Introduction to Learning and Probabilistic Reasoning

Dr. Francis Colas
Information Processing for Robotics
30.09.2011
Introduction

- Robotics:
 - Mechanics (moving parts, structure),
 - Electronics (motorize, power, control),
 - Software (OS, drivers, and the rest);

- To perform robotic tasks:
 - Make sense of sensor data
 - Decide on motor commands

=> information processing
Examples

- Robocup: robots playing football
 - Find where the ball is and how it's moving,
 - Know where you are in the field,
 - Know where your teammates are and what they are doing,
 - Same for opponents,
 - Plan some strategy,
 - Move and react to changing conditions,
 - Kick...
Examples

- Robocup:
 - Ball: color segmentation (which colors?);
 - Localization: field line extraction, beacons;
 - Teammates: communication;
 - Opponents: extraction of opponents, inference on actions;
 - Planning: prediction (using experience);
 - Moving, kicking: trained control.
Summary

- Coping with ignorance:
 - Things that we don't know,
 - Things that we don't know how to do;

- 2 set of tools:
 - Machine learning: adapt to experience,
 - Probabilistic reasoning: reason with uncertainties.
Learning: introduction

- Easy to sketch algorithms
 - e.g. color segmentation

- Difficult to tune to real conditions
 - Which colors, which threshold?

- Machine learning:
 - Adapt algorithms to empirical data,
 - Different things can be learned,
 - Different ways of learning,
 - Evaluation of learning.
What can we learn?

- Several things you can learn:
 - Simple parameters
 - e.g. color threshold
 - Regression analysis
 - Relationship between variables, curve fitting
 - e.g. finding ball trajectory
 - Clustering or classification of data
 - Separate complex data into several groups
 - e.g. teammate of opponent? ball or background?
What can we learn?

- Regression
- Clustering
- Classification
Regression

- Problems:
 - Find the best curve to fit the data,
 - Predict the value for a new data point;

- Formulation:
 - Let X be a set of points,
 - Let y be their corresponding value,
 - Find f such as $f(X) \approx y$
 - Find y for a new X,
 - Evaluate using goodness of fit.
Regression

- Overfitting:
 - Going through all points is good
 - But bad generalization
 - Complex model

- Techniques:
 - Linear regression (class 5),
 - Gaussian processes (class 6).
Clustering

- Problems:
 - Group points into unknown classes,
 - Predict the class for a new data point;

- Formulation:
 - Let X be a set of points,
 - Define a set K of classes,
 - Find the association between X and k.
Clustering

- Ill-posed problem:
 - How many clusters?
 - Shape of clusters?

- Techniques:
 - k-means (class 10),
 - Expectation Maximization (class 11).
Classification

- Problems:
 - Group points into known classes,
 - Predict the class for a new data point;

- Formulation:
 - Let X be a set of points,
 - Let k be their respective class (or label),
 - Find the association between X and k,
 - Find k for a new X,
 - Evaluate using rate of classification.
Classification

- Difference with clustering
 - Classes are known
 - Association is known

- Techniques:
 - Support Vector Machines (class 6),
 - Principal Components Analysis (class 13).
Different ways to learn

- Supervised learning:
 - Labels or target values known
 - e.g. regression, classification;

- Unsupervised learning:
 - No labels
 - e.g. clustering;

- Reinforcement learning:
 - Target value unknown
 - Reward or feedback given.
Evaluating learning

- Comparing different models:
 - Basis function for regression,
 - Shapes of classes for classification;

- Cross-validation
 - Partition the data set
 - Optimize on the *training data*,
 - Evaluate on the *test data*,
 - You can do that several times by changing partitions.
Summary on learning

- Learn different things:
 - Relationship between variables,
 - Clusters,
 - Classes...

- Different ways:
 - Supervised,
 - Unsupervised...

- Be careful with results:
 - Overfitting,
 - Cross-validation;

- Extracting knowledge from data.
Probabilistic reasoning

- **Issues:**
 - Sensor may fail,
 - Models are inaccurate,
 - Unexpected things happen,
 - => Several sources of uncertainty;

- Represent uncertainty as probability
 - Probability values for different possibilities,
 - Reasoning by probabilistic computations;
Probabilistic reasoning

- Variables:
 - Relevant objects or quantities,

- Probability distributions:
 - Summarize the uncertainty on the values of variables,

- Relationship between variables:
 - Joint probability distribution,
 - Conditional probability distribution,
 - Independence;

- Inference rules:
 - Compute the (conditional) distribution over some variables based on some other distributions
Variables

- Events, proposition, values...
- Examples:
 - result of a coin toss: $C \in \{\text{Head}, \text{Tail}\}$
 - dice outcome: $D \in \{1, 2, 3, 4, 5, 6\}$
 - distance to a beacon: $D \in \mathbb{R}^+$
 - pose: $P = (x, y, \theta) \in \mathbb{R} \times \mathbb{R} \times [0; 2\pi]$
 - ...

- Domain can be discrete or continuous
- Can be vectors
- Can be conjunction of variable
- Can be mixed
Probability distributions

- Discrete variables:
 - Coin:
 \[
 P(\text{Head}) = 0.5; \quad P(\text{Tail}) = 0.5
 \]
 \[P(\text{Head}) = 0.4; \quad P(\text{Tail}) = 0.6\]
 - Dice:
Probability distributions

- Continuous: density function
 - Gaussian:
 \[p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \]
 - Multivariate Gaussian (on a vector)
 - Beta or Dirichlet
 - Exponential
 - ...
Relationship between variables

- Joint probability:
 - Probability of both variables having specific values:
 - e.g. Head and 1, Tail and 1, Head and 2, Tail and 2...

\[p(X \land Y) \quad p(X, Y) \]

- Conditional probability distribution:
 - Probability distribution over one variable given some other variable has a specific value.
 - e.g. Head given 2, Tail given 2

\[p(X \mid Y) = \frac{p(X, Y)}{p(Y)} \]
Relationship between variables

- **Independence:**
 - Value of X does not give information on Y,
 - X and Y are independent iff: $p(X, Y) = p(X)p(Y)$
 - e.g.: coin and dice;

- **Conditional independence:**
 - Given the value of Z, the value of X does not give information on Y,
 - X and Y are independent given Z iff:
 $$p(X, Y|Z) = p(X|Z)p(Y|Z)$$
 - Equivalent to:
 $$p(X|Z) = p(X|Y, Z) \land p(Y|Z) = p(Y|X, Z)$$
Complexity

- **2 variables:**
 - \(P(A, B) \): distribution over the Cartesian product of \(A \) and \(B \),
 - In case of independence: \(P(A, B) = P(A)P(B) \)
 - Distribution over \(A \)
 - Distribution over \(B \)

- **3 variables:**
 - Conditional independence:
 - Distribution over \(A \)
 - Conditional distribution over \(B \) given \(A \)
 - Conditional distribution over \(C \) given \(A \)

- (Cond.) Independence reduces complexity
Inference rules

- **Sum rule:**
 - Law of total probability,
 - Normalization of probability distributions:
 \[P(A) = \sum_B P(A, B) \]

- **Product rule:**
 - Bayes' theorem,
 - From joint to conditional:
 \[P(A, B) = P(A|B)P(B) \]
Inference rules

- We can deduce:

\[P(A, B) = P(A|B)P(B) = P(B|A)P(A) \]

\[P(B) = \sum_A P(A, B) \]

\[P(B) = \sum_A P(B|A)P(A) \]

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

- General inference:

\[P(S|K) = \frac{\sum F P(S, F, K)}{\sum_{S,F} P(S, F, K)} \]
Inference

- General inference:
 - Joint distribution over all variables,
 - Let S be the subset of variables you want,
 - Let K be the subset of variables whose value you know,
 - Let F be the rest of the variables,
 - Then:

$$P(S|K) = \sum_{F} \frac{P(S,F,K)}{\sum_{S,F} P(S,F,K)} \propto \sum_{F} P(S,F,K)$$

- Problems:
 - Specify the joint probability distribution,
 - High complexity in high dimensional space.
Example

- Noisy sensor:
 - Door detector
 - Specify if there is a door or not: S
 - 20% chance to not see the door and 10% chance to hallucinate it:

<table>
<thead>
<tr>
<th>$P(S \mid D)$</th>
<th>$S=True$</th>
<th>$S=False$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>No door</td>
<td>0.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- A priori, 60% chance there is a door: $P(D=True)=0.6$
- Sensor says no door, is there one or not?

$$P(D\mid S=False)=\frac{P(D\mid S=False)}{P(D\mid S=False)\cdot \frac{0.2\cdot 0.6}{0.2\cdot 0.6 + 0.9\cdot 0.4}} = \left(\frac{0.2\cdot 0.6}{0.2\cdot 0.6 + 0.9\cdot 0.4}\right) = \left(\frac{0.25}{0.75}\right) = 0.25$$
Example

- Sensor fusion:
 - Adding a second sensor, T:

	$T=\text{True}$	$T=\text{False}$
Door	0.95	0.05
No door	0.05	0.95

 - Naive fusion: $\Pr(D,S,T) = \Pr(D)\Pr(S|D)\Pr(T|D)$
 - If they both see a door:

 $$\Pr(D|S,T) = \begin{pmatrix}
 0.6 \times 0.8 \times 0.95 \\
 0.6 \times 0.8 \times 0.95 + 0.4 \times 0.1 \times 0.05 \\
 0.4 \times 0.1 \times 0.05 \\
 0.6 \times 0.8 \times 0.95 + 0.4 \times 0.1 \times 0.05
 \end{pmatrix} = \begin{pmatrix} 0.996 \\
 0.004 \end{pmatrix}$$

 - More certainty than any of the sensors.
Summary: Probabilistic Reasoning

- **Aim:**
 - Transform uncertainty into probability;

- **Reasoning:**
 - Specify the joint distribution,
 - Reduce complexity with (cond.) independence
 - General inference;

- **Properties**
 - Combine uncertain knowledge,
 - Fusion can reduce uncertainty;

- **Difficulties**
 - Computational complexity,
 - Specification of joint.
Summary

- Two techniques to cope with ignorance:
 - Learning:
 - Adapt algorithm to empirical data,
 - Regression,
 - Clustering,
 - Classification;
 - Probabilistic reasoning:
 - Cope with inherent uncertainty,
 - Inference.