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Introduction
 Robotics:

◦ Mechanics (moving parts, structure),
◦ Electronics (motorize, power, control),
◦ Software (OS, drivers, and the rest);

 To perform robotic tasks:
◦ Make sense of sensor data
◦ Decide on motor commands

=> information processing

Introduction   Learning   Probabilistic Reasoning
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Examples
 Robocup: robots playing football

◦ Find where the ball is and how it's moving,
◦ Know where you are in the field,
◦ Know where your teammates are and what they 

are doing,
◦ Same for opponents,
◦ Plan some strategy,
◦ Move and react to changing conditions,
◦ Kick...
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Examples
 Robocup:

◦ Ball: color segmentation (which colors?);
◦ Localization: field line extraction, beacons;
◦ Teammates: communication;
◦ Opponents: extraction of opponents, inference on 

actions;
◦ Planning: prediction (using experience);
◦ Moving, kicking: trained control.

Introduction   Learning   Probabilistic Reasoning



A
u
to

n
o
m

o
u
s 

S
y
st

e
m

s 
La

b

Dr. Francis Colas — Learning and Probabilistic Reasoning — 5

Summary
 Coping with ignorance:

◦ Things that we don't know,
◦ Things that we don't know how to do;

 2 set of tools:
◦ Machine learning: adapt to experience,
◦ Probabilistic reasoning: reason with uncertainties.

Introduction   Learning   Probabilistic Reasoning
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Learning: introduction

 Easy to sketch algorithms
◦ e.g. color segmentation

 Difficult to tune to real conditions
◦ Which colors, which threshold?

 Machine learning:
◦ Adapt algorithms to empirical data,
◦ Different things can be learned,
◦ Different ways of learning,
◦ Evaluation of learning.
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A
u
to

n
o
m

o
u
s 

S
y
st

e
m

s 
La

b

Dr. Francis Colas — Learning and Probabilistic Reasoning — 7

What can we learn?
 Several things you can learn:

◦ Simple parameters
 e.g. color threshold

◦ Regression analysis
 Relationship between variables, curve fitting
 e.g. finding ball trajectory

◦ Clustering or classification of data
 Separate complex data into several groups
 e.g. teammate of opponent? ball or background?

Introduction   Learning   Probabilistic Reasoning
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What can we learn?

Regression

Clustering

Classification

Introduction   Learning   Probabilistic Reasoning
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Regression
 Problems:

◦ Find the best curve to fit the data,
◦ Predict the value for a new data point;

 Formulation:
◦ Let X be a set of points,
◦ Let y be their corresponding value,
◦ Find f such as f(X)≈ y
◦ Find y for a new X,
◦ Evaluate using goodness of fit.
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Regression
 Overfitting:

◦ Going through all points is good
◦ But bad generalization
◦ Complex model

 Techniques:
◦ Linear regression (class 5),
◦ Gaussian processes (class 6).
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Clustering
 Problems:

◦ Group points into unknown classes,
◦ Predict the class for a new data point;

 Formulation:
◦ Let X be a set of points,
◦ Define a set K of classes,
◦ Find the association between X and k.
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Clustering
 Ill-posed problem:

◦ How many clusters?
◦ Shape of clusters?

 Techniques:
◦ k-means (class 10),
◦ Expectation Maximization (class 11). 
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Classification
 Problems:

◦ Group points into known classes,
◦ Predict the class for a new data point;

 Formulation:
◦ Let X be a set of points,
◦ Let k be their respective class (or label),
◦ Find the association between X and k,
◦ Find k for a new X,
◦ Evaluate using rate of classification.
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Classification
 Difference with clustering

◦ Classes are known
◦ Association is known

 Techniques:
◦ Support Vector Machines (class 6),
◦ Principal Components Analysis (class 13).
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Different ways to learn
 Supervised learning:

◦ Labels or target values known
◦ e.g. regression, classification;

 Unsupervised learning:
◦ No labels
◦ e.g. clustering;

 Reinforcement learning:
◦ Target value unknown
◦ Reward or feedback given.
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Evaluating learning
 Comparing different models:

◦ Basis function for regression,
◦ Shapes of classes for classification;

 Cross-validation
◦ Partition the data set
◦ Optimize on the training data,
◦ Evaluate on the test data,
◦ You can do that several times by changing 

partitions.
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Summary on learning
 Learn different things:

◦ Relationship between variables,
◦ Clusters,
◦ Classes...

 Different ways:
◦ Supervised,
◦ Unsupervised...

 Be careful with results:
◦ Overfitting,
◦ Cross-validation;

 Extracting knowledge from data.
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Probabilistic reasoning
 Issues:

◦ Sensor may fail,
◦ Models are inaccurate,
◦ Unexpected things happen,
◦ =>Several sources of uncertainty;

 Represent uncertainty as probability
◦ Probability values for different possibilities,
◦ Reasoning by probabilistic computations;

Introduction   Learning   Probabilistic Reasoning
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Probabilistic reasoning
 Variables:

◦ Relevant objects or quantities,
 Probability distributions:

◦ Summarize the uncertainty on the values of 
variables,

 Relationship between variables:
◦ Joint probability distribution,
◦ Conditional probability distribution,
◦ Independence;

 Inference rules:
◦ Compute the (conditional) distribution over some 

variables based on some other distributions

Introduction   Learning   Probabilistic Reasoning
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Variables
 Events, proposition, values...
 Examples:

◦ result of a coin toss: 
◦ dice outcome: 
◦ distance to a beacon: 
◦ pose:
◦ ...

 Domain can be discrete or continuous
 Can be vectors
 Can be conjunction of variable
 Can be mixed

C∈{Head ,Tail}
D∈{1 ,2 ,3 ,4 ,5 ,6}

D∈ℝ
+

P= x , y ,∈ℝ×ℝ×[0 ;2]

Introduction   Learning   Probabilistic Reasoning
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Probability distributions
 Discrete variables:

◦ Coin:

◦ Dice:
Head Tail
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P Head=0.5 ; P Tail=0.5 P Head =0.4 ; P Tail=0.6
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0.2

Introduction   Learning   Probabilistic Reasoning



A
u
to

n
o
m

o
u
s 

S
y
st

e
m

s 
La

b

Dr. Francis Colas — Learning and Probabilistic Reasoning — 22

Probability distributions
 Continuous: density function

◦ Gaussian:

◦ Multivariate Gaussian (on a vector)
◦ Beta or Dirichlet
◦ Exponential
◦ ...

x∈ℝ , px =
1

22
e
−

1
2
 x−2

2
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Relationship between variables
 Joint probability:

◦ Probability of both variables having specific values:
◦ e.g. Head and 1, Tail and 1, Head and 2, Tail and 

2...

1 2 3 4 5 6
0

0.02
0.04
0.06
0.08
0.1

Head

Tail

 Conditional probability distribution:
◦ Probability distribution over one variable given 

some other variable has a specific value.
◦ e.g. Head given 2, Tail given 2

p X∣Y :=
p X ,Y 

p Y 

p X∧Y  p X ,Y 

Introduction   Learning   Probabilistic Reasoning
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Relationship between variables
 Independence:

◦ Value of X does not give information on Y,
◦ X and Y are independent iff:
◦ e.g.: coin and dice;

 Conditional independence:
◦ Given the value of Z, the value of X does not give 

information on Y,
◦ X and Y are independent given Z iff:

◦ Equivalent to:

p X ,Y =p X  pY 

p X ,Y∣Z = pX∣Z  p Y∣Z 

p X∣Z =p X∣Y ,Z ∧pY∣Z = pY∣X ,Z 

Introduction   Learning   Probabilistic Reasoning
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Complexity
 2 variables:

◦ P(A, B): distribution over the Cartesian product of A 
and B,

◦ In case of independence:
 Distribution over A
 Distribution over B

 3 variables:
◦ Conditional independence:
 Distribution over A
 Conditional distribution over B given A
 Conditional distribution over C given A

 (Cond.) Independence reduces complexity

Introduction   Learning   Probabilistic Reasoning
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Inference rules
 Sum rule:

◦ Law of total probability,
◦ Normalization of probability distributions:

 Product rule:
◦ Bayes' theorem,
◦ From joint to conditional:

P A =∑
B

P A ,B

P A ,B=P A∣BP B 

Introduction   Learning   Probabilistic Reasoning
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Inference rules
 We can deduce:

 General inference:

P B =∑
A

P A ,B

P A , B=P A∣BP B=P B∣A P A 

P B =∑
A

P B∣A P A 

P A∣B=
P B∣A P A 

P B

P S∣K =

∑
F

P S ,F , K 

∑
S , F

P S ,F , K 

Introduction   Learning   Probabilistic Reasoning
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Inference
 General inference:

◦ Joint distribution over all variables,
◦ Let S be the subset of variables you want,
◦ Let K be the subset of variables whose value you 

know,
◦ Let F be the rest of the variables,
◦ Then:

 Problems:
◦ Specify the joint probability distribution,
◦ High complexity in high dimensional space.

P S∣K =

∑
F

P S ,F , K 

∑
S , F

P S ,F , K 
∝∑

F

P S ,F ,K 
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Example
 Noisy sensor:

◦ Door detector
◦ Specify if there is a door or not: S
◦ 20% chance to not see the door and 10% chance to 

hallucinate it:

◦ A priori, 60% chance there is a door:
◦ Sensor says no door, is there one or not?

P(S | D) S=True S=False

Door 0.8 0.2

No door 0.1 0.9

P D=True=0.6

P D∣S=False ?
P D∣S=False = P D=True∣S=False

P D=False∣S=False=
0.2∗0.6

0.2∗0.60.9∗0.4
0.9∗0.4

0.2∗0.60.9∗0.4
=0.250.75

Introduction   Learning   Probabilistic Reasoning



A
u
to

n
o
m

o
u
s 

S
y
st

e
m

s 
La

b

Dr. Francis Colas — Learning and Probabilistic Reasoning — 30

Example
 Sensor fusion:

◦ Adding a second sensor, T:

◦ Naive fusion:
◦ If they both see a door:

◦ More certainty than any of the sensors.

P(T | D) T=True T=False

Door 0.95 0.05

No door 0.05 0.95

P D ,S ,T =P D P S∣D P T∣D 

P D∣S ,T =
0.6∗0.8∗0.95

0.6∗0.8∗0.950.4∗0.1∗0.05
0.4∗0.1∗0.05

0.6∗0.8∗0.950.4∗0.1∗0.05
=0.9960.004 
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Summary: Probabilistic Reasoning
 Aim:

◦ Transform uncertainty into probability;
 Reasoning:

◦ Specify the joint distribution,
◦ Reduce complexity with (cond.) independence
◦ General inference;

 Properties
◦ Combine uncertain knowledge,
◦ Fusion can reduce uncertainty;

 Difficulties
◦ Computational complexity,
◦ Specification of joint.

Introduction   Learning   Probabilistic Reasoning



A
u
to

n
o
m

o
u
s 

S
y
st

e
m

s 
La

b

Dr. Francis Colas — Learning and Probabilistic Reasoning — 32

Summary
 Two techniques to cope with ignorance:
 Learning:

◦ Adapt algorithm to empirical data,
◦ Regression,
◦ Clustering,
◦ Classification;

 Probabilistic reasoning:
◦ Cope with inherent uncertainty,
◦ Inference.
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