Introduction to Learning and Probabilistic Reasoning

Dr. Francis Colas Information Processing for Robotics 30.09.2011

Introduction

- Robotics:
 - Mechanics (moving parts, structure),
 - Electronics (motorize, power, control),
 - Software (OS, drivers, and the rest);
- To perform robotic tasks:
 Make sense of sensor data
 - Decide on motor commands

=> information processing

Examples

- Robocup: robots playing football
 - Find where the ball is and how it's moving,
 - Know where you are in the field,
 - Know where your teammates are and what they are doing,
 - Same for opponents,
 - Plan some strategy,
 - Move and react to changing conditions,
 - Kick...

Examples

- Robocup:
 - Ball: color segmentation (which colors?);
 - Localization: field line extraction, beacons;
 - Teammates: communication;
 - Opponents: extraction of opponents, inference on actions;
 - Planning: prediction (using experience);
 - Moving, kicking: trained control.

Summary

- Coping with ignorance:
 - Things that we don't know,
 - Things that we don't know how to do;
- 2 set of tools:
 - Machine learning: adapt to experience,
 - Probabilistic reasoning: reason with uncertainties.

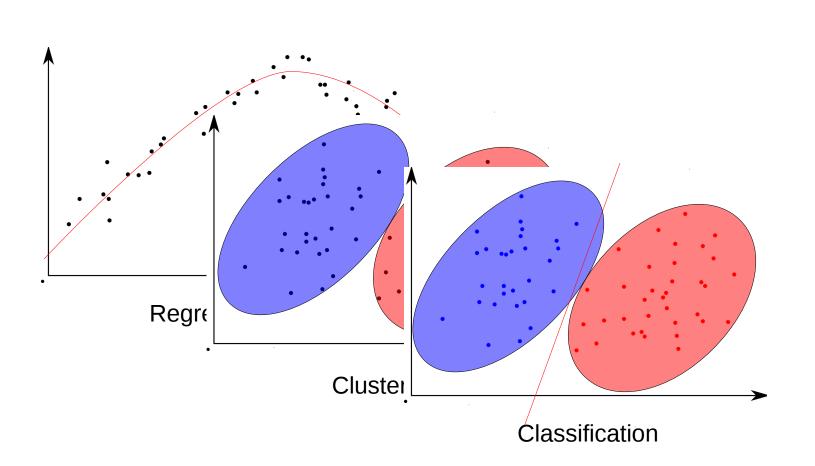
Learning: introduction

- Easy to sketch algorithms
 - e.g. color segmentation
- Difficult to tune to real conditions
 - Which colors, which threshold?
- Machine learning:
 - Adapt algorithms to empirical data,
 - Different things can be learned,
 - Different ways of learning,
 - Evaluation of learning.

What can we learn?

- Several things you can learn:
 - Simple parameters
 - e.g. color threshold
 - Regression analysis
 - Relationship between variables, curve fitting
 - e.g. finding ball trajectory
 - Clustering or classification of data
 - Separate complex data into several groups
 - e.g. teammate of opponent? ball or background?

What can we learn?



Regression

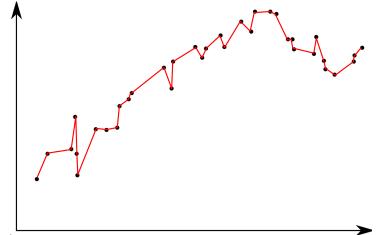
- Problems:
 - Find the best curve to fit the data,
 - Predict the value for a new data point;

Formulation:

- Let X be a set of points,
- $^{\circ}$ Let y be their corresponding value,
- Find f such as $f(X) \approx y$
- Find y for a new X,
- Evaluate using goodness of fit.

Regression

- Overfitting:
 - Going through all points is good
 - But bad generalization
 - Complex model



- Techniques:
 - Linear regression (class 5),
 - Gaussian processes (class 6).

Clustering

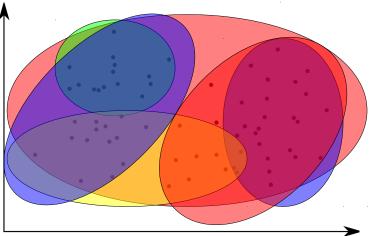
- Problems:
 - Group points into unknown classes,
 - Predict the class for a new data point;

Formulation:

- Let *X* be a set of points,
- Define a set K of classes,
- Find the association between X and k.

Clustering

- III-posed problem:
 - How many clusters?
 - Shape of clusters?



- Techniques:
 - *k*-means (class 10),
 - Expectation Maximization (class 11).

Classification

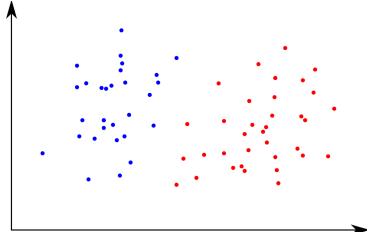
- Problems:
 - Group points into known classes,
 - Predict the class for a new data point;

Formulation:

- Let X be a set of points,
- Let k be their respective class (or label),
- Find the association between X and k,
- \circ Find k for a new X,
- Evaluate using rate of classification.

Classification

- Difference with clustering
 - Classes are known
 - Association is known



Techniques:

- Support Vector Machines (class 6),
- Principal Components Analysis (class 13).

Different ways to learn

- Supervised learning:
 - Labels or target values known
 - e.g. regression, classification;
- Unsupervised learning:
 - No labels
 - e.g. clustering;
- Reinforcement learning:
 - Target value unknown
 - Reward or feedback given.

Systems Lak

Autonomous

Evaluating learning

- Comparing different models:
 - Basis function for regression,
 - Shapes of classes for classification;

Cross-validation

- Partition the data set
- Optimize on the *training data*,
- Evaluate on the *test data*,
- You can do that several times by changing partitions.

Summary on learning

- Learn different things:
 - Relationship between variables,
 - Clusters,
 - Classes…
- Different ways:
 - Supervised,
 - Unsupervised...
- Be careful with results:
 - Overfitting,
 - Cross-validation;
- Extracting knowledge from data.

Probabilistic reasoning

Issues:

- Sensor may fail,
- Models are inaccurate,
- Unexpected things happen,
- =>Several sources of uncertainty;
- Represent uncertainty as probability
 - Probability values for different possibilities,
 - Reasoning by probabilistic computations;

Probabilistic reasoning

Variables:

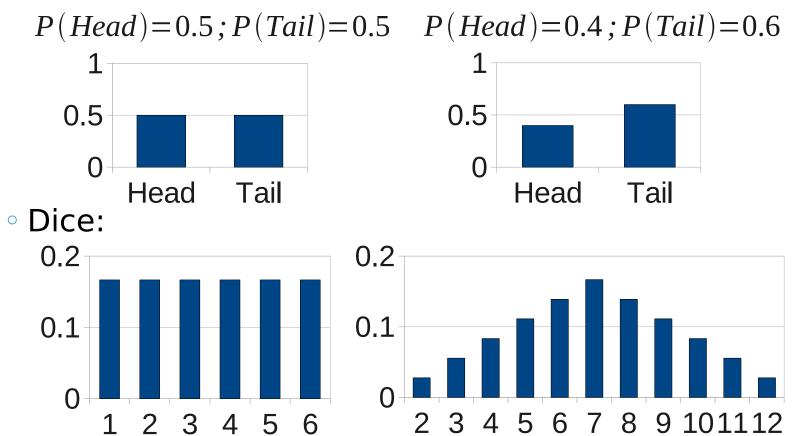
- Relevant objects or quantities,
- Probability distributions:
 - Summarize the uncertainty on the values of variables,
- Relationship between variables:
 - Joint probability distribution,
 - Conditional probability distribution,
 - Independence;
- Inference rules:
 - Compute the (conditional) distribution over some variables based on some other distributions

Variables

- Events, proposition, values...Examples:
 - result of a coin toss: $C \in \{Head, Tail\}$
 - dice outcome: $D \in \{1, 2, 3, 4, 5, 6\}$
 - \circ distance to a beacon: $D \in \mathbb{R}^+$
 - pose: $P = (x, y, \theta) \in \mathbb{R} \times \mathbb{R} \times [0; 2\pi]$
 - 0
- Domain can be discrete or continuous
- Can be vectors
- Can be conjunction of variable
- Can be mixed

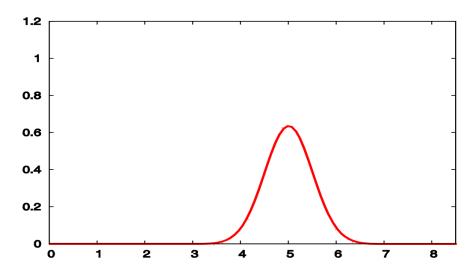
Probability distributions

- Discrete variables:
 - Coin:



Probability distributions

• Continuous: density function • Gaussian: $x \in \mathbb{R}, p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$

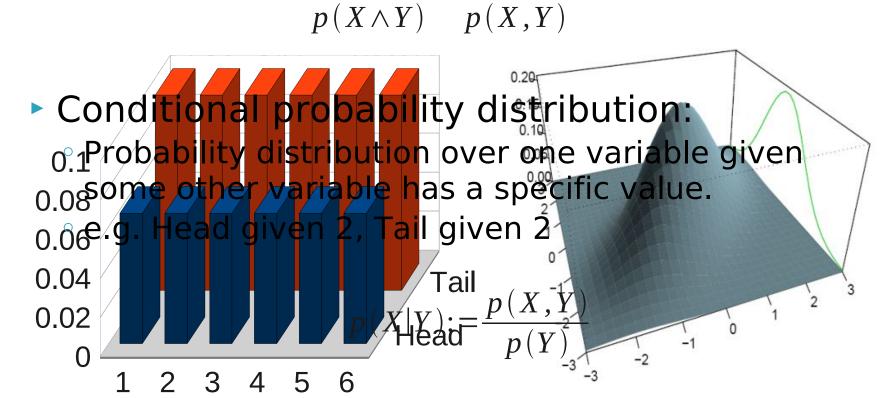


- Multivariate Gaussian (on a vector)
- Beta or Dirichlet
- Exponential

0

Relationship between variables

- Joint probability:
 - Probability of both variables having specific values:
 - e.g. Head and 1, Tail and 1, Head and 2, Tail and 2...



Relationship between variables

Independence:

- Value of X does not give information on Y,
- X and Y are independent iff: p(X, Y) = p(X) p(Y)
- e.g.: coin and dice;
- Conditional independence:
 - Given the value of Z, the value of X does not give information on Y,
 - X and Y are independent given Z iff: p(X,Y|Z) = p(X|Z)p(Y|Z)
 - Equivalent to:

$$p(X|Z) = p(X|Y,Z) \land p(Y|Z) = p(Y|X,Z)$$

Complexity

- 2 variables:
 - *P*(*A*, *B*): distribution over the Cartesian product of *A* and *B*,
 - In case of independence: P(A,B) = P(A)P(B)
 - Distribution over A
 - Distribution over *B*
- 3 variables:
 - Conditional independence:
 - Distribution over A P(A,B,C)=P(A)P(B|A)P(C|A)
 - Conditional distribution over *B* given *A*
 - Conditional distribution over C given A
- Cond.) Independence reduces complexity

Inference rules

- Sum rule:
 - Law of total probability,
 - Normalization of probability distributions:

$$P(A) = \sum_{B} P(A, B)$$

- Product rule:
 - Bayes' theorem,
 - From joint to conditional:

P(A,B) = P(A|B)P(B)

Inference rules

We can deduce:

P(A,B) = P(A|B)P(B) = P(B|A)P(A)

$$P(B) = \sum_{A} P(A,B)$$
$$P(B) = \sum_{A} P(B|A)P(A)$$
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

General inference:

$$P(S|K) = \frac{\sum_{F} P(S,F,K)}{\sum_{S,F} P(S,F,K)}$$

Dr. Francis Colas — Learning and Probabilistic Reasoning — 27

Inference

- General inference:
 - Joint distribution over all variables,
 - Let S be the subset of variables you want,
 - Let K be the subset of variables whose value you know,
 - Let F be the rest of the variables,
 - Then:

$$P(S|K) = \frac{\sum_{F} P(S,F,K)}{\sum_{S,F} P(S,F,K)} \propto \sum_{F} P(S,F,K)$$

- Problems:
 - Specify the joint probability distribution,
 - High complexity in high dimensional space.

Example

- Noisy sensor:
 - Door detector
 - Specify if there is a door or not: S
 - 20% chance to not see the door and 10% chance to hallucinate it:

$P(S \mid D)$	<i>S</i> =True	S=False
Door	0.8	0.2
No door	0.1	0.9

- \circ A priori, 60% chance there is a door: P(D=True)=0.6
- Sensor says no door, is there one or not?

$$P(D|S=False) = \begin{pmatrix} P(D=True|S=False) \\ P(D=False|S=False) \\ P(D=False|S=False) \end{pmatrix} = \begin{pmatrix} 0.2*0.6 \\ 0.2*0.6+0.9*0.4 \\ 0.9*0.4 \\ 0.2*0.6+0.9*0.4 \end{pmatrix} = \begin{pmatrix} 0.25 \\ 0.75 \end{pmatrix}$$

Example

Sensor fusion:

• Adding a second sensor, *T*:

$P(T \mid D)$	<i>T</i> =True	<i>T</i> =False
Door	0.95	0.05
No door	0.05	0.95

- Naive fusion: P(D,S,T)=P(D)P(S|D)P(T|D)
- If they both see a door:

$$P(D|S,T) = \begin{pmatrix} 0.6*0.8*0.95\\ \hline 0.6*0.8*0.95+0.4*0.1*0.05\\ \hline 0.4*0.1*0.05\\ \hline 0.6*0.8*0.95+0.4*0.1*0.05 \end{pmatrix} = \begin{pmatrix} 0.996\\ 0.004 \end{pmatrix}$$

More certainty than any of the sensors.

Dr. Francis Colas — Learning and Probabilistic Reasoning — 30

Summary: Probabilistic Reasoning

- Aim:
 - Transform uncertainty into probability;
- Reasoning:
 - Specify the joint distribution,
 - Reduce complexity with (cond.) independence
 - General inference;
- Properties
 - Combine uncertain knowledge,
 - Fusion can reduce uncertainty;
- Difficulties
 - Computational complexity,
 - Specification of joint.

Summary

- Two techniques to cope with ignorance:
- Learning:
 - Adapt algorithm to empirical data,
 - Regression,
 - Clustering,
 - Classification;
- Probabilistic reasoning:
 - Cope with inherent uncertainty,
 - Inference.

