes 20 seconds of time.

5.3.3 Scanning algorithm

Each scan of the object generates 4 pieces of information, provided by the 4 tiles of the scanner
(see Fig. 5.3b), that contain: the coordinates of the scanned object portion, the weight of this
object portion, and the center of pressure of this portion.

The scanned pieces of the object are stored in a list of type objectPiece. Each objectPiece
contains 6 fields: the x and y axes that bound it (xLeft, xRight, yTop, yBottom), its weight,
and the coordinates of the center of pressure. These object pieces are then assembled into a
high-resolution image using the pressure-image registration algorithm described hereafter.

Each time a new piece of the object bounding box is scanned, the algorithm checks if this
piece contains or is contained by another known piece. If the new piece contains another known
piece, the surface and weight of the latter is subtracted from the new piece, thus reshaping the
new object piece that has to be added to the scan. If the new piece is contained by another
known piece, the latter is split in 2: the new piece, and the piece obtained by subtracting the
new piece from the one already known.

Performing this type of scanning while moving the object in a regular manner generates a
pressure grid. Fig. 5.6 offers an intuition on the way the algorithm executes itself.
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The pressure-image registration algorithm is presented in pseudocode in Algorithm 5.1. Each
new scanned portion of the object’s bounding box is checked whether it is contained by another
portion already scanned, and whether they have common boundaries, so as to eventually subtract
one from another and obtain the portion containing the additional information brought by the
scan. Thus, the scanning algorithm’s worst case complexity is quadratic in the number of object
pieces already scanned.

Algorithm 5.1 – Pressure-image re-
gistration algorithm

addPiece(newObjPiece)
{

if (newObjPiece.hasZeroSurface)
return;

else if (listOfObjPieces.isEmpty)
listOfObjPieces.add(newObjPiece);
return;

// if "listOfPieces" is not empty
else

// loop through all pieces in
listOfPieces

for each (objPiece in
listOfObjPieces)

if (newObjPiece.contains(objPiece))
croppedObjPiece =

newObjPiece.subtract(objPiece);
addPiece(croppedObjPiece);
return;

else if
(objPiece.contains(newObjPiece))

croppedObjPiece =
objPiece.subtract(newObjPiece);

// Split and remove the piece
containing the pieceToAdd

listOfObjPieces.remove(objPiece);
// Add the splits
listOfObjPieces.add(newObjPiece);
listOfObjPieces.add(croppedObjPiece);
return;

end if
end for

end if
}

Algorithm 5.2 – Boustrophedon
pressure scan

Boustrophedon_scan()
{
// 1. Traverse
// 1.1 Find movement direction
// 1.2 Move in that direction until the end
// 2. If can go down, move down and repeat}

repeat
scanObject();
if (!canMoveObjectLeft())

while (canMoveObjectRight())
moveObjectRight();
scanObject();
addPiece(topLeftPiece);
addPiece(topRightPiece);
addPiece(bottomLeftPiece);
addPiece(bottomRightPiece);

end while
else

while (canMoveObjectLeft())
moveObjectLeft();
scanObject();
addPiece(topLeftPiece);
addPiece(topRightPiece);
addPiece(bottomLeftPiece);
addPiece(bottomRightPiece);

end while
end if

if (canMoveObjectDown())
moveObjectDown();

end if
until (!canMoveObjectDown())

}

The boustrophedon algorithm simply moves the object as shown in Fig. 5.3a, and generates
the corresponding scan after each translation. This procedure, that allows all the sections of
the object to be scanned, is detailed in Algorithm 5.2. The boustrophedon algorithm has a
complexity of O(1) in the desired scan resolution.

5.4 Experimental results

Experiments have been done both using a simulator of load-sensing tiles that we developped for
our work on sensing floors for ambient intelligence, and using a real-world implementation of the
scanner. These experiments are detailed in the following sections.
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5.4.1 Scanning simulation

For simulation purposes, we developed a software tool for quick prototyping, written in Java, in
which the simulated scanner was represented by 4 load-sensing tiles, as presented in section 5.3.1.
The object to be scanned was represented using a set of pressure points, which correspond to the
surface of the object in contact with the scanner (see Fig. 5.7a). Each point had its own pressure
intensity value, and its coordinates inside the object’s bounding box. The software calculates
the total amount of pressure exerted on each tile of the sensor.

By translating the object following a boustrophedon trajectory, we obtain a pressure scan
of the object’s surface in contact with the scanner, as shown in Fig. 5.7. Modifying the object
translation step influences the resolution of the final scan, as can be seen in Fig. 5.7b. The scan
result for an object with different pressure intensities inside its contact surface is presented in
Fig. 5.8. These pressure differences were represented as grayscale intensities in the final result.

Given that the sensing tiles can not only weigh the portion of the object they support, but
also calculate the center of pressure for that portion, the pressure scans can be augmented using
information about the centers of pressure in each cell of the pressure-grid scan. There are no
limitations on the shape of objects that can be scanned. The scan of a sample object with
non-convex shape of its contact surface is shown in Fig. 5.8.

5.4.2 Physical experiment

The physical experiment was implemented on a scanner composed of the square sensing tiles
presented in chapter 3. Although these tiles are non-isostatic, this has not hindered the experi-
mental results.

The scanned object was a chair, weighing 5 kg, and with the chair legs forming a trapezoid
shape (see Fig. 5.9a). Given the high level of noise on our platform (±2.5 kg), the chair was
loaded with additional 40 kg of weight disks, to generate a pressure scan that would be easily
discernable from noise.

First, the tiles were calibrated using a standard weight, to ensure that they all converted the
measured forces into pressure units in the same way. After this, the average zero-pressure value
was recorded for each load-sensing tile when no objects were placed on the scanner. This served
as reference for the ulterior measurements.

The scanned object was then placed on the scanner and weighed by each load-sensing tile.
The pressure values for each of the 4 tiles were calculated by averaging the pressure values over
50 measurements (which takes 1 second at 50 Hz with the current prototype). The position of
the object was measured by hand using the millimeter paper. It could not be done automatically
by calculating the position of the center of pressure, because the load sensors were subject to
noise, which would have prevented the alignment of measurements into a grid. The translations
were carefully done by hand, which also constituted a possible source of error.

Due to the manual translation required for each measurement, the experiment, which con-
sisted of 100 measurements, lasted for 2 hours. The duration of the experiment, combined with
the load placed on the tiles (45 kg) introduced hysteresis-related errors towards the end of the
experiment. However, according to the sensor specification, this error is bounded to 0.03% of
the full scale measurement, and is thus negligible.

The results of the scan are presented in Fig. 5.9c and 5.9d. The noise present in the scan
is related to the sensor noise, and was removed using a rough threshold filter, with a threshold
set at 2x the noise of an individual sensor. Noise filtering done using a statistical model of the
sensor noise should yield even finer results.
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Chapter 5. Object surface pressure scanning

(a) The surface to be scanned. (b) Scanning phases. The ratio of weight to surface
size is color coded in grayscale.

Figure 5.6 – Sample scan execution on a simulator. As the scanning progresses, the pressure
image gets richer in detail.

(a) An object’s points of support on the pressure
scanner. The object’s bounding box is shown in
red.

(b) Scanning results for the object presented on the
left, at resolutions of 0.1, 0.05, 0.02 and 0.01 of
object size.

Figure 5.7 – Scan simulation performed at different scanning resolutions.
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(a) An example with four crossed circles, two of
which are 2 times heavier than the other ones. Ob-
ject thickness represents weight here, and is other-
wise not representative.

(b) The resulting pressure scan reflects the pressure
differences between the circles, in shades of gray.

Figure 5.8 – Scan simulation for an object with non-uniform pressure distribution inside
its surface in contact with the floor.

Unfortunately, the sensor noise on our current platform (±2.5 kg) did not allow us to scan
objects with a more complex surface (containing more than 10 pixels), as this would have required
them to be too heavy to manipulate.

5.4.3 Open questions

There is no proof that the boustrophedon trajectory is optimal in terms of highest gain of inform-
ation in the lowest possible number of translations of the object. Finding the optimal (quickest)
trajectory for scanning an object with the described sensor in order to find the geometry and
the pressure in each point of its contact surface remains an open question.

It would also be interesting to scan objects that don’t move in a regular fashion, but which
are augmented by an orientation sensor. These objects can be scanned at the moments when
their orientation matches with the one required by the scanner.

Fine-grained noise filtering using a statistical model of the noise is also of great interest
for these platforms. It would allow to greatly improve the accuracy of measurements, enabling
pressure scanning for more lightweight objects.
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(a) A chair being scanned on a scanner made of
4 load-sensing tiles. One tile was covered in mil-
limeter paper, to be used as a location reference.
Translations were performed by hand.

(b) The underneath of the load-sensing tiles used,
showing the load sensors located in the corners.

(c) The pressure scan obtained without noise filter-
ing. Most of the noise is caused by sensor noise.
The highest pressure is encoded as black.

8.1kg 12.2kg

13.4kg 12.9kg

(d) The pressure scan obtained with noise filtering.
The perceived pressure is rendered as an equivalent
weight value at 1G acceleration.

Figure 5.9 – Physical implementation of the pressure scanner.

5.5 Conclusion and perspectives

This chapter presented a new type of high-resolution pressure scanning technique, which employs
sub-pixel shifting on a low-resolution load sensor to generate and assemble a high-resolution
pressure scan. The proposed scanner architecture is composed of 4 load-sensing tiles, on which
the scanned object is translated vertically and horizontally in a boustrophedon manner using
sliding moves. A proof-of-concept was provided, together with a set of experimental results
obtained on a noiseless simulator and on a physical implementation of the scanner.

This system could be used for measuring the weight distribution on surfaces. For instance,
on transportation lanes, it can check for abnormalities in weight distribution between the front
and rear driving axles of vehicles. The same applies for railroad tracks, where it can measure the
weight distribution of the rolling stock. In an industrial setting, this technique could be used for
measuring the density in each slice of a block of metal or other material.

It can also be used as a floor sensor in sensing environments, recognizing mobile objects by
their surface in contact with the ground. In the context of sensing environments equipped with
floors consisting of this type of load-sensing tiles, this scanning system could provide a way for
obtaining footprints, thus offering input data for human recognition algorithms.
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5.5. Conclusion and perspectives

Pressure surface scanning provides a new way of interpreting load data, which is distinct
from the common ground reaction force profile interpretation. It improves weight-based object
recognition, adding information about the floor projection of the object’s shape.

In this chapter we have seen how a network of load sensors can be exploited to perform
low-level data analysis for object recognition. The next chapter will present how to process load-
sensing data on a higher level, in order to detect, track and recognise multiple entities (objects
and humans) evolving on a sensing floor.
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The reconstruction of a model of activities inside an environment requires the localisation,
tracking and recognition of static and mobile entities inside it. A non-intrusive way to do this is
by employing load-sensing floors [3, 110, 138]. The traditional way of recognizing humans was by
first tracking them, extracting gait features and then identify them using clustering techniques
[104] or HMM [3, 110]. However, this type of recognition failed whenever the extraction of gait
features became impossible. This happens when multiple users walk alongside, preventing the
algorithm from correctly segmenting and tracking each of them on the floor.

This chapter introduces an object detection, tracking and recognition technique, which loc-
alises and recognises multiple objects simultaneously by analysing the load they exert on the
floor. As it does not extract gait features for recognition, it does not require fine tracking of
individual persons inside a group. Inspired by computer vision, this technique processes the
floor pressure-image by segmenting the blobs containing objects, tracking them, and recognising
their contents through a mix of inference and combinatorial search, using information about
object weight and size. It can be used to provide a probabilistic input for multi-modal object
tracking and recognition systems. The concept was successfully validated in the context of daily
life activities, inside an ambient intelligence setting, where the non-intrusive load-sensing floor
presented in chapter 3 was used. The experimental scenarii involved multi-object tracking and
recognition on low resolution sensors, crossing of user trajectories, and weight ambiguity between
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objects. The main drawback of this approach is its computational complexity, due to the sheer
number of possibilities of correlating known objects to the observations made. However, this
issue is classically solved using dynamic programming, which is efficient in this case because the
most probable object tracking and localisation solutions can be quickly identified and reused for
further generation and evaluation of object localisation hypotheses.

The rest of this chapter is organised as follows. Section 6.1 presents the state of art in
the domain of tracking and recognition with load-sensing floors. In section 6.2, our load-data
processing approach is exposed, with an emphasis on object detection, tracking, and recognition.
Then, experimental results for the proposed algorithm are presented and analysed in section 6.3.
Finally, directions for future work are evoked in section 6.4. This chapter is based on a paper [9]
published in the IEEE Sensors journal.

6.1 Localisation using sensing floors: state-of-the-art

The sensing floors presented in chapter 2 were mainly designed for the localisation and recognition
of humans and objects. The localisation capability was natively implemented into the floors
through the spatialised aspect of the sensors composing the floor. Whereas object recognition
was explored on high-resolution pressure sensors using the shape of objects’ surfaces (e.g., to
distinguish between walking barefoot and in shoes [96]), human recognition centered around the
extraction and use of gait features.

Addlesee et al. [3] recognise humans using their footsteps’ pressure-profile as data, and using
Hidden Markov Models as classifiers. They also mention the problem of interpretation of spread
loads, which prevents the segmentation of objects that span several tiles on a modular floor. Orr
et al. [104] learn models of humans using the vertical ground reaction force profile, as well as its
derivates: the maximal load value during heel strike and during toe push-off, and the minimal
load value recorded during the weight transfer from heel to toe. Recognition is done using a
Nearest-Neighbor algorithm in a multi-dimensional space.

Similarly, Pirttikangas et al. [110] recognised individual persons walking on the floor by
using the pressure pattern of their gait and HMMs. Middleton et al. [91] employed a binary
pressure-sensing floor, and used features like the stride length, stride cadence, and time-on-toe
to time-on-heel ratio to recognise the subjects using a standard distance metric of similarity.
Qian et al. recognised people on a high-resolution sensing floor (1 sensor per cm2) using features
extracted from their gait in [115].

Yun et al. employed multilayer perceptron networks to identify individuals based on the
extracted gait features (stride length, foot angle, heel strike time, etc.) using their UbiFloorI
and UbiFloorII binary pressure sensors [192, 194, 195, 193].

Vera-Rodriguez et al. employed both spatial features (footprint) [173] and the temporal fea-
tures of footsteps (ground reaction force) [170] to recognise people on a high-resolution pressure-
sensing floor, which employs piezoelectric sensors mounted on a printed circuit board [171].

Schmidt et al. [138] performed object recognition by querying a database of known objects
whenever a change was detected in the total weight of a scene, to see if there exists an entry that
has the same weight as the absolute difference in weight detected. However, this process was
neither probabilistic in the processing of candidate solutions, nor could it detect simultaneous
introductions or removals of objects from the scene.

Concerning object tracking on sensing floors, inspiration can be sought in the field of computer
vision, where techniques such as Bayesian Filtering [48], Joint Particle Filtering [20], Probabilistic
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Multi-Hypothesis Tracking [183], and Joint Probabilistic Data Association Filtering [47] have
been applied for tracking multiple targets. Challa et al. provided an overview of these techniques
in Fundamentals of object tracking [30].

Murakita et al. [98] performed multi-user human tracking on the VS-SS-F InfoFloor system
using the Markov Chain Monte Carlo method. However, the employed floor sensors gave only a
binary information about the occupation of its constituent tiles. Tracking would fail whenever
two or more targets crossed their paths, generating tracking ambiguity. Attempts were made
to solve this problem by fusing the information from the floor sensors with that from on-body
acceleration sensors [63].

Savio and Ludwig identified footsteps on their smart carpet with binary capacitive sensors
using clustering algorithms based on Maximum Likelihood Estimation and Rank Regression
analysis, which allowed the extraction of user’s trajectory [137].

Similarly, Suutala et al. [151] used Gaussian Process Joint Particle Filtering to track humans
on a tiled floor equipped with binary switch sensors. Their algorithm did not use weight inform-
ation for object tracking, as this information was not provided by their hardware. However, in
the case of pressure-sensing floors, we can also exploit the weight information to evaluate the
generated tracking hypotheses, a technique that we propose and exploit in this chapter.

The following sections will present an algorithm that detects, tracks and recognizes objects
by using only the information about their size and weight. It offers a solution to the problem of
interpretation of spread loads, when objects span several tiles on a modular floor. In comparison
to the aforementioned tracking techniques, which exploit only binary data about the presence
or absence of objects, our tracking algorithm exploits the weight data provided by load-sensing
floors, as detailed in Section 6.2.3. As it tracks and recognises objects individually and in
groups, it is more fault tolerant as opposed to algorithms that extract gait features, which
require fine segmentation and tracking of targets. This technique can boost recognition when
used complementarily with algorithms that extract features from the human gait, but can also
serve as a gracefully degraded recognition mode whenever these fail. We have implemented our
object recognition algorithm on the SmartTiles platform presented in chapter 3.

6.2 Methodology: load data processing flow

6.2.1 Similarities with video image processing

Parallels can be drawn between data processing in the context of computer vision and that of
load-sensing floors. The field of view of a camera is analagous to the surface covered by a sensing
floor. The light-intensity bitmap image generated by a camera subjected to light is analagous
to the load image generated by a load-sensing floor under a static weight: the first encodes
intensities of black (for monochrome images), while the second encodes pressure intensities (see
Fig. 6.1). This hints that traditional image processing techniques can be employed to solve
similar problems in the context of load-sensing floors.

The traditional data processing flow in computer vision usually consists of the following
steps: background subtraction, blob detection, blob tracking, and blob recognition. The data
processing flow that we propose for load-sensing floors is similar, and has the following structure:
background subtraction, blob detection using connected-component labeling, and a feedback loop
perfoming blob tracking and localisation of objects. The algorithm receives as input:

• the force values registered by the sensors composing the floor when there is nothing on it
(i.e. the zero values used for background subtraction);
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(a) The light intensity perceived by a photo sensor,
bounded between 0 (black = minimum light level)
and 1 (white = maximum light level).
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(b) The pressure intensity perceived by the floor
can be represented in scalar values, using only a
lower bound (0 = no pressure).

Figure 6.1 – The similarity between floor pressure readings and light intensity recordings
on a monochrome image.

• the values of forces recorded at time t, together with the coordinates of the load sensors
that sensed them;

• a list containing the models of objects known to the floor, and which can be present on the
floor.

The object models have the following structure: object name, mass (in kilograms), and length
(in meters).

6.2.2 Background subtraction and object detection

Objects are detected on the floor by background subtraction and subsequent connected-component
labeling. The background subtraction allows to process the data only from sensors that perceived
force values above zero, filtering out all other sensors. Then, connected-component labeling [40]
links together all sensors that are potentially supporting the same object, thereby forming blobs
(see Fig. 6.2). It uses the length of the largest known object as a proximity threshold: if two
sensors detected pressures over the noise threshold, and if the distance between the sensors is
smaller than the size of the biggest known object, these are linked together, forming a connected
component.

The size of the largest known object is calculated from the list of known object models. After
this phase, any object present on the floor is guaranteed to be contained by one blob at most.
On the other hand, a blob may contain one or several objects.

In our implementation, the sensor network is represented as a graph. The sensors which are
left after background subtraction, are linked using connected-component labeling, forming blobs.
Figure 6.2 shows the set of load sensors embedded into the floor, where each sensor is represented
as a dot. The blobs detected by the floor were then overlayed onto this image.

For simplicity reasons, we will consider that there is no occlusion in our system, which occurs
when a tile malfunctions and stops sending load data, or when a tile is not equipped with sensors.

6.2.3 Object tracking

After the detection of blobs on the floor, we can try to infer the objects located in these blobs
by using their weight. However, the load force detected by the sensors oscillates during activities
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94.3 kg (avg)94.3 kg (avg)

57.60 kg (avg)
AliceAlice

Bob, ChairBob, Chair

Figure 6.2 – Object recognition sample. The floor load sensors are represented as little
black dots. The detected blobs are colored in green. The numbers in black show the
average blob weight, calculated over a time window. The red dots show the position of
blobs’ centers of mass. The text in red shows the best recognition guess.
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Figure 6.3 – The load profile of a person squatting and jumping on a load-sensing tile.
Notice that the load oscillation is centered around the mass of the person, which is 60 kg.
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such as walking or squatting and standing up, which involve body acceleration and deceleration
that are transmitted to the floor (see Fig. 6.3 for an example). Thus, the value of this force
cannot be directly converted into an estimation of an object’s mass. Nevertheless, the value of
this force oscillates around the weight of the object or person, as mentioned in [3]. Therefore,
it is possible to approximate the total weight of objects inside a blob, by calculating the blob’s
average weight over a sliding window of time. This requires blob tracking.

An adequate solution to this problem is to use a tracking technique that takes into consid-
eration the different ways in which blobs can evolve. A blob can appear in the scene, disappear,
remain constant, merge with other blobs, split into several blobs, or it can exchange contents
with another blob (see figures 6.4 and 6.5 for an example of merge and split events). We propose
a method that explores the entire search space of joint blob evolution hypotheses (except for
remote content exchange between blobs, rarely encountered in practice), and sorts these hypo-
theses according to a given criteria. Intuitively, the optimal solution should minimize the total
distance travelled by the blobs inside the scene between two instants of time, as well as minimize
the weight difference between the correlated blobs in two neighboring time frames. We define
penalties for each type of blob evolution, which are used for ranking the tracking hypotheses (see
Table 6.1).

Algorithm 6.1 presents the pseudocode for the exhaustive search of the space of joint blob
evolutions. It contains the functions for recursively generating all possible joint blob evolution
hypotheses, and for adding them to an ordered list. A comparator allows the solutions to order
themselves when adding them to the list of all possible solutions. The list of all possible joint
blob evolutions is ordered and bounded in size, keeping only the top evolution hypotheses, which
is equivalent to performing Beam search.

An appear evolution penalizes the weight of the appeared blob, as well as the distance between
the new blob and the entry/exit location of the environment. Symmetrically, a disappear evol-
ution penalizes the weight of the disappeared blob, and the distance to the exit point. A split
evolution penalizes the difference between the weight of the parent blob and the total weight
of the child blobs. A merge evolution penalizes the differences between the total weight of the
parent blobs, and the weight of the (unified) child blob. In terms of distance, both split and
merge penalize the euclidean distance between parent and child blobs. However, this distance
penalty is considered nil for the parent and child blobs that overlap and occupy the same surface
tiles. (e.g. all the split child blobs that are contained within the surface of the parent blob; all
the merged parent blobs that are contained within the surface of the unified child blob).

The final score of a hypothesis is obtained by first dividing the distance penalty and the weight

Evolution Distance penalty Weight penalty
Appear or
Disappear

⇣
distanceTo(entrance/exit)
avg COP scattering noise

⌘2 h
weight(blob)

avg pressure noise

i2

Merge
non-overlapping

parentsP⇣
distanceTo(childBlob)

average COP scattering noise

⌘2
2

4
(

parentsP
weight(blob))�weight(childBlob)

average pressure noise

3

5
2

Split
non-overlapping

childrenP⇣
distanceTo(parentBlob)

average COP scattering noise

⌘2

2

64
weight(parentBlob)�

 
childrenP

weight(blob)

!

average pressure noise

3

75

2

Table 6.1 – Calculation of penalties for each type of blob evolution
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60.7 kg
Albert
60.7 kg
Albert

10.4 kg
Bed
10.4 kg
Bed

(a) Before the merge. Albert is walking towards the
bed.

70.4 kg
Albert, bed 
70.4 kg
Albert, bed 

(b) After the merge. Albert and the bed are seg-
mented in a common blob, due to their proximity.

Figure 6.4 – A Merge blob evolution, where several blobs unite to form a new common
blob. The new child blob overlaps with the parent blobs.

142.1 kg
Albert, Eva
142.1 kg
Albert, Eva

(a) Before the split. Albert and Eva are segmented
in the same blob, due to their proximity.

81.3 kg
Albert
81.3 kg
Albert

60.4 kg
Eva
60.4 kg
Eva

(b) After the split. Albert walks away from Eva.

Figure 6.5 – A Split blob evolution, where a blob splits into two or more new blobs.
The parent blob overlaps with the new child blobs The (noisy) weight information helps to
identify how the components of the original blob distributed themselves between the newly
appeared blobs after the separation.

penalty by their corresponding average noise values (to have a common unit of measurement for
both values), squaring the results (to prefer small errors over large ones), and then summing
them up to obtain the final mixed score. The joint blob evolution hypothesis with the lowest
penalty is considered to be the most probable one.

The tracking and localisation algorithm proposed in Alg. 6.1 will be evaluated in section 6.3.

6.2.4 Object recognition

Object recognition on load sensing surfaces can be performed by using the weight of objects, or
by using their surface of contact with the floor, as suggested in chapter 5. Recognition by weight
is trivial when tracking single objects or when performed on high resolution pressure sensors,
that can easily segment objects on the floor. However, the problem is less trivial when track-
ing multiple entities, each with multiple points of support, that interact and perform dynamic
activities on noisy, low-resolution sensors.

Background subtraction, connected-component labeling, and blob tracking, described in the
previous sections 6.2.2 and 6.2.3, reduce the problem to recognizing the contents of blobs of
known weight, which support one or more objects in their entirety. This allows us to model the
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30 kg65 kg

Bob (90 kg)

Bookcase (30 kg)

Chair (5 kg)

Alice (60 kg)

Figure 6.6 – Object recognition modeled as a Multiple Knapsack Problem.

recognition task as an instance of a Multiple Knapsack Problem [88], interpreting the weights
of detected blobs as knapsacks’ volumes, that have to be optimally filled with known objects’
weights. This is based on the hypothesis that the average weight of a blob is optimally matched
by the weights of the objects it contains (see Fig. 6.6).

This can be formalised as follows:

• O is the set of known objects;

• P(O) is the set of all combinations of known objects (it is the power set of O);

• C = {blob1, . . . , blobn} is the set of all blobs observed at a given time t. Each blob is defined
by its location and weight.

All the possible assignments of objects to blobs are considered and ranked in ascending order,
by using the total mismatch in weight between the blobs and the objects assigned to them (see
Fig. 6.7). For each hypothetical assignment of objects to blobs, these mismatches are squared
and then summed, so as to give preference to small mismatches, rather than large ones. The
weight mismatch (or the penalty) of an assignment of objects to blobs is given by:

total blobsX

id=1

⇣
weight(blob

id

)� weight(contents (blob
id

) )
⌘2

(6.1)

where contents(blob) returns the set of objects contained in blob, according to a given assignment.
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Algorithm 6.1 – Object tracking algorithm

// Generate recursively all possible blob
evolution hypotheses

GenerateAllPossibleBlobEvolutionHypotheses
(timeStart, timeEnd)

{
Extract the blobs present at timeStart.
Extract the blobs present at timeEnd.
Instantiate an empty list of joint blob

evolution hypotheses.
Create a joint blob evolution structure,

which will be used to loop through the
space of solutions.

Recursively fill this joint blob evolution
structure, by associating to each
initial blob a set of its child blobs.

Recursively generate all possible
solutions, and add them to the list of
joint blob evolution hypotheses.

Sort the list of joint blob evolution
hypotheses, using the defined tracking
evaluation function.

Return this list of joint blob evolution
hypotheses.

}

// This function associates to each initial
blob a set of its child blobs

FillEvolutionSolution(
int initialBlobIDToEvolve,
int totalInitialBlobs, int totalFinalBlobs,
long timeStart, long timeEnd,
Vector<{Vector<Integer>}>

initialBlobEvolutions,
List jointBlobEvolutionHypotheses

)
{

If all blobs from timeStart have been
assigned blobs from timeEnd, then
generate a joint blob evolution
hypothesis.

Else
- Attempt all the possible Merge

evolutions for the current blob from
timeStart, and call the next
recursion level on the next blob.

- Attempt all the possible Split
evolutions for the current blob from
timeStart, and call the next
recursion level on the next blob.

- Attempt the Constant and Disappear
evolutions for the current blob from
timeStart, and call the next
recursion level on the next blob.

}

// Generate a solution from a pre-filled list
of blob evolutions.

GenerateABlobEvolutionHypothesis(
int totalInitialBlobs, int totalFinalBlobs,
long timeStart, long timeEnd,
Vector<{Vector<Integer>}>

initialBlobEvolutions,
List<JointBlobEvolution-Hypothesis>

topScoringJointBlobEvolutionHypotheses
)

{
Transform the list of correspondences of

blobs from timeStart to blob from
timeEnd into a set of blob evolutions,
each affecting one or more blobs.

For all the blobs from timeEnd that have
not been assigned any parent blobs from
timeStart generate Appear evolutions.

This set of blob evolutions forms a joint
blob evolution hypothesis.

Evaluate the hypothesis, and add it to the
list of hypotheses.

}
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Figure 6.7 – All the possible assignments of known objects to blobs are evaluated and
ordered according to how well the blobs are matched in terms of weight by their contents.
The assignment having the minimal weight mismatch is considered as most probable.
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30 kg60 kg 90 kg

Bookcase (30 kg)

Alice (60 kg)

Bob (90 kg)

Figure 6.8 – The optimal assignment of objects to blobs cumulates the minimal penalty
over time.

The size of the search space, i.e. the number of possible assignments to analyse, is given by:

(number of blobs + 1)(number of known objects) (6.2)

As highlighted by eq. 6.2, there is a risk of a combinatorial explosion when performing this
exhaustive search. However, most of these hypotheses can be quickly discarded by a branch and
bound algorithm. In addition, by working only on the localisation hypotheses inferred from the
localisation of objects at the previous timestep (as detailed below), the search space gets reduced
enough to be dealt with in real time.

Given the contents of blobs in the previous timestep, and given a hypothesis on how the
blobs have evolved inside the scene from the previous to the current timestep, we can infer the
contents of blobs at the current timestep. However, this requires bootstrapping the knowledge
about the contents of blobs at some initial time t

start

.
As the blobs inside the scene evolve, the candidate recognition solutions will cumulate pen-

alties over time. The candidate solution with the minimal total penalty over time is considered
to be the best guess (see Fig. 6.8).

The result of the recognition algorithm is a list of assignments of objects to blobs, ordered
according to their cumulated penalties. Intuitively, the assignment having the minimal penalty
is considered to be the most probable one.

For probabilistic reasoning algorithms, a measure describing the probability for an assignment
of not being the correct solution can be introduced: this is the penalty of the assignment,
normalized using the sum of all assignments’ penalties (see eq. 6.3).

P (¬Assignment
k

) =
Penalty(Assignment

k

)
total assignmentsP

id=1
Penalty(Assignment

id

)

(6.3)

6.3 Experiments

We evaluate our approach by running experiments with humans performing daily life activities:
doing the morning routine (waking up in the bed, using the toilet, having breakfast), and receiving
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(a) The bedroom and living room. (b) The living room, the bathroom and the
kitchen.

Figure 6.9 – The prototype apartment with the tiled sensing floor.

a visitor (opening the door, leading the visitor into the living room, having a chat while seated,
eating a cake, leading the visitor to the exit). All scenarii involve multi-object detection, tracking
and localisation. The experiments took place in our prototype apartment (Fig. 6.9).

During the whole duration of these activities, the sensing floor had to localize the persons
and objects inside the scene. The center of pressure (COP) of a blob was considered as the
location of all the objects contained by this blob. An approximation of the ground truth was
provided by a Qualisys 9 motion tracking system (tracking error below 1 mm), which recorded
the vertical projection of markers placed on objects’ approximate centers of mass. Each human
had a reflector placed on his waist, so that its vertical projection onto the ground plane would
approximately correspond to his COP (fig. 6.10b and 6.11a).

The experimental results are presented as measurements of the localisation precision. These
measurements were made only when both localisation data were available: the approximate
ground truth given by the motion tracking system, and the localisation provided by the floor.
This explains the interruptions in the curves showing the localisation precision.

These error measurements depend on the size of the segmented blobs, in which the objects
find themselves. For instance, interacting objects will tipically be segmented into blobs bigger
than those containing individual objects. Objects segmented together will be further away from
their common center of pressure than an isolated object is from its own center of pressure. Thus,
although objects may be imprecisely located inside the segmented blob that contains them, the
localisation of regions with obstacles is precise. Therefore, errors on object localisation inside
their englobing blobs have a limited impact on robotic navigation and obstacle avoidance tasks,
as robots can still identify the zones that have to be circumnavigated.

6.3.1 Morning routine scenario

The morning routine scenario involved a person performing a set of daily life activities, such
as: sleeping in bed, using the toilet, having breakfast, and leaving the house (see Fig. 6.10).
The challenges of this scenario included tracking multiple interacting entities on a low resolution
sensor, as well as the presence of ambiguity between objects of similar weight.

The scenario unfolded itself as follows: 8 s — the human enters the scene, 14.5 s – 32 s the
human lies on the bed, 35 s – 48 s the human sits on a chair (which acts as a toilet), 50 s — the
human grabs a plate and goes towards the chair (near the table), 56 s–65 s the human sits on the
chair at the table and has breakfast, 70 s — the human puts the plate back to its original place
(passing near the bed), 72 s — the human leaves the scene.

9http://www.qualisys.com/
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The measured localisation error, obtained using the COP approximation given by the motion
tracking system, is expected to be higher than the real localisation error. Unlike robots, humans
are flexible, preventing us from calculating an approximation of the COP using the least squares
method, that would minimize the overall measurement error (as we did when calculating the
baseline precision for the localisation of mobile entities, in Section 3.2.7).

The localisation errors for the human (average error 13 cm) and the bed (average error 19 cm)
are shown in Fig. 6.10c. When the person interacts with the bed, the two are segmented together
in a single blob, with the COP closer to the heavier human, which explains his better localisation.
The localisation error is the biggest at the beginning and end of each interaction (14 s – 32 s lying
in bed, 65 s – 70 s passing near the bed), when the two entities begin approaching each other,
forming an elongated blob. The localisation error is at its lowest during the close interactions
between objects, when the blob regrouping the interacting objects is compact. We observe 15
cm of localisation error for the bed when it is at rest, and a higher error during interactions,
which depends on the proximity with the interacting entity and its relative weight. Occasional,
short-time errors in the correct assignment of objects to blobs generate localisation errors, seen
as spikes in Fig. 6.10d. These errors are due to ambiguities between objects of similar weight.
The spikes in the chair localisation error are due to the human proximity, having as effect the
segmentation of the two in a single blob. This happened when the human sat on the chair (35 s
– 48 s, and the again between 56 s and 65 s).

Fig. 6.10d shows the localisation errors for lightweight objects, such as the chair (5.5 kg) and
the dish with the breakfast (4.9 kg). A heavy plate was chosen to overcome the noise threshold
of the floor sensor. We observe the same effects as previously described: the localisation error
increases in the proximity of humans, due to their segmentation in a common blob, with the
COP closer to the human.

6.3.2 Receiving a visitor scenario

The receiving a visitor scenario involved a person hosting someone in his house. The guest would
be greeted at the door by the host, enter the living room of the apartment, take a seat, wait for
the host to bring something to eat, have a chat with the host, and then leave the house, The
challenge was to track and locate multiple interacting persons with a low resultion sensor.

The scenario unfolded as follows: 0-20 s the host walks through the house, walking near
chairs; 16.5 s the guest enters the house, sharing a handshake with the host; 22 s — both have a
seat; 35 s — the host stands up and takes the plate; 43 s — the host hands the plate to the guest;
48.5 s — the host seats back on his chair; 58 s — the guest stands up and prepares to leave; 60 s
— a farewell handshake; 62.5 s — the guest exits the house; 64.5 s — the host follows him suit.

The localisation results are shown in Fig. 6.11c. The average localisation error for the in-
teracting persons is around 20 cm. The drop in the localisation precision occurs when the two
persons walk or stand nearby, occupying a contiguous space in terms of tiles, which prevents
them from being segmented separately. These close interactions occur when passing the plate to
the guest (at 43 s), and shaking hands (at 16 s during entrance and at 60 s while leaving). Again,
the measured localisation error for humans is expected to be higher than the real localisation
error, as we could not approximate the position of the human’s COP with the least squares
method, as we did it with a rigid robot when calculating the baseline of the floor’s localisation
error in Section 3.2.7.
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(a) An image from the Morning routine scen-
ario.

(b) A frame from the Morning routine scenario, as seen from
the floor’s perspective.
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(c) Localisation error for the Morning routine scen-
ario. During each interaction between the person and
the bed, the center of pressure is located between the
interacting entities, closer to the heaviest one (the hu-
man, in this case). The spikes between 10-30s, and
between 62-68s are caused by the human approaching
and distancing from the bed during the interactions.
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(d) Localisation error for the lightweight objects in the
Morning routine scenario. Occasional, short-time er-
rors in the correct assignment of objects to blobs gen-
erate the thin spikes in the localisation error. These
are due to ambiguities between objects of similar
weight. The spikes in the chair localisation error are
due to the human proximity, having as effect the seg-
mentation of the two in a single blob.

Figure 6.10 – The Morning routine scenario

6.4 Conclusion and perspectives

This chapter presented a technique for detecting, tracking and recognising objects on load-
sensing floors, using objects’ weight as discriminative feature. The proposed object segmenta-
tion algorithm is a variation of connected-component labeling, inspired by the computer vision
community, with the additional property of having entire objects segmented into blobs. This
allows the interpretation of spread loads, when objects span several tiles on a modular floor. The
proposed tracking algorithm considers the different ways in which blobs can interact, identifying
the most probable hypotheses for the way the blobs have evolved between two timesteps. This
allows to infer the objects contained in the segmented blobs, given their contents at the previous
timestep, and given a hypothesis on the evolution of blobs. The resulting possible assignments of
objects to blobs are ranked by the mismatch between the weight of blobs and of objects assigned
to them. This is reminiscent of the multiple knapsack problem, with blobs acting as containers
that have to be optimally filled with known objects, identifying the optimal solution using the
Least Squares method.
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(a) An image from the Visitor scenario, as
seen from a camera’s perspective.

(b) A frame from the Visitor scenario, as seen from the floor’s
perspective.
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(c) Localisation error for the scenario with a person hosting a visitor in his house. The drop in the localisation
precision occurs when the two persons walk or stand nearby, occupying a contiguous space in terms of tiles, which
prevents them from being segmented separately. The average human localisation error is 20 cm.

Figure 6.11 – The Visitor scenario

The presented algorithm works independently of the floor resolution (i.e. density of sensors
per m2, size of the floor tiles). However, the bigger the tiles are (the lesser the floor-image
resolution is), the coarser will be the results of the algorithm performing object detection and
segmentation. Coarser object segmentation results lead to more ambiguity in object recognition
and localisation. Therefore, it would be interesting to have a prototype with a higher sensor
density (smaller tiles in our case), as well as less noisy sensors.

The whole localisation algorithm was evaluated in experiments with humans performing daily
life activities: executing the morning routine, and receiving a visitor. Challenges included the
segmentation, tracking and recognition of multiple interacting entities using a low resolution
sensor, as well as the disambiguation between combinations of objects of similar weight. The
average error for human localisation was approximately 20 cm. The result of this algorithm can
be modelled as a probability distribution over all possible assignments of objects to the blobs
detected on the floor. This allows for easy integration of this algorithm into a multi-modal object
recognition architecture. This technique can boost recognition when used complementarily with
algorithms that extract features from the human gait, but can also serve as a gracefully degraded
recognition mode whenever these fail.

The main impact of this work is allowing the detection, tracking and recognition of humans
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inside their habitat for ambient intelligence applications. These can include the targeted collec-
tion of biometrical data for medical analysis and continuous diagnosis of human’s state of health,
and the generation of occupancy maps for robots functioning in the same environment.

6.4.1 Future work

Future work will include fine-grained tracking, obtained by assigning each detected object to
a separate layer. This should allow to continuously update the set of objects composing the
background, and would consequently improve segmentation. We are also working on labeling
the interactions between humans and objects, which can be roughly observed using this technique.
We also plan to use this data to generate logs detailing the activities performed by a person during
the day: how many times a person got out of bed, how many steps did she make, how many
persons are there in the room, etc. These activity plots are useful in hospitals and retirement
homes, as they allow to trace the overall health state of a patient, or to detect situations when
the monitoring system should be turned off to respect human privacy.

It would also be interesting to distribute the computation of the object tracking and local-
isation functions presented in this chapter, making use of the processing units on board the tiles.
This would allow the algorithm to scale well with an increase of the surface of the floor.

This chapter concludes Part II, which shows some capabilities of the load-sensing floor as an
individual sensor. In Part III, we will see how the floor can be combined with the robotic actu-
ators of an environment with embedded ambient intelligence. In particular, we will demonstrate
how the sensing floor can provide support in navigation and exploration to autonomous robots
evolving on it.
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Integrated into an ambient intelligence system with robotic actuators, a floor pressure sensor
can provide safe navigation routes for robots by creating 2D occupancy maps of the environment.
It can also track and locate robots inside this map, providing an alternative to Simultaneous
Localization and Mapping (SLAM). This gives room to the simplification of robots’ structural
design, potentially rendering some sensors redundant. This non-intrusive alternative to SLAM
is explored in this chapter.

7.1 Introduction

In order to navigate through an environment, a robot has to learn a representation of the world
[163] and localize itself within it [165], i.e. solve the SLAM problem [41, 93]. As precise localisa-
tion is important for matching and merging new map scans with the existing map with minimal
errors, a high-precision sensor is usually employed, such as a light detection and ranging (LiDAR)
sensor. This precision equipment can make up for half the cost of a small robot. Externalising its
functions could allow to significantly reduce the manufacturing costs of robots. The computing
effort to calculate solutions for the SLAM problem can be done on-board by mobile robots [163],
or off-board, exploiting the surrounding environment’s processing capabilities [15, 84, 167].
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Figure 7.1 – An autonomous robot navigating on a pressure sensing floor.

This chapter introduces an environmentally-computed navigation service, provided by an
environment equipped with a load-sensing floor. It uses the information given by sensing and
communicating floor tiles, in order to generate a maximum clearance roadmap (also known as a
Voronoi diagram). These Voronoi diagrams can then be used by robots to plan their navigation
through the environment [34], using the shortest of safe paths [51], smoothing path-planning
algorithms [99], and multi-agent path planning [149]. Our off-board navigation service provides
the core functionalities of localisation and mapping for robotic navigation, supplying a metric
map of the environment and localisation within it.

The navigation service relies on two modules: a first one dedicated to occupancy computation
and client localisation, and a second module for computing a maximum clearance roadmap from
the occupancy map and providing it to the client entity. The computation of the Voronoi diagram
is impeded by the desynchronisation between the tiles composing the floor. Synchronised Voronoi
diagram computation algorithms, either parallel or sequential, process the cells composing the
environment in a predefined order. Under this assumption, if a cell fails to communicate its state,
the computation may fail to converge to the correct result. We overcome this aspect by using
an asynchronous, distributed algorithm for computing Voronoi maps on 2-dimensional grids,
introduced by Kaldé et al. , our research team colleagues, in [67]. This approach for computing
and maintaining safest navigation paths is self-organizing, which enhances robustness to noise,
adaptivity to changes, and scalability to larger sensing networks.

Given that it perceives everything from the ground plane, the floor does not suffer from
occlusion, as compared to on-board sensors that the robot may have. It can recognise users
and objects by the pressure they exert on the floor, and keep a larger distance from humans
when navigating. Our goal is to facilitate navigation for autonomous machines, like mobile
robots, autonomous wheelchairs, and even for blind handicapped humans wearing audio guidance
devices.

By externalising core functionalities as localisation and mapping into a service provided
by the environment, we open the doors for low-cost mobile robots that have limited on-board
sensing and processing capabilities [12, 68]. This allows a robot to ship with simple sensors,
actuators, enough computation power dedicated to its specific task, and a communication module
for querying services provided by the environment.

The remainder of this chapter is organised as follows. Section 7.2 presents the related work on
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sensor networks for roadmap computation. Section 7.3 provides the details of our methodology,
explaining each element of our data workflow, from the raw load-sensors’ output to the final
navigation roadmap. In Section 7.4, we define our experimental protocol and discuss a real-
life scenario implemented on a load-sensing floor. We conclude this chapter with some remarks
regarding planning using a roadmap computed by a heterogeneous sensor network, and provide
ideas for future work. This chapter is based on a paper in progress [10].

7.2 Related work

This section provides an overview of ambient intelligence systems, which offer services that exploit
their sensor networks. According to a 2010 survey by Huang and Gartner [62] on mobile indoor
navigation systems offering location based services, all such systems provided positioning, route
calculation and route communication services.

In the sensor network community, an early application to robotic navigation was proposed by
Li et al. [84], in which spatially localized sensors detected hazardous situations around them, and
then broadcasted this information through the network using flooding techniques. Shortest and
safest paths were distributively computed using distances measured in hop counts, and potential
field techniques inspired from robotics, respectively. Unfortunately, the algorithm did not scale
well due to prohibitive communication costs.

In the robotic community, Batalin et al. [15] worked with a network that served as the sensing,
computing, and communicating medium for the robots, which provided only actuation. The path
planning problem was formulated as a Markov Decision Process. They proposed a probabilistic
navigation field, computed by a distributed value iteration algorithm over the network, which
could find near-optimal safe paths. This work assumed that states and transitions are computed
a priori to maximize the expected utility for reaching a goal state.

Verma et al. [174] investigated credit-based navigation fields for hybrid sensor networks, where
sensors on mobile platforms were guided by static sensors to detected events. The assignment
of mobile sensing units to events that had to be investigated was done according to criteria of
distance to the event, the power of each mobile sensing unit, and the evolution of visual coverage.

Buragohain et al. [26] proposed a computation of near-optimal safe paths (with minimal ex-
posure to danger, or shortest feasible paths). Paths were planned on demand using a breadth-first
search in a subgraph of the environment. This work was inspired by mesh generation algorithms
from the computer graphics community. Uniform and adaptive skeleton based roadmaps were
proposed. Hovewer, no moving obstacles were considered.

Similarly, Alankus et al. [5] introduced an adaptive embedded roadmap for navigation, where
paths are evaluated according to their length and maximum danger level. Reduced commu-
nication and path planning costs were achieved thanks to look-up tables storing up-to-date
information.

Probabilistic frameworks for computing roadmaps for path planning have also been invest-
igated. Yao and Gupta [189] proposed a distributed path-planning algorithm where each node
creates a local probabilistic roadmap and computes a part of the plan using Dijkstra’s algorithm.

Voronoi-based roadmaps were studied by Wang et al. [181]. They stated that selectively
updating the roadmap structure can also reduce the communication overhead while providing
safest routes for navigation at the expense of path length.

We follow the previously mentioned work, calculating adaptive roadmaps based on Voronoi
diagrams. The innovation in our approach stems from using load-sensing floors to detect and
track objects, and to construct occupancy maps. We then compute a Voronoi diagram which
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serves as roadmap, with passages equidistant to obstacles’ borders, using the algorithm presented
by Kaldé et al. in [67]. This algorithm can adapt to changes in the occupancy map, without
recalculating the entire Voronoi diagram. Shortest and safest paths can then be computed on
these roadmaps, using any state-of-the-art planner.

7.2.1 Sensing floors for robotic navigation

Although localisation of objects using sensing floors has been an active research topic since the
1990’s, as described in Chapter 6, Section 6.1, no effort was made to exploit the ability of floors
to generate occupancy maps for robotic navigation.

In the closest work of such type, Khaliq and Saffiotti [70] used a floor with embedded RFID
tags to guide robots to pre-defined goals in the environment, using a stigmergic approach. How-
ever, the distances to obstacles had to be hard-coded in the RFID nodes, disallowing any modi-
fication of the environment, as it would provoke incorrect path calculations.

In comparison, we show how load-sensing floors can continually update their occupancy maps,
by using the information about the weight located on the floor. We need not emphasize that
up-to-date maps are critical for safe navigation.

For the detection and localisation of objects evolving on the floor, we used techniques stem-
ming from computer vision, such as background subtraction and connected-component labeling.
These techniques can be almost readily applied to pressure-images, as they are analogous by
their construction to photo-images (the former represent amounts of pressure, while the latter
represent amounts of light). Object tracking was performed using an exhaustive search method,
minimizing the discrepancy in weight and position between correlated objects in two sequential
time-frames, as it was described in Chapter 6.

7.2.2 Distributed computing of the discrete Voronoi diagram

A Voronoi diagram identifies the regions that are equidistant from a given set of obstacles,
according to some distance metric (e.g. Euclidean, Manhattan, or Minkowski distance) They are
used in robotics to identify the safest paths from an obstacle-avoidance standpoint.

Two techniques exist for computing Voronoi diagrams. The first comes from the field of
Cellular Automata, where these diagrams are used to compute the Medial Axis Transform using
the grassfire transform [21]. These Voronoi diagrams were then employed for path planning [168,
2, 1]. The second technique comes from the field of Image Processing, where Voronoi diagrams
are computed using distance transforms [132, 46] and sequential rules applied locally on each
cell.

Kaldé et al. [67] developed a distributed computation of Voronoi diagrams using an asyn-
chronous cellular automaton, employing neighbourhood relationships for cells inside a Minkowski
1-norm distance. This chapter continues their line of thought, combining the obstacle-detection
service provided by a discretized load-sensing floor with the continuous distributed computation
of Voronoi diagrams for robotic navigation. In the rest of this chapter, we will refer to Voronoi
diagrams as defined in [103].

7.3 Methodology

This section presents the components of our roadmap extraction service. The problem is separ-
ated in two parts: occupancy grid calculation and extraction of navigation routes, which allows
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a modular design. We then introduce the methods employed for the generation of the occupancy
map, as well as for the calculation of the maximum clearance roadmap.

7.3.1 Environmental data flow

The data flow employed in our contribution is illustrated in Fig. 7.2. The raw data perceived
by the sensor network serves to detect the objects occupying the environment. The generated
occupation grid is then used to calculate navigation routes. The computation of navigation routes
is done by letting the tiles composing the sensing floor to distributively calculate a Voronoi
diagram separating the detected obstacles. These two processes are detailed in the following
sections.

Sensor
data

1 Floor data aggregation�

2 Blob extraction�

3 Occupancy map generation

Occupancy
data

1 Voronoi site labeling�

2 Region computation�

3 Edge extraction

Navigation
data

Figure 7.2 – Data Workflow diagram

7.3.2 Detection of obstacles and mobile objects using the sensing floor

We implement our navigation service on a network of load sensors embedded in the floor of an
appartment, presented ealier in chapter 3. We use the object detection and tracking capabilities
of the floor, described in chapter 6, to identify the occupation state of each tile. This allows
to generate at each timestep a binary image describing the occupancy state of the entire floor.
In addition, we label the type of objects occupying the floor, discriminating between static and
mobile objects (see Fig. 7.3). This is useful for motion planning, as it allows to leave more space
around mobile entities when navigating.

42,60 kg
Bookcase
(static)

42,60 kg
Bookcase
(static)

72,35 kg
Chair, Michael
(dynamic)

72,35 kg
Chair, Michael
(dynamic)

Figure 7.3 – Localising and recognising objects: discriminating between static and mobile
entities.

7.3.3 Distributed line Voronoi diagram computation

Although computing Voronoi diagrams is not novel, computing them using information provided
by a sensing floor is innovative. The difficulty lies in calculating the diagram asynchronously, as
the tiles of the sensing floor do not guarantee synchronisation. The tiles can fail to send data,
and the data packets can be delayed by the network and thus be unavailable for a centralised
computation of the Voronoi diagram. Calculating and constructing the diagram in a distributed
manner allows to avoid the inconvenients of a less robust, centralised system. Kaldé et al.
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introduced in [67] an algorithm that can distributively compute and maintain an up-to-date Line
Voronoi Diagram in a discretised environment with cells aware of their occupancy state. This is
the solution we have implemented on our sensing floor.

The algorithm consists of three steps. First, during Voronoi site labeling, it labels the edges of
obstacles. Then it computes the Voronoi regions by propagating the labels of each obstacle edge
through the environment, similar to a forest fire propagation. Finally, the cells whose neighbours
have a different set of closest obstacles identify themselves as frontiers between Voronoi regions.
These three steps are detailed below.

Voronoi site labeling

The component labeling procedure identifies the horizontal, vertical and diagonal edges of an
obstacle. Cells belonging to the same edge have to obtain a common identifier. To achieve this,
each cell detects its edge pattern among the possible mask classes presented in Fig. 7.4. Then,
the cells check their neighbours’ states, to detect conflicting situations, in which case a standard
priority resolution is applied.

I (1) II (4) III (2) IV (4) V (4) V I (1)

Figure 7.4 – Six classes of site patterns, together with the number of patterns within the
class. The dark cells are cells that have identified themselves as occupied, while the white
cells have identified themselves as free (due to the absence of pressure on the tile).

Voronoi region computation

To compute the Voronoi regions, we propagate information about the distance to the sites
(obstacles) through a so-called informative gradient. This gradient contains information about
the name of the closest site and the distance to it. This allows cells to determine the Voronoi
region to which they belong. Each cell updates its distance to the closest obstacle according to
the formula:

Distance to closest obstacle =

⇢
0, if the cell is declared as occupied
min(neighbors’ distance to closest obstacle) + 1, otherwise.

Together with the distance to the closest obstacle, the cells transmit the identifier of the
closest obstacle. Whenever there are multiple obstacles at minimal distance, their identifiers
are merged into a set. The following rule defines how the identifiers of closest obstacles are
propagated:

Closest obstacle identifier =
⇢

Id
cell

, if the cell is declared as occupied
{set of Ids of closest obstacles}, otherwise.

Fig. 7.6 exemplifies the propagation of the gradient containing the distance to the closest
obstacle and its identifier.
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(a) The gradient of distances to the closest obstacle.
The obstacles are colored in black. The numbers
indicate the distance to the closest black cell, using
a Von Neumann neighbourhood.

11∕26 1111 1111 1111 1111 1111

2626 11∕26 1111 1111 1111 1111

2626 2626 11∕26 1111 1111 1111

2626 2626 2626 11∕26 1111 1111

2626 2626 2626 2626 11∕26 1111
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(b) The result of the propagation of obstacle iden-
tifiers over the gradient of distances to the closest
obstacle. All the cells that share the same set of
identifiers of closest obstacles are part of the same
Voronoi region. The frontiers between the regions
are formed by cells having neighbours with different
sets of identifiers.

Figure 7.5 – The propagation of the gradient with the distances to the closest obstacles
and their identifiers. Source: Kaldé et al. [67]

Voronoi boundaries extraction

The boundaries of Voronoi regions are formed by the empty cells, whose closest obstacles’ iden-
tifiers are different from their neighbours’ closest obstacles’ identifiers. Thus, an empty cell
possessing a different identifier from at least one of its neighbours will declare itself as a bound-
ary cell. The boundary cells are at the maximum distance from the closest obstacles, and are
therefore the safest ones for navigation. The function below defines when a cell considers itself
as being part of a boundary between Voronoi regions:

Is this cell a boundary cell?
⇢

1, if a neighbour’s set of closest obstacles’ Ids differs from yours
0, otherwise.

(a) (b) (c)

Figure 7.6 – Samples of calculated thick bisectors (in grey) for grids with obstacles (in
black). Source: Kaldé et al. [67]
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Chapter 7. Providing roadmaps for autonomous robotic navigation

Roadmap computation example

We can now compute a Voronoi Diagram in a distributed manner, in an asynchronous grid of
cells, as in the case of a tiled load-sensing floor. Fig. 7.7 provides an example of the entire
process for calculating a roadmap of the safest routes. The obstacles, that are the sites in the
Voronoi diagrams, are represented as black cells in Fig. 7.7a. The gradient of distance to the
closest obstacle, calculated in a distributed fashion, is shown in Fig. 7.7b. The identified Voronoi
regions are shown in Fig. 7.7c, where cells belonging to the same region share the same color.
Finally, the computed boundaries between the regions, that form the safest routes, are shown in
Fig. 7.7d.

(a) Map with obstacles
shown as black dots.

(b) The corresponding
gradient of distance to

closest obstacle, in
grayscale.

(c) The extracted
Voronoi regions.

(d) The boundaries
between Voronoi regions

are the safest routes.

Figure 7.7 – The extraction of a discrete Voronoi diagram

Once the Voronoi diagram of the environment has been computed, it can be transmitted
to robots, that can use it for planning their navigation through the environment [34]. Shortest
paths can be identified over the safest routes [51], that can also be smoothed for robots with
limitations on the minimal turning radius [99]. In dynamic, crowded environments and in settings
with multiple moving agents, multi-agent path plannign algorithms can be used [149].

7.4 Proof of concept

7.4.1 Equipment

The described roadmap-providing service was implemented on the Inria tiled load-sensing floor,
presented in chapter 3. Communication between the occupancy map and navigation map mod-
ules, described in Fig. 7.2, was implemented using ROS middleware [117]. Occupancy data is
transmitted in string format, which contains a JavaScript Object Notation (JSON) structure,
making the messages easy to parse using standard tools. The resulting navigation maps are
published in a corresponding ROS topic. Clients communicate with the map service providing
the maps using ROS via a wireless connection.
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7.4.2 Experimental scenario

The experimental scenario involved a person walking through the apartment equipped with a
sensing floor, inside which several static objects were placed: two chairs and a bookcase (see
Fig. 7.8a). The system first detects and identifies the entities present in the scene (e.g., objects,
humans), and labels them accordingly (Fig. 7.8b). It then creates an occupancy map, indicating
which obstacles are static and which are mobile. This information is then used to calculate the
Voronoi diagram, which provides the roadmap with the safest navigation routes. This roadmap
can be finally transmitted to the clients of the system, together with information about their
location on the map. Figure 7.8c presents the roadmaps generated in our scenario, while the
person was walking through the room.

Recognising and thus differentiating between static and mobile obstacles is useful for select-
ively updating the maximum clearance roadmap only around active entities in the scene. This
service also reduces the planning complexity for the client entities, as instead of working on a
full-scale map of the environment they are limited to the roadmap with the safest routes.

7.5 Conclusion and perspectives

This chapter introduced a service offered by a sensing environment, which provides its clients
up-to-date roadmaps of the safest routes in the environment. It is capable of tracking and
recognizing the entities that evolve inside its sensing perimeter. Such a navigation aid is useful
for autonomous robots with limited on-board sensing or computing capabilities. The Voronoi
diagrams can be used for planning the navigation through the environment. The ability of
the floor to generate an occupancy map, together with its capacity to locate the clients inside
it, could ultimately replace the SLAM module typically required by autonomous robots. This
implies that robots with a simpler design can be deployed in environments that provide such
navigation services.

From a practical standpoint, it would be interesting to provide a fully distributed service,
by decentralising the computation of the occupancy map, as its constituent algorithm for ob-
ject segmentation is currently centralised. Rendering the system real-time is another feasible
enigneering task.

Our long term perspective is to explore the limits of the ubiquitous computing paradigm,
aggregating data from heterogeneous static and moving sensors for the construction of distributed
services. More precisely, we plan to integrate the load-sensing floor with depth cameras, audio
sensors (microphone grids), proximity sensors, detectors of discrete events (opening/closing of
doors), etc. Ultimately, the sensor fusion problem will force the development of new frameworks
for the aggregation of heterogeneous sensing data.

In the next chapter, we will further develop the concept of a floor providing aid to mobile
robots, by showing how it can support stigmergic algorithms for environment exploration.
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Chapter 7. Providing roadmaps for autonomous robotic navigation

(a) Setting of the dynamic experience, with a human
present in the scene.

6,17 kg
Chair
6,17 kg
Chair

74,52 kg
Mihai, Chair
74,52 kg
Mihai, Chair

25,60 kg
Bookcase
25,60 kg
Bookcase
25,60 kg
Bookcase
25,60 kg
Bookcase

(b) Occupancy data obtained by the load
sensing floor. Weight-based object recog-
nition allows to identify the type of each
obstacle.

(c) The Voronoi diagrams extracted while a person entered the scene through the bottom-right corner, sat on
a chair, and left the scene through its top-right side. Dynamic and static obstacles are represented as red and
orange squares, respectively. The safest navigation routes are shown in green.

Figure 7.8 – The dynamic case experience. The low resolution of the Voronoi line diagram
is due to the low density of sensors in the tiled sensing floor.

100



8

The floor environment as provider of
stigmergy for robotic bio-inspired

algorithms

Contents

8.1 Distributed exploration of unknown environments . . . . . . . . 102
8.2 Exploration of unknown environments: state of the art . . . . . 102
8.3 The tabu-list approach for exploration: Brick&Mortar . . . . . 104
8.4 Brick&Mortar Improved . . . . . . . . . . . . . . . . . . . . . . . . 107

8.4.1 Accelerating the mutual exclusion algorithm . . . . . . . . . . . . . 107
8.4.2 Post-exploration rendez-vous . . . . . . . . . . . . . . . . . . . . . . 109
8.4.3 Experimental results of simulations in 2D environments . . . . . . . 110

8.5 Brick&Mortar Improved with Long Range Vision . . . . . . . . 116
8.5.1 Experiments with agents with long-range vision . . . . . . . . . . . 120

8.6 Future work on distributed exploration algorithms . . . . . . . . 121
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

In the previous chapter we have seen how sensing floors can help autonomous robots navigate
through the environment, by providing them with roadmaps and localisation. In this chapter,
we will explore how environments that are able to store information can help autonomous ro-
botic exploration, using the example of stigmeric algorithms for the distributed exploration of
structured environments.

We will present the problem of exploration, and a multi-agent stigmergic exploration al-
gorithm called Brick&Mortar [44], which stands out by allowing agents to distributively identify
the end of exploration. We will then introduce the upgrades we brought to this algorithm, res-
ulting in the Brick&Mortar Improved (BMI) and Brick&Mortar Improved with long range vision
(BMILRV) algorithms. The former solves the problem of gathering the agents once the task is
done, by adding the support for a post-exploration meeting point. It also accelerates the explor-
ation time by improving the mutual exclusion performed by the agents exploring and marking
the environment. The latter algorithm generalizes the tabu-list exploration approach to agents
with arbitrary vision range, that view the world from a robot-centered perspective, as compared
to the top-down perspective previously used in the literature. We will conclude this chapter with
prospects for future work on distributed exploration algorithms. This chapter is based on two
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publications [6, 7] presented at the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2013 and IROS 2015, respectively.

8.1 Distributed exploration of unknown environments

Exploration of unknown environments is an important field of research for autonomous robotics.
Its applications include reconnaissance, search and rescue missions, planetary exploration, as
well as exploration of buildings and robotic navigation for home automation. It is also applied
for web indexing spiders. Exploration and mapping scenarios usually involve three tasks:

1. Explore and perceive all the space,

2. Identify the end of exploration,

3. Gather explorers at a rendezvous point (e.g. entry/exit point or evacuation point).

Multi-agent exploration of an environment can be formally described as follows: a set of
agents explore a graph Graph, starting from node Node

start

. The graph known to agents, called
Graph

agents

, is expanded through actions of type navigateTo(node). Every time an agent sees
a new portion of the graph, this portion is added to the known graph Graph

agents

.
Graph = {Nodes, Links}
Graph

agents

= {Node
start

, Links
start

}
Agents = {a1, . . . , an}

Actions =

⇢
navigateTo(node)
mark(node,markType)

Exploration ends when there are no more nodes to expand. When a global map of the
environment is available, this end condition can be checked by looking if all the nodes have been
expanded. However, a different solution is required when agents have only a partial knowledge
of the map.

8.2 Exploration of unknown environments: state of the art

Two main families of algorithms exist today for exploration of unknown environments: (1)
frontier-based algorithms, and (2) ant-algorithms.

Frontier-based algorithms guide the exploration by pushing the agents towards the boundaries
between the explored space and the space yet unexplored [188, 143, 28, 27, 17]. The exploration
ends when all the space was discovered, implying that there are no more frontiers to move to
(see Fig. 8.1). The navigation to these frontiers implies planning on the whole map of the
enviornment. In case of large maps, this planning may be computationally expensive.

Ant-algorithms are distributed, i.e. multi-agent algorithms, that exploit the capacity of the
environment to store information. They use a shared map, on which agents lay traces that
guide their exploration. For instance, these traces may allow agents to do a gradient-descent
exploration of the environment [180, 74]. Compared to frontier-based algorithms, where agents
plan their navigation using their entire knowledge of the map, ant agents reason only on the
locally visible fragment of the map. This reduces the complexity of navigation planning. Agents
don’t have to know their position, and they use no inter-agent communication, except for the
marks left in the environment. They can adapt to unknown environments, and they scale well
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Figure 8.1 – Frontier exploration example. Frontiers between unexplored and explored
regions are highlighted in color. Agents, shown here as dots, explore by navigating towards
these frontiers. Exploration ends when there are no more frontiers and all the environment
is explored.

with an increasing number of agents. The implementations mentioned in the literature make
use of thermal trails [134, 22], alcohol trails [140], odour trails [135, 133, 114]) and ink markings
[155].

Although ant-algorithms were longtime considered non-realistic for robotic implementations,
the emergence of environments with embedded sensor networks shifted this point of view (see Fig.
8.2). Load-sensing floors with embedded processing units, like the floor presented in Chapter 3
(see Fig. 8.2a), can store and dissipate artificial pheromones, and could one day guide cleaning
robots through the home. Interactive screen surfaces can be used in a somewhat similar manner
(see Fig. 8.2b).

(a) A PekeeII robot on a tiled load-sensing floor
with embedded processing units [107]

(b) Khepera III robots performing a foraging task
on an interactive table [144]. The intensities of
pheromone traces are color coded using a red gradi-
ent.

Figure 8.2 – Platforms capable of supporting pheromone traces.

Unfortunately, most distributed algorithms proposed in the literature cannot identify the
achievement of full exploration of the environment. The only exception known to us is a tabu-
list algorithm, called Brick&Mortar, which is presented in the next section.
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8.3 The tabu-list approach for exploration: Brick&Mortar

Brick&Mortar is an ant algorithm introduced by Ferranti et al. [44], that at its time was the
only one (to our knowledge) capable of identifying the completion of a multi-agent exploration.
It views the environment as a graph, through which agents navigate using a taboo-list approach
[54]. Agents mark the explored nodes of the graph as closed for access, while still keeping the
open parts of the graph connected. This prevents agents from going to regions of the graph
that were already explored, and concentrates them in the remaining non-explored parts of the
graph. By continually reducing the region of the graph inside which they can navigate, agents get
grouped together in the remaining part of the graph. Ultimately, they meet in the last available
node, which is the rendezvous point. When this last node is closed, the exploration is considered
complete. Gathering all the agents in this node ensures that they are all informed about the end
of exploration by looking at the state of the open graph.

In its representation of the environment, Brick&Mortar uses 4 types of nodes: unexplored
nodes, explored nodes (visited nodes which connect the unexplored regions), closed nodes (visited
nodes that will be avoided during further exploration of the environment)10 and walls (impen-
etrable nodes).

Taboo = explored and closed nodes
Taboo = explored, not yet closed nodes

Unexplored = unexplored nodes

The graph to explore is thereby composed of the explored regions, the non-explored regions
and the cells linking them : Graph

agents

= Taboo
t

S
Unexplored

t

nodes
S

Taboo
t

The execution
of the algorithm takes place in 2 steps: (1) agents navigate to the next cell, and (2) agents decide
how to mark the current cell.

During the exploration of the environment, agents give preference to unexplored cells over
explored ones. If surrounded by explored cells, an agent will navigate towards the least-visited
cell (a heuristic for dispersing agents known as Node Counting in the literature). Access to closed
cells is forbidden.

When marking the environment, a cell can only be closed when doing so does not break the
connectivity of the graph portion visible by the agent. This guarantees that all the non-tabu
regions are connected (that the graph is never cut into separated, disconnected pieces). It also
has the emergent effect of keeping all the exploring agents inside the open part of the graph.
Thus, as the size of the non-closed graph reduces to zero, all the agents will concentrate in a single
point, given the assumption that multiple robots can physically share a cell. Therefore, agents
will be able to detect when the exploration of the environment has finished, by checking if all
the surrounding cells are marked as closed. A sample execution of the Brick&Mortar algorithm
is shown in Fig. 8.3.

A problem which arises out of this algorithm is that an agent cannot close an environment of
an annular (ring or loop) topology, of which it only sees a fragment at any given time. Closing
any cell inside its field of view would violate the connectivity condition for the remaining visible
environment (see Fig. 8.4a).

Solving this problem requires an algorithm for detecting and closing such loops. Considering
that several agents can simultaneously attempt to close the same loop, the algorithm should
include a distributed mechanism for mutual exclusion and priority resolution among agents. In

10In the original paper by [44], closed nodes are called visited nodes. Their naming was changed to avoid
confusion.
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Figure 8.3 – Sample execution of the Brick&Mortar exploration algorithm. Notice how the
unexplored regions are interconnected by corridors of green cells, which were left open for
graph connectivity reasons.

Brick&Mortar, this translates into a 4-step algorithm for loop closing (see Fig. 8.4). Agents leave
traces in the environment that enable them to detect whenever they enter a cell for a second time,
which implies that they went through a loop (except for cases when they re-enter the cell from
opposite direction). First, on detection of a loop, the control over it is gained by a single agent
in a distributed mutual exclusion manner. Then, the agent breaks the loop by closing a part of
it, while still preserving the connectivity of the environment. Finally, the agent relinquishes the
loop by cleaning the marks it used for exclusive control.

Another problem with this algorithm is that the cell where agents will finish their exploration
is unpredictable. The agents will not return to some exit point of the graph, which is usually
expected in practical exploration missions.

The state-machine of the Brick&Mortar multi-agent exploration algorithm is presented in
Fig. 8.5. The pseudocode of the algorithm is given below, in Algorithm 8.1.

(a) Exploration
start

(b) Ongoing
exploration

(c) Loop
detected

(d) Loop control (e) Loop closing (f) Loop
cleaning

Figure 8.4 – The phases of the loop closing algorithm.
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Algorithm 8.1 – Brick&Mortar exploration algorithm

BM_step()
{ // The agent first checks its state and

then performs the corresponding action
if (agentState == LOOP_DETECTION)
{

// Marking
Mark the cell under the agent.

If you have already been here (not
coming from the opposite direction),
and if the cell is not controlled by
another agent, then switch directly
to LOOP CONTROL.

Else
- mark the cell you are standing on.
- update the gradient for dispersing

the agents on this cell.

// Navigation
Move to open neighboring cell. Prefer

unexplored cells over explored
cells. Prefer those with more walls
and closed cells around. If nowhere
to go, close the cell you are on and
turn OFF.

}

else if (agentState == LOOP_CONTROL)
{

Mark the cell as controlled by you,
continuing the same path as the one
which led you into this loop.

When the entire loop is under your
control, switch to LOOP CLOSING.

If you could not control the entire
loop, because:

- the cell was closed by someone else,
- you did not find your trace,
- the loop is controled by someone

with higher priority,
then switch to LOOP CLEANING.

If someone with lower priority controls
this cell, then switch to STANDBY
until this cell gets cleaned.

}

else if (agentState == LOOP_CLOSING)
{

Close cells of the marked loop until the
first bifurcation.

Then switch into LOOP CLEANING state.
}

else if (agentState == LOOP_CLEANING)
{

Clean your loop control traces, by
moving backwards through the loop,
while these traces exist.

When cleaning is over, switch to LOOP
DETECTION.

}

else if (agentState == STANDBY)
{

If the cell on which the agent stands:
- becomes closed,
- or is taken over by an agent with

higher priority
then switch to LOOP CLEANING.

If the cell gets cleaned of other agents
traces, then continue in LOOP
CONTROL.

Else remain in STANDBY.
}

else if (agentState == OFF)
Agent is turned off.

} // End of "BM_step" function

/* Marks a cell while in LOOP DETECTION */
markCell(cell)
{

If the cell is unexplored:
- if it is blocking, then mark is as

explored.
- else if it is not blocking, then close

it.
Else if the cell was explored:

- if it is not blocking, then close it.
}

/* Identifies if a cell is blocking inside the
field of view of an agent*/

isBlocking(cell, field of view)
{

A cell is blocking if:
- if closing it would disconnect the

open environment inside the field of
view,

- or if closing it would block other
agents behind.

}
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Loop detection

Loop control

Loop closing

Loop cleaning

STANDBY

OFF

Figure 8.5 – The state machine of the Brick&Mortar algorithm.

8.4 Brick&Mortar Improved

Brick&Mortar Improved (BMI) is a new algorithm that we propose, built upon the Brick&Mortar
algorithm. It introduces a new feature for gathering the agents at a rendez-vous point, once the
exploration is complete. In addition, it brings some notable improvements in terms of execution
time to classic Brick&Mortar. It does so by optimising the mutual exclusion algorithm performed
by the agents while exploring and marking the environment. It identifies false positive occurences
of loops, and avoid their closure.

8.4.1 Accelerating the mutual exclusion algorithm

The mutual exclusion algorithm that Brick&Mortar agents employ while closing loops detected
in the environment has several sources of slow-down.

Firstly, during the loop closing phase, agents stop closing the cells of the loop at the first
intersection with a non-closed cell, not belonging to the identified loop. This allows to maintain
the connectivity of the overall graph, without risking to separate the loop from the rest of the
graph. However, if an agent starts closing the loop at such an intersection, the loop closing phase
will directly interrupt, without having closed any cell in the identified loop.

In the case of maps filled with obstacles arranged in a grid (see, for example, figure 8.12a), this
poses a serious problem, as the exploration time may dramatically increase due to the frequent
inefficient use of this heuristic. This is partially due to the behaviour that prioritises loop closing
over exploration. We thus propose to improve this behaviour, when agents quit prematurely
their loop closing algorithm.

The proposed solution is to continue the loop closing phase if it has started at an intersection,
by skipping the intersection without closing it, and by interrupting eventually only at the second
intersection (if such occurs). This solution guarantees that after each loop closing phase, at least
one cell will be closed (at least one cell shall be added to the Tabu list). Figure 8.7 illustrates a
case in which this problem arises.

Secondly, agents do not close cells behind them as they come out of a dead-end, during the
loop cleaning phase (see figure 8.6 for an example scenario). This can be viewed as a leak in
the efficiency of the algorithm. The proposed solution is simple, and implies checking whether,
by closing a cell during the loop cleaning phase, the remaining graph stays connected inside the
agent’s viewing range. However, as in the case of loop closing, this should be done only until
the first link with the rest of the graph, while moving in reverse sense, in order to maintain the
graph connectivity.
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ClosedUnexplored WallVisited

(a) Brick&Mortar cell types

(b) An agent meets his
trace and detects a loop.

(c) An agent performs
the loop control phase,
leaving his ID on the cells
of the loop.

(d) An agent performs
the loop closing phase till
the first intersection with
a non-closed cell neigh-
bouring the loop.

(e) An agent performs
the loop cleaning phase,
without closing the cells
that make up a dead-
end.

Figure 8.6 – An example of a dead-end left open by an agent after the loop cleaning phase.

ClosedUnexplored WallVisited

(a) Brick&Mortar cell types

(b) An agent on
the verge of de-
tecting the pres-
ence of a loop.

(c) An agent de-
tects the pres-
ence of a loop.

(d) An agent
ends the loop
control phase,
leaving an ID
trace on the cells
over which it has
taken control.

(e) An agent
executes the loop
closing phase.
It skips the first
intersection,
because the loop
closing phase
has started at
an intersection,
and doesn’t stop
until the second
intersection.

(f) An agent
performing
loop cleaning,
going backwards
through the
loop.

(g) An agent
ends its loop
cleaning phase
(and quits the
loop resolution
algorithm), by
returning to the
"normal mode"
of loop detection.

Figure 8.7 – Solution for a premature exit from the loop closing phase. The classic
Brick&Mortar algorithm would have stopped its loop closing phase at step 8.7d, end-
ing its loop resolution algorithm without having closed any of the cells in the identified
loop.
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Finally, agents can detect false positives (inexistent loops), when they encounter an old trail
of their own. We have identified three types of loops, that agents can recognize: (1) a (true
positive) loop, detected without having previously closed any cells between two visits of a cell in
the loop; (2) a (false positive) loop, detected after having closed one or several cells in the loop
detection mode (in other words, cells that weren’t part of a loop); (3) a (complex true positive)
loop detected having closed one or several cells in the loop closing phase.

Loops of the first type are normally resolved by the classic Brick&Mortar algorithm. Each of
these loops contains a path, from the cell on which the loop was detected, and back to this same
cell, with a length equal to the number of steps that the agent has made since it last visited it.
This route is only available if the agent has not performed any cell-closing activity since the last
visit of this cell. Otherwise, the loop would have been cut by these closed cells.

The second type of detectable loops, called cut loops (see figure 8.8), causes the Brick&Mortar
algorithm to identify a false positive presence of a loop, which is in fact cut by the cells that were
closed between the visits of the cell, that served as entrance into the loop. The agent would have
consequently lost time by engaging into the costly loop resolution algorithm, which is guaranteed
to stop prematurely under these conditions, without having closed any cells in the end. This
implies that an agent can recognize cut loops, if the timestamp, that the agent left on the last
cell it has closed, is more recent than the one found on the re-encountered cell.

Unexplored Visited

Closed Wall

Figure 8.8 – Example of detection of a cut loop: an agent encounters its own trace and
detects a false positive loop.

The third type of detectable loops, called reduced loops (see figure 8.9) contains a portion of
a secondary loop that was encountered and closed during the passage of the primary loop. Such
a loop is not an issue for the basic Brick&Mortar algorithm, as it doesn’t cut the circuit of the
loop but only reduces its length. However, this type of loops should be distinguished from cut
loops, as they should be engaged directly once encountered, compared to the cut loops where
loop control and closing should be avoided as being useless.

These improvements do not break the general structure of the algorithm (which was men-
tioned as proven to achieve complete exploration in [44]), because the state-machine used by
the agents is left unchanged. Although we provide no formal proof of this statement, no dead-
lock was observed throughout the benchmarking phase, which consisted of over 500 runs of the
algorithm.

8.4.2 Post-exploration rendez-vous

A useful property for a multi-agent ant algorithm is to be able to set a rendez-vous point on the
map, where the robots should return after the completion of their exploration objective. This,
for instance, can allow a team of robots exploring a building to return to the entrance, once
the exploration is complete. Such a behaviour can be easily coded, so that the returning phase
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(a) An agent identifies
and closes a first loop.

(b) An agent identifies
the second loop.

(c) An agent takes con-
trol over the second loop.

(d) The agent closes the
second loop, cleans his
traces and halts.

Figure 8.9 – Example of a reduced loop composed of two smaller interwoven loops.

Figure 8.10 – Additional navigation and marking rules used by Brick&Mortar Improved
(BMI). The attractor is treated as a non-explored region. When leaving the attractor,
leave a path of explored cells back to it, as if the attractor were a non-explored region.

emerges as a result of the employed navigation and marking rules.
In the case of the Brick&Mortar algorithm, agents become aware of the completion of their

exploration objective and remain motionless on their positions, because they possess no return
path planification algorithm.

The idea is to create a new type of cell marking, called an attractor cell, that can be closed
only when surrounded by either closed cells or walls. In the context of Brick&Mortar, this implies
that the attractor will be the last cell to be closed. Additional navigation rules are specified,
that define the attractor as an explored cell (see Fig. 8.10), as well as additional marking rules,
that specify that the attractor cannot be closed, if it isn’t surrounded exclusively by closed cells
or walls (in other words, before the exploration is finished). Thus, agents will have to leave a
path towards this attractor, and will have to return to it in order to complete the exploration
objective.

On the implementation level, two things change in the markings employed by BMI compared
to Brick&Mortar: (1) the attractor is the last cell to be closed and (2) the attractor cell is
treated as an intersection during the loop closing phase, when occuring inside the loop resolution
algorithm. A comparative example of execution of Brick&Mortar and BMI is presented in figure
8.11. The performances of BMI are analysed in more detail in section 8.4.3.

8.4.3 Experimental results of simulations in 2D environments

Our main evaluation criterion is the time it takes for a team of robots to complete the environment
exploration, otherwise known as cover time. The cover time is influenced by the number of
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ClosedUnexplored WallVisited Attractor (rendez-vous point)

(a) Brick&Mortar Improved cell types.

(b) (c)

Figure 8.11 – Comparative example of execution: Brick&Mortar vs BMI. 8.11b Execution
of Brick&Mortar on the 4 rooms map. It isn’t possible to predict where will the agents
be located after the exploration completion. 8.11c Execution of BMI on the 4 rooms map.
Agents leave a return path to the attractor cell.

robots participating in the exploration, the size of the environment, its topology (open spaces or
corridors) and by the starting point of the exploration.

For the starting position of robots, we chose to place all of them gathered at an entry point
in the environment. The alternative solution of having the robots scattered at launch seems
more difficult to implement in reality, as it would imply parachuting the robots over the area to
explore, which is not suitable for exploring buildings and mines.

For our benchmarking results, a series of assumptions were made: (1) agents have four
directions of movement (N, S, E, W); (2) agents’ viewing range is 1 cell (in a 2D environment,
they can see the cell underneath and the 8 neighbouring ones); (3) one cell can be shared among
several agents (this was done to be able to compare our results with the ones previously presented
in the literature); (4) the time consumed for leaving traces is negligible (otherwise we would have
ended up counting the number of algorithm calls, instead of counting the total distance travelled
by the agents); (5) the time complexity is given in the number of time-steps necessary for the
agents to complete the exploration.

We have chosen 3 different types of maps, designed to evidentiate the weaknesses of al-
gorithms: a map with obstacles of small size (figure 8.12a), a map with 4 rooms and no obstacles,
each having a single entrance/exit (figure 8.12b), and an office building map (figure 8.12c). For
each map type, we ran the algorithms on maps of 3 different sizes: small (1X), medium (2X),
large (4X).

Three benchmarking categories have been defined, that correspond to the stages of a recon-
naissance mission: (1) pure exploration algorithms, (2) algorithms capable of exploration and
of identifying exploration completion, (3) algorithms capable of exploration, of identifying the
exploration completion and able to gather the agents at a rendez-vous point.
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(a) Obstacles map (b) 4 rooms map (c) Office map

Figure 8.12 – Map types used for performance tests.

Environment exploration without identification of exploration termination

An external observer is usually used to measure the performance of exploration algorithms, as
most algorithms are not capable of identifying the termination of exploration. The only exception
(to our knowledge) for the multi-agent case is constituted by the Brick&Mortar algorithm. Depth-
first search is also capable of identifying the termination of exploration, but only in the single
agent case [180].

Given that the capacity of identifying exploration termination comes at an additional cost in
terms of performance, it was decided to rewrite Brick&Mortar in such a way, so as to remove the
termination identification part, leaving only the navigation and marking parts. Brick&Mortar has
two components: (1) the heuristic employed for dispersing the agents: choose the non-explored
cell with the largest number of surrounding walls or closed cells; apply a gradient descent method
like Node Counting [164] to navigate among explored cells, (2) the loop resolution algorithm
and the marking used for identifying the termination of exploration (the usage of a Tabu list).
We created a simplified version of Brick&Mortar, that we have called Brick&Mortar Simplified
(BMS), using only the environment exploration part of the algorithm, with no identification of
exploration completion. This has allowed us to see if the heuristic employed by Brick&Mortar
was more efficient, compared to other algorithms.

First, we have compared Brick&Mortar and BMI with the existing state-of-the-art exploration
and patrolling algorithms: Ant-walk-2 (a multi-level Depth-First Search) [180], Learning Real-
Time A* (LRTA*) [75, 74], and EVAW [52]. LRTA* is a gradient descent algorithm, that builds
an elevation map using the pheromone traces it leaves behind, which orients the agents in their
navigation. The pheromones encode the distance to the closest unexplored frontier. EVAW (a
variant of the VAW algorithm [180]), also builds an elevation map, which encodes the timestamps
of the last visit of each cell.

Brick&Mortar placed itself among the quickest algorithms, surpassing all the others on all
maps except for the Obstacles map, which was specifically designed as a hard case for it (Fig.
8.13). On maps without obstacles, Brick&Mortar and its derivate algorithms behave better that
all other benchmarked algorithms (Fig. 8.13a). The explication hides in the heuristic employed
by Brick&Mortar for navigating among non-explored cells (i.e. choose the one with most closed
cells or walls around), that allowed it to travel through the environment by sticking to its
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perimeter walls, and thus generate a quasi-optimal path. The weak performance of Brick&Mortar
on the Obstacles map is due to the prioritisation of loop resolution over exploration, and to the
frequent use of the loop closing algorithm (Fig. 8.13b).
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Figure 8.13 – Performances of analysed exploration algorithms.

Identification of exploration completion

Brick&Mortar and BMI were chosen for the performance tests in this category, as they are the
only known algorithms capable of identifying the exploration completion. For a just comparison,
we used a simplified version of BMI which lacked the rendezvous capacity, called Brick&Mortar
Improved Simplified (BMIS).

Brick&Mortar and BMIS have the same performance on maps with no obstacles, a result
that naturally confirms the theoretical expectations (as the optimised loop closing algorithm is
never called). The results are the same, because the improvements of BMIS targeted the loop
resolution algorithm, that is not emloyed on maps without obstacles.

On the other hand, the situation changes in environments heavily filled with obstacles, where
the gain in time before the identification of exploration termination is clearly visible. On an
Office map of size 20x20 (Fig. 8.12c), when varying the number of agents participating in the
exploration, BMIS needs, on average, between 30% and 13% less steps to identify the termination
of exploration, compared to classic Brick&Mortar (see figure 8.14).

This gain in time before the identification of exploration termination is even more evident on
the Obstacles map (Fig. 8.12a) for the single agent case, when varying the size of the environment:
the slope of Brick&Mortar is growing at almost 7 times the rate of the slope of BMI (see Fig.
8.15a). The dispersion in the exploration time of Brick&Mortar (the difference in timesteps
between the slowest and quickest run) is 80x the environment size, while the dispersion of BMI
is much lower, at 6x the environment size. When fixing the size of the environment at 20x20
cells, and varying the number of agents on the Obstacles map, BMI requires from 84% less time
for the single agent case, to 50% less time for 20 agents, to identify the exploration completion
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(see figure 8.15b).
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Figure 8.15 – Comparing BM and BMI performances on the Obstacles map

Post-exploration rendez-vous

This section presents the performances of BMI, that gathers the agents at the end of their
exploration. Intuitively, this capacity comes at a cost, generated by the time needed to return
the agents to the specified point. We should stress here that, with BMI, both identification of
exploration completion and agents’ rendezvous occur at the same moment in time, when all the
agents gather at the attractor cell. Therefore, the additional time that BMI needs to identify the
exploration completion is bounded by the length of the longest return path (equal to the number
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of vertices in the diagonal of the environment), plus some variable cost induced by the time
agents spend roaming through the return path, that would otherwise be closed. This overcost
is clearly seen in environments without obstacles, as the 4 rooms map (fig 8.12b). Despite this
overcost, BMI does much better than Brick&Mortar on maps with lots of obstacles, due to its
optimised loop closing algorithm. We notice that on the Obstacles map with size 26x26 and 532
explorable cells, in a setting with 5 agents, the time required by BMI to attain its exploration
objective is on average 12% less than the time required by Brick&Mortar. (see figure 8.13b).

The overcost (in terms of time) brought by the identification of exploration completion,
compared to a simple exploration of the environment, is presented in Fig. 8.16. It shows the
evolution of the overcost for obstacle-filled environments of different sizes. The overcost can be
calculated by subtracting the time BMS takes to simply explore the environment from the time
BMIS takes to identify the exploration completion.
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8.5 Brick&Mortar Improved with Long Range Vision

The previous sections presented Brick&Mortar, a Tabu-list graph exploration algorithm, which is
capable of identifying the completion of exploration. We then introduced BMI, which improved
Brick&Mortar by enhancing the speed of the mutual exclusion algorithm employed by agents in
their exploration and closure of the environment. It also added the capacity to gather the agents
at a pre-defined point once the exploration is complete.

In this section we present BMILRV, which further upgrades this algorithm we further up-
grade this algorithm, by adding navigation and marking rules for agents with long range vision
capabilities. This allows agents to mark multiple cells of the environment in a single step, thus
increasing the exploration speed. Another novelty is the addition of a trail to the rendez-vous
point, which prevents agents from following it until the exploration is complete.

This transforms the ant-like algorithm BMI into one which uses a realistic vision representa-
tion. The visible portion of the map is calculated from each agent’s perspective, as compared to
a top-down view of the map in previous versions of the Brick&Mortar algorithm (see Fig. 8.19).

Agents share a common map, of which they can access only the portion surrounding them.
A node can be occupied by multiple agents at the same time. Agents do not coordinate their
decisions and act asynchronously. However, the marking and navigation decisions they make
are considered atomic. Cell-marking cost is zero, while navigating from one cell to another
neighboring cell takes 1 timestep.

In comparison to frontier-closing exploration algorithms, where agents plan their movements
toward the frontiers of already explored regions, the proposed algorithm requires only minimal
navigation planning. After marking the nodes in its field of view, agents move to one of the cells
surrounding their current location.

The exploration algorithm discretises the surrounding world, treating it as a graph (nodes
correspond to cells in a 2D grid world). This is convenient, as both 2D and 3D maps can be
represented as graphs. Agents walk through this graph, trying to reduce it in size by limiting
access to explored nodes. By continually decreasing the number of nodes in the open graph,
while keeping it connected at the same time, agents end up gathered in the last remaining node,
which is the rendezvous point (see Fig. 8.17 for an example of the algorithm execution). For
clarity reasons, we shall employ 2D grids instead of abstract graphs in the rest of this section,
and use the word cell instead of node.

The algorithm uses 5 types of cell markings : walls, unexplored regions, explored regions,
closed regions, and the rendezvous point (see Fig. 8.18). Unexplored and explored cells form the
open parth of the map, in which agents are authorized to navigate. The closed cells are the ones
added to the taboo-list, and to which access is forbidden.

At each time step, each agent performs 2 activities: marking and navigation. During marking,
the agent considers all the cells inside its field of view (Fig. 8.19). If the removal of a cell doesn’t
break the connectivity of the remaining open portion of the map, then this cell is declared closed
for further access. If a cell is necessary for maintaning the connectivity of unexplored regions,
this cell is declared as explored and left open for further access. Thus, a cell is left open if:

• it is at the edge of the field of view, potentially linking the environment outside the field
of view to the one inside it;

• it is adjacent to any non-visible cells inside its field of view (i.e. shadows) which potentially
hide unexplored cells;

• it disconnects the map open for access inside the agent’s field of view.
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(a) (b) (c)

(d) (e) (f)

Figure 8.17 – Exploration performed by two BMILRV agents. The rendezvous point is in
the top-left corner of the map.

ClosedUnexplored Wall Rendezvous pointExplored

Figure 8.18 – Cell types used by BMILRV

Considering the multi-agent nature of the algorithm, a 4th condition is required: a cell cannot
be closed if that will block other agents. This includes checking for the presence of robots or
their mutex traces in the cells surrounding the cell being analyzed.

The order in which the cells inside an agent’s field of view are closed influences the shape of
paths that remain open for continuing the exploration of the graph. In Fig. 8.19, for instance,
the cells were analyzed in clockwise direction, from the ones closest to the agent to the farthest
ones, starting from the 12 o’clock position.

After the agent has marked the cells inside its viewing range, it will mark the cell underneath
itself. If this cell is left open, the marking will also contain the direction followed to exit this
cell. The agent will also set the value of the dispersion gradient inside this cell, which is used
to direct agents between explored cells left open for navigation. Initially, the dispersion gradient
value for all the cells is set to 0. Updating the dispersion gradient value of a cell assigns it the
minimal surrounding gradient value plus one, a policy known as LRTA* in the literature [74].
This pushes agents down the dispersion gradient to the surrounding cells.

It may happen that several agents share the same cell (particularly in the beginning of
exploration), when only the first agent that marks the surrounding environment gets to influence
it. If a single exit path is left open by the first agent, the remaining agents will have to follow it,
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preventing their dispersion. This behavior can be avoided by forcing agents to limit their marking
range to the distance between them and their closest neighbor inside their field of view. If no other
agent falls inside their field of view, then the normal marking range is used. Experimental results
have shown that this decreases the time till full exploration of the environment, as determined
by an external observer.

Shadow

Field of view edge

Exit path

Figure 8.19 – BMILRV marking illustration. All the cells in the viewing range are closed,
except those on its edge, and those near the shadows of objects. An exit trail is implicitely
left by the algorithm, as its absence would have cut the agent from the rest of the envir-
onment. Its shape depends on the order in which the cells in the viewing range are closed.
All the unexplored regions remain accessible.

In the navigation step, the agent moves to one of the open neighboring cells, giving priority
to unexplored cells over the explored ones. If it travels from an explored cell to another explored
cell, it will follow the dispersion gradient, which will dictate its direction of movement.

We also improved the exploration by preventing the agents from going to the rendezvous point
if the exploration hasn’t yet completed. This is done when there is a unique way that leads from
the rendezvous point to the rest of the graph. It was implemented using the dispersion gradient
that agents employ to disperse themselves in the environment. Maximum gradient values are set
to the cells composing this unique path leading to the rendezvous point, which prevents access
to them for the agents performing gradient descent, unless they have no other choice.

The pseudocode of the BMILRV multi-agent exploration algorithm is given below, in Al-
gorithm 8.2. The state-machine describing this algorithm is the same as the one of Brick&Mortar,
presented in Fig. 8.5 on page 107.
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Algorithm 8.2 – Brick&Mortar Improved Long Range Vision exploration algorithm

BMILRV_step()
{ // The agent first checks its state and

then performs the corresponding action
if (agentState == LOOP_DETECTION)
{

// Marking
Repeat
{

Mark all open cells inside your field
of view (except the one you are
standing on, to avoid being
blocked).

} while at least one cell was closed
inside field of view

If you have already been here (not
coming from the opposite direction),
and if the cell is not controlled by
another agent, and if you have not
closed cells since your last visit
to this cell, then switch directly
to LOOP CONTROL.

Else
- mark the cell you are standing on.
- update the gradient for dispersing

the agents on this cell.

// Navigation
Move to open neighboring cell. Prefer

unexplored cells over explored
cells. Prefer those with more walls
and closed cells around. If nowhere
to go, close the cell you are on and
turn OFF.

}

else if (agentState == LOOP_CONTROL)
{

Mark the cell as controlled by you,
continuing the same path as the one

which led you into this loop.
When the entire loop is under your

control, switch to LOOP CLOSING.

If you could not control the entire
loop, because:

- the cell was closed by someone else,
- you did not find your trace,
- the loop is controled by someone

with higher priority,
then switch to LOOP CLEANING.

If someone with lower priority controls
this cell, then switch to STANDBY
until this cell gets cleaned.

}

else if (agentState == LOOP_CLOSING)
{

Close cells of the marked loop until the
first bifurcation after the place
where you started the closing phase.

Then switch into LOOP CLEANING state.
}

else if (agentState == LOOP_CLEANING)
{

Clean your loop control traces, by
moving backwards through the loop,
while these traces exist.

When cleaning is over, switch to LOOP
DETECTION.

}

else if (agentState == STANDBY)
{

If the cell on which the agent stands:
- becomes closed,
- or is taken over by an agent with

higher priority
then switch to LOOP CLEANING.

If the cell gets cleaned of other agents
traces, then continue in LOOP
CONTROL.

Else remain in STANDBY.
}

else if (agentState == OFF)
Agent is turned off.

} // End of "BMILRV_step" function

/* Marks a cell while in LOOP DETECTION */
markCell(cell)
{

If the cell is the rendezvous point, then
leave no mark on it.

Else if the cell is unexplored:
- if it is blocking, then mark is as

explored.
- else if it is not blocking,

then close it, and update the time of
the last cell closing.

Else if the cell was explored:
- if it is not blocking, then close it,

and update the time of the last cell
closing.

}
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/* Identifies if a cell is blocking inside the
field of view of an agent*/

isBlocking(cell, field of view)
{

A cell is blocking if:
- it is at the edge of the field of view,
- or it is adjacent to a cell in shadow

(non-visible cell behind an

obstacle),
- or if closing it would disconnect the

open environment inside the field of
view,

- or if closing it would block other
agents behind.

}

8.5.1 Experiments with agents with long-range vision

We evaluated the performance of BMILRV in a series of simulations on maps mimicking hu-
man environments, such as offices cluttered with obstacles, mazes and gardens (see Fig. 8.20).
BMILRV is currently the only known multi-agent algorithm where agents use a shared map,
have a local vision of this map, don’t communicate their exploration targets, and, most import-
antly, identify the end of exploration. No comparable algorithm of the same class exists, to our
knowledge.

However, in the absence of comparable state-of-the-art algorithms, we can still evaluate
BMILRV relative to some baseline. In this sense, we used a group greedy frontier explorationg
algorithm as baseline. This is a sub-optimal heuristic, which avoids the complexity of solving
a Hungarian algorithm to calculate an optimal assignment of agents to frontiers. It assigns
agents to frontiers in a greedy manner, incrementally selecting for assignment pairs of agents
and frontiers with minimal distance between them.

In both cases agents communicate to share a common map (in BMILRV, this is done via
virtual pheromone traces). However, in comparison to BMILRV, frontier exploration algorithms
make 2 additional strong assumptions. First, agents communicate between themselves, so as to
distribute the exploration effort by selecting different frontiers to explore, and thus avoid following
each other. Second, agents use their knowledge of the entire map (as opposed to knowledge of
only the visible surroundings in BMILRV) to plan optimal navigation routes.

(a) Office (b) Maze (c) Garden

Figure 8.20 – Maps explored during the experiments.

The parameters that varied in our experiments were: the number of agents performing the
exploration, and the size of the map. The viewing range of agents in all our experiments was
fixed at 10 grid cells. The results are shown in Fig. 8.21.

Increasing the number of exploring agents leads to shorter exploration times, as seen in Fig.
8.21a. This means that the algorithm is able to distribute the exploration effort among its agents.
However, exploration efficiency is also dependent on the size and topology of the environment,
which can get saturated with agents. In Fig. 8.21a, the environment gets saturated at 5 agents,
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after which adding new agents doesn’t decrease the exploration time. As compared to the greedy
Frontier Exploration algorithm, BMILRV is slowed down by obstacles present in the environment,
which force agents to go through the costly loop closing algorithm, in order to close the loops
that form around such obstacles. Navigation in the environment is also suboptimal for BMILRV,
as the paths left open by agents are not of shortest possible length.

Fig. 8.21b shows the number of steps required for exploration completion and rendezvous in
maze-type environments. Again, BMILRV is slowed down by the number and size of isolated
obstacles present in the environment. Better comparative results are obtained for environments
of type Garden, where the number and size of obstacles is reduced, as compared to Maze maps
(see Fig. 8.21c).

8.6 Future work on distributed exploration algorithms

All the presented experiments were performed in simulation. Future work will therefore include
the implementation of the new algorithm on a robotic platform, that would communicate with
a grid-type environment, such as a network of intelligent tiles like the ones presented in chapter
3, or any other type of sensor network. This will raise the issue of uncertainty in sensing,
localisation, and in the movement of robots.

Regarding the uncertainty in localisation, considering that BMILRV agents do not maintain
a global map in their memory, the environment itself could help agents localise themselves (as
presented in chapter 7). By tracking the robots during their exploration, the floor can uniquely
identify them, and communicate them their exact location.

The uncertainty in robot movements impacts their location. Errors in localisation generated
by erroneous movements can be identified by the mismatch between the expected location of
the robot and the one communicated by the environment. Robots could then attempt to return
to their intented location. Another solution would be to allow the robot to reset the markings
in the visible portion of the environment surrounding the robot, allowing it to move out of any
region it might have stepped into, including previously closed regions of the environment.

The sensing uncertainty would influence the way the cells of the environment are perceived
and marked. To prevent errors, the graph connectivity conditions could be checked by the
intelligent environment itself, which is supposed to have a perfect knowledge of its topology and
of all the cell markings.

The long range vision capability of BMILRV brings with it an acceleration in marking speed.
Compared to Brick&Mortar Improved, where agents only mark the cell underneath themselves,
in BMILRV the marking process is accelerated by a factor proportional to (half) the perimeter
of the field of view.

However, the long range vision does not influence the way agents close loops around obstacles,
since obstacles will always occlude a portion of the environment behind them, as seen from
agents’ perspective. Nevertheless, the situation is different for agents with a top-down viewing
perspective (e.g. aerial vehicles), from which obstacles generate no occlusions or shadows. In
this case, obstacles of size inferior to the field of view will not generate any loops at all.

The virtual marking system has the potential to indirectly solve navigation problems. Local
marking and navigation rules are sufficient to navigate through the environment and allow the
agents to avoid costly path calculations to the closest non-explored regions. Future work will
also focus on a better dispersion of exploring agents. Agents could reshape the corridors left
open to keep the non-explored regions connected, and which are often sub-optimal in length.
The impossibility of deadlock among agents is also a property we would like to prove.
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map: 50x50 pixels. Agent viewing range: 10 cells. BMILRV is capable to distribute the exploration
effort.
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(b) Time-steps till exploration completion and rendezvous on Maze maps (Fig. 8.20b). Exploring
agents: 5. Agent viewing range: 10 cells. The size and number of isolated obstacles present in the
environment heavily impact the efficiency of BMILRV.
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(c) Time-steps till exploration completion and rendezvous on Garden maps (Fig. 8.20c). Exploring
agents: 5. Agent viewing range: 10 cells.

Figure 8.21 – Experimental results obtained using simulated map explorations. The per-
formances of BMILRV and greedy Frontier exploration are shown together for illustration
purposes only. These algorithms are of different categories and are not directly comparable.
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8.7 Conclusion

We have presented a multi-agent algorithm for exploration of unknown environments, based on
a tabu-list approach. Agents mark explored parts of the environment as closed for access, while
keeping the unexplored regions interconnected until the end of exploration. As agents can only
travel through open paths in the environment, they decide on the direction of the next movement
without using high-level planning.

Our contributions are manifold: we generalized the algorithm to agents with variable viewing
ranges, allowing them to mark multiple cells at a time; we added the possibility to gather
the agents once the exploration is complete, by defining a rendezvous point; we increased the
exploration speed by preventing agents from going to the rendezvous point before exploration is
complete, by improving the mutual exclusion algorithm agents use when closing cells in the the
environment, and by detecting false positive occurences of loops.

With the proliferation of environments with embedded memory capacities, integrated in am-
bient intelligence systems, stigmergic algorithms regain their practicality for robotic applications.
The guidance of robots by the environment (the floor in our case), both in providing occupancy
and Voronoi maps for navigation, and in their exploration of the environment, can simplify the
programming and deployment of robots. This is particularly true for blind or short-sighted ro-
bots, like autonomous vacuum cleaners, which currently use only close-range sensors, and could
benefit from the mapping and memory service offered by the environment.

This chapter concludes the III part of the thesis, in which we have presented proofs of concept
for the integration of a sensing floor with the robotic actuators of a habitat. In Chapter 7,
we showed how an omnipresent load sensor can generate occupancy maps of the environment,
and how it can compute the safest navigation paths based on these maps. In Chapter 8, we
exploited the memory embedded in the environment to support stigmergic algorithms. We used
the example of stigmergic distributed exploration algorithms, where agents leave traces in the
environment to perform a tabu-list exploration. It is now time to move on to future perspectives
on the usage of sensing floors in ambient intelligence.
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This thesis explored the capabilities of pressure-sensing floors as a tool for ambient intel-
ligence. We gave an extensive account of the state-of-the-art in sensing floors, offering design
suggestions stemming from the experience we gained during these 3 years of research.

In ambient intelligence settings, where human inhabitants populate the environment, scene
interpretation is required before any autonomous action is performed. We therefore developed
and introduced techniques for tracking and recognising people and objects in the environment,
using the weight information provided by load-sensing floors. The problems that emerged on
modular, tiled floors, like the interpretation of spread loads, when objects span several tiles
on a modular floor and have multiple points of support, have been solved using a new object
segmentation algorithm proposed in this thesis.

As it may be expected, ambiguities may arise between objects of equal weight, preventing
their correct localisation when using only their weight. We therefore presented an innovative
technique for scanning the surfaces of objects in contact with the ground, so as to use them
for object recognition. For this purpose, we have drawn analogies between pressure sensing
and light sensing, which opened the door to the use of computer vision techniques to perform
pressure sensing. However, further research is needed to loosen the algorithm’s constraints on
the movement of objects, so as to be able to use it in real life situations.

Ambient intelligence systems have, besides sensors, robotic actuators that can interact with
the supervised environment. The navigation and obstacle avoidance algorithms of these mobile
robotic actuators are usually based on data from high-precision sensors like laser range-finders,
which also happen to be expensive. In this context, one way of representing the safest navigation
routes in terms of obstacle avoidance is by constructing a Voronoi diagram of the environment.
We have shown that sensing floors can generate occupancy maps of the perceived environment,
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and compute Voronoi diagrams, that are then transmitted to mobile robots for navigation plan-
ning. We have employed a distributed, asynchronous computation method that can still calculate
a Voronoi diagram despite the desynchronisation between the tiles of the floor. Externalising
this mapping function into the environment allows the use of mobile robots with fewer sensors
and a simpler design.

Exploration of environments is another task routinely performed by teams of robots. We
have shown that by embedding memory capacities into the environment it is possible to support
multi-agent algorithms based on stigmergy, where agents leaves traces in the environment. These
traces help agents in their decision making, as in the example of navigation and exploration
algorithms. We improved an existing algorithm capable of distributively identifying the end of
exploration by adding the support for post-exploration rendez-vous points, and optimised the
mutual exclusion algorithm employed by the agents in their exploration of the environment. We
finally generalised the approach to agents with an arbitrary viewing and marking range, that
perceive the environment from an agent-based perspective.

We also encountered obstacles while conducting this work. In the absence of an adequately
placed acceleration sensor, we could not directly distinguish the pressure force due to mass from
the pressure force due to acceleration. A consequence of this was the need to track objects in
order to calculate their mass and recognise them. It also was not possible to distinguish objects
of equal mass without adding new discriminative features like their surface, as was suggested in
Chapter 5.

The high sensor noise present in our prototype did not allow us to detect lightweight objects
under 2 kg of mass. This pointed to the necessity of using probabilistic filtering when reading
the pressure values for static objects. However, existing filtering techniques weren’t of much
use during dynamic activities performed by humans, as they require models of the activities to
generate a filtered pressure value. Performing a parallel analysis of the pressure readings using
all the existing activity models may provide hints to the most appropriate model to use, although
this is computationally expensive. A co-authored paper on probabilistic localisation techniques
has been submitted to ICRA 2016 [126].

Interfacing our sensing floor with ROS gave us the possibility to easily interconnect it with
the other sensors and robots in the environment. In particular, we used it to provide navigation
guidance to robots in simulation.

Regarding the design of the sensing floor, the concerns that need to be taken into consideration
when creating a prototype from scratch are presented in the following section.

9.1 Remarks on the design of sensing floors

The experience gathered after 3 years of work with our first prototype has led us to several
conclusions regarding the design of pressure-sensing floors. We analysed their deployment, their
shape, and functionalities.

Considering the installation of a sensing floor, we identified two categories of sensors: modular
floors (i.e. tiled floors), and monolithic sensors (e.g. carpets [137]). The installation of monolithic
sensors is quick, as they have to be simply unrolled onto the floor and plugged. In comparison,
the installation of modular floors is more complex, as each component needs to be installed and
connected separately. It is practical to have modules with integrated cabling, which can also
transmit electricity and network connection to the neighboring modules (as seen in Z-tiles [123]).
This avoids having separate electricity and network connectors and plugs for each tile or floor

128



9.1. Remarks on the design of sensing floors

module.
In terms of maintenance, modular floors present a series of advantages: hardware errors

can be easily localised, and modules can be easily transported and replaced. From a practical
standpoint, the design should be water-proof, to allow wet washing and cleaning. Floors could
also be energy-harvesting, reducing the need for an energy source [35].

Concerning sensing capabilities, the smaller the floor tiles are, the higher is the sensing
resolution, and the better is the segmentation of objects on the floor. The use of the tiles
dictates their smallest practical size: for human foostep tracking applications, the adequate size
of a tile would be the size of a foot (approx. 30 cm ⇥ 30 cm). For more fine-grained details, as
required by biometrical applications, other types of sensing floors may be more adequate (e.g.
pressure mats), if judged by price per unit of sensing surface, or by their fabrication complexity.
It would also be interesting to have sensors that capture the xyz components of the ground force.
This would allow the reconstruction of the human body posture, given a model of the human
body and of its constraints [190, 118].

An intuitive solution for reducing the number of sensors employed in the floor is to implement
sensor sharing between tiles, as shown in Fig. 9.1a. When the density of objects on the floor is low,
leaving free space around objects, the reduced number of sensors suffices for object segmentation.
In this case, the free tiles that neighbour the occupied tile will have only a part of their load
sensors activated, allowing to dismiss them as non-occupied tiles (see Fig. 9.1b). However, when
the density of objects on the floor is high, leaving little free space between objects, a floor with
sensor sharing will not be able to segment objects as well as a floor without sensor sharing.
In this case, free tiles between occupied tiles will have all their load sensors activated, falsely
identifying themselves as occupied (see Fig. 9.1c).

(a) A typical way for implement-
ing sensor sharing between tiles.
The sensors (shown as red circles)
are shared between 4 square tiles
that have neighbouring corners.

(b) Free tiles (in white) neigh-
bouring an occupied tile (in blue)
will have only half of their load
sensors activated (red), allowing
to identify them as non-occupied
tiles.

(c) A free tile (in white) between
occupied tiles (in blue) will have
all its load sensors activated (red),
falsely identifying itself as occu-
pied.

Figure 9.1 – Sensor sharing between tiles as a solution for reducing the number of required
sensors.

In our sensing floor prototype, the tiles supporting heavy furniture like wardrobes and kitchen
cabinets were not equipped with sensors, creating additional regions where objects may disappear
from the floor’s view. Although it would be possible to track objects by their last observed
position, it would have been better to have an omnipresent sensing floor, covering the entire
surface of the house. This would leave a minimal amount of entry/exit points where objects may
disappear, which would correspond only to doors and windows.

Another important aspect is the simulation of the sensor. The problem here is to calculate
the distribution of a force onto the sensors supporting the tile. Isostatic rigid tiles have the
advantage of requiring only static equilibrium equations for simulating the distribution of forces
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on their supports. Tiles with more points of support are hyperstatic, and require the applica-
tion of computationally expensive numerical techniques (e.g. finite element method) to calculate
approximate solutions for the distribution of forces on the sensors. On the other hand, the more
sensors are involved in the calculation of the center of pressure (COP), the more the probability
distribution of measurement noise resembles a Gaussian, due to the Central Limit Theorem.

Regarding the sensor sampling frequency, for people walking or running on a tiled sensing
floor, most of the load signal energy lies below 250 Hz [3]. This establishes a practical upped
bound for the sampling frequency of sensing data.

In the next and last section of this thesis, we will present perspectives for future research.

9.2 Future work

Several directions are envisioned for future work with sensing floor prototypes, orbiting around
multi-modal data processing, activity recognition, biomedical analysis, semantic mapping of the
environment, and interaction with robots. These prospective topics of research are detailed
below.

9.2.1 Extraction of gait parameters for medical analysis

For medical applications, the floor could provide high-precision extraction of footsteps, and
of derivate data about the angle between the feet and the direction of movement, pressure
distribution between the two feet, and so on. These parameters serve as medical indicators of
the state of human gait. Calculating statistics on the human activity (number of steps, walking
speed, number and type of interactions with objects, weight lifted per day, etc.) over a fixed
time span (a day, a month, a year) would also present a rich source of information.

9.2.2 Object recognition using sensing floors

It would be interesting to continue exploring if objects on the floor can be recognized by the
shape of their contact surface, in minimally constrained movement conditions. Is it possible to
identify the position and orientation of an object on the floor, given a model of its surface and
of the distribution of weight inside it ?

Automatic measurement and introduction of new persons and objects to the list of known
entities would help bootstrap newly installed sensing floors with data about the initial occupants,
and would keep it working with the addition of new users. Measuring the presence frequency of
each user would allow to dynamically estimate the probability of detecting a given user in the
environment, and reduce the computational load on the user localisation algorithm.

When performing object tracking, the floor could separate objects into layers. Each newly
detected object would be assigned to a new layer. This layered view of the objects exerting
pressure on the floor would improve their segmentation in proximity conditions, as it happens
when users walk near objects, or interact with them.

9.2.3 Multi-modal data processing

Combined with depth cameras, sensing floors can non-intrusively recognize a wide palette of
activities and human states. This would meet the practical requirements of hospitals, such as
the identification of falls, of people lying on the ground, as well as tracking the postures of
patients to evaluate their daily activity pattern.
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Sensing floors can help cameras to track their targets, whenever these get out of view. This
happens particularly often in environments with furniture, that visually oclude objects either
partially or entirely. In this way, persons re-entering the cameras’ field of view can be re-identified
without using complex recognition algorithms.

Pressure sensing floors can also improve multi-modal activity recognition, adding discrimin-
ating information about the weight supported by the limbs. Triaxial accelerometers embedded
in the floor tiles may add a new dimension for differentiating between the dynamic activities
performed by humans.

Although there are existing datasets for recognizing activities of daily living [129], there is
currently no standard dataset for benchmarking multi-modal activity recognition software, which
would involve the force sensing aspect. Creating such a dataset, using data from depth cameras,
load sensors on the floor, and motion tracking cameras, is one of our future goals in our quest
for better multi-modal activity recognition. We also plan to enrich the dataset with data on
extracted human skeletons and the position of limbs.

9.2.4 Activity recognition

The recognition of cases of emergency may require the deployment of specific sensors for evalu-
ating the health-state of a human in need. Mobile robots can help deliver the required sensing
capabilities to where these are needed, as in the case of people lying on the ground (see Fig. 9.2).

Figure 9.2 – Investigating the health state of a person using a mobile robotic actuator,
after a fall detected by the sensing floor.

We would like to exploit activity grammars in our automatic recognition of activities. These
can compress the recorded signals, automatically finding the redundant gestures composing an
activity [139]. Such an approach can potentially generate representations of activities that can
be easily interpreted by a human expert.
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9.2.5 Semantic mapping and interaction with robots

One of the next steps in developing our ambient assisted living project would be the addition of
semantic mapping capabilities. Ontologies could allow to infer the functional usage of a room by
the type of activities that happen inside (e.g., balcony used for eating, room used for sleeping),
or by the set of objects that it contains (e.g., dishes and cooking instruments are stored in the
kitchen) [112].

Semantic mapping may also be useful for the implementation of stigmergic exploration al-
gorithms, using mobile robots deployed on the SmartTiles sensing floor. Embarking the de-
veloped algorithms on board the mobile assistant robots would confront the algorithms with
real-life conditions, forcing us to make further improvements towards their practical use.

9.2.6 Domains of application

Ambient intelligence can be applied to domains where it is important to maintain some specific
conditions, and to monitor the activities inside a given space (e.g. hospitals, retirement homes).
In kindergartens, for instance, this would allow to survey that no child is involved in dangerous
activities. It could also be used for surveillance inside buildings and warehouses, for detecting
suspicious or criminal activity. Management and surveillance of an environment could one day
be required on board large transport vessels. In a wider view, ambient intelligence could be used
city-wide, providing technical instruments for automatically tracking down criminals.

To conclude, we think that sensing floors have a promising future in ambient intelligence, as
floors are one of the most convenient placements for omnipresent pressure sensors. Non-intrusive
but informative enough to perform basic surveillance tasks, they are the adequate sensor for
spaces where privacy is a requirement. Speaking about ambient intelligence, which is still in its
infancy years, a holistic view of an ambient intelligence surveilling and acting in a bounded space
is necessary to understand, research and develop the capabilities of an omnipresent, omniscient
system. Living in such an environment can be seen as living inside a robot that has control over
the space that we inhabit.
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Résumé

Cette thèse explore les capacités d’une intelligence ambiante équipée d’un réseau de capteurs de
pression au sol. Elle traite le problème de la perception d’un environnement au travers un réseau
de capteurs de basse résolution. Les difficultés incluent l’interpretation des poids dispersés pour
des objets avec multiples supports, l’ambiguïté de poids entre des objets, la variation du poids
des personnes pendant les activités dynamiques, etc. Nous introduisons des nouvelles techniques,
partiellement inspirées du domaine de la vision par l’ordinateur, pour la détection, le suivi et la
reconnaissance des entités qui se trouvent sur le sol. Nous introduisons également des nouveaux
modes d’interaction entre les environnements équipés de tels capteurs aux sol, et les robots qui
évoluent dans ces environnements. Ceci permet l’interpretation non-intrusive des événements
qui ont lieu dans des environnements dotés d’une intelligence ambiante, avec des applications
dans l’assistance automatisée à domicile, l’aide aux personnes âgées, le diagnostique continu de
la santé, la sécurité, et la navigation robotique.

Mots-clés: intelligence ambiante, réseau de capteurs au sol, détection de pression à haute
résolution, suivi, localisation, reconnaissance des objets, navigation robotique, exploration multi-
robot distribuée, stigmergie.

Abstract

This thesis explores the capabilities of an ambient intelligence equipped with a load-sensing
floor. It deals with the problem of perceiving the environment through a network of low-resolution
sensors. Challenges include the interpretation of spread loads for objects wit multiple points
of support, weight ambiguities between objects, variation of persons’ weight during dynamic
activities, etc. We introduce new techniques, partly inspired from the field of computer vision,
for detecting, tracking and recognising the entities located on the floor. We also introduce new
modes of interaction between environments equipped with such floor sensors and robots evolving
inside them. This enables non-intrusive interpretation of events happening inside environments
with embedded ambient intelligence, with applications in assisted living, senile care, continuous
health diagnosis, home security, and robotic navigation.

Keywords: ambient intelligence, sensing floors, high-resolution pressure sensing, tracking,
localisation, recognition, robotic navigation, distributed multi-robot exploration, stigmergy.
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