Graphical models and Hidden Markov Models
\square
Dr. Francis Colas
7.10.2011

Introduction

Probabilistic reasoning:

- transform uncertainty into probabilities,
- specify the joint probability distribution,
- generic form for the inference;

But:

- complexity of the joint probability distribution,
- need independence or conditional independence.

Example

Let's have:

$$
P\left(X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}, \Omega, \Phi_{0}, \Phi_{1}, \boldsymbol{\Phi}_{2}\right)
$$

With 10 cases for each dimension:

$$
10^{20}-1=9,999,999,999,999,999,999
$$

With recursive application of Bayes' rule:

$$
\begin{array}{ll}
= & P(X) P(Y \mid X) P\left(V_{x} \mid X, Y\right) P\left(V_{z} \mid X, Y, V_{x}\right) P\left(R_{y} \mid X, Y, V_{x}, V_{z}\right) \\
\times & P\left(\Lambda \mid X, Y, V_{x}, V_{z}, R_{y}\right) P\left(\mathbf{T} \mid X, Y, V_{x}, V_{z}, R_{y}, \Lambda\right) P\left(\Omega \mid X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}\right) \\
\times & P\left(\Phi_{0} \mid X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}, \Omega\right) P\left(\Phi_{1} \mid X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}, \Omega, \Phi_{0}\right) \\
\times & P\left(\Phi_{2} \mid X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}, \Omega, \Phi_{0}, \Phi_{1}\right)
\end{array}
$$

Space complexity:

$$
\begin{aligned}
& (10-1)+(10-1) * 10+(10-1) * 10^{2}+(10-1) * 10^{3}+(10-1) * 10^{4} \\
+ & (10-1) * 10^{5}+\left(10^{3}-1\right) * 10^{6}+\left(10^{3}-1\right) * 10^{9} \\
+ & \left(10^{2}-1\right) * 10^{12}+\left(10^{4}-1\right) * 10^{14} \\
+ & \left(10^{2}-1\right) * 10^{18} \\
= & 9,999,999,999,999,999,999
\end{aligned}
$$

Adding conditional independence assumptions

Let's assume:

$$
\begin{aligned}
& P\left(X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}, \boldsymbol{\Omega}, \boldsymbol{\Phi}_{0}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right) \\
= & P(X) P(Y \mid X) P\left(V_{x}\right) P\left(V_{z}\right) P\left(R_{y}\right) \\
\times & P(\Lambda) P\left(\mathbf{T} \mid V_{x}, V_{z}, R_{y}\right) P\left(\Omega \mid V_{x}, V_{z}, R_{y}\right) \\
\times & P\left(\boldsymbol{\Phi}_{0} \mid \mathbf{T}, \Omega\right) P\left(\boldsymbol{\Phi}_{1} \mid X, Y, \mathbf{T}, \Omega\right) \\
\times & P\left(\boldsymbol{\Phi}_{2} \mid X, Y, \Lambda, \mathbf{T}, \Omega\right)
\end{aligned}
$$

Space complexity:

$$
\begin{aligned}
& (10-1)+(10-1) * 10+(10-1)+(10-1)+(10-1) \\
+ & (10-1)+\left(10^{3}-1\right) * 10^{3}+\left(10^{3}-1\right) * 10^{3} \\
+ & \left(10^{2}-1\right) * 10^{6}+\left(10^{4}-1\right) * 10^{8} \\
+ & \left(10^{2}-1\right) * 10^{9} \\
= & \quad 1,099,000,998,135 \\
< & 9,999,999,999,999,999,999
\end{aligned}
$$

Structure

Probabilistic reasoning:

- specification of the joint distribution,
- using independence assumptions,
- structure of the model;

But:

- algebraic formulation,
- need for a graphical representation.

Graphical models

Aim:

- diagrammatic representation of a joint probability distribution,
- represent the dependency structure,
- nodes to represent variables,
- edges to represent dependency;

Different forms:

- Bayesian networks (belief network): directed acyclic graph,
- Markov random fields (Markov network): undirected graph,
- factor graph: undirected bipartite graph,
- chain graph: directed and undirected without directed cycles,

Why different forms?

Using graphical models:

- which probabilistic model for a given graph?
- which graph for a given probabilistic model?
- are there models that cannot be represented in a graph?

Issue:

- some probabilistic relationships may not be represented by some kinds of graphs,
- different kind of graphs can represent different kind of relationship,
- standard graphical representation don't represent all,
- but still useful.

Bayesian neworks

Definition:

- nodes for variables,
- edges for dependencies,
- directed acyclic graph;

Example:
Joint $\quad P(A, B, C)$

Bayes' rule $P(A) P(B \mid A) P(C \mid A, B)$

Bayesian network

Relationship between a Bayesian network and probabilities:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\prod_{i=1}^{n} P\left(V_{i} \mid P a\left(V_{i}\right)\right)
$$

where $\operatorname{Pa}\left(V_{i}\right)$ is the set of parents of V_{i}.
This implies:

- for the graph:
- directed edges (to have parents),
- no directed loop (iterated Bayes' rule);
- for the joint:
- only one variable on the left.

More complex example

Algebraic formulation:

$$
\begin{aligned}
& P\left(X, Y, V_{x}, V_{z}, R_{y}, \Lambda, \mathbf{T}, \Omega, \Phi_{0}, \boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}\right) \\
= & P(X) P(Y \mid X) P\left(V_{x}\right) P\left(V_{z}\right) P\left(R_{y}\right) \\
\times & P(\Lambda) P\left(\mathbf{T} \mid V_{x}, V_{z}, R_{y}\right) P\left(\Omega \mid V_{x}, V_{z}, R_{y}\right) \\
\times & P\left(\boldsymbol{\Phi}_{0} \mid \mathbf{T}, \Omega\right) P\left(\boldsymbol{\Phi}_{1} \mid X, Y, \mathbf{T}, \Omega\right) \\
\times & P\left(\boldsymbol{\Phi}_{2} \mid X, Y, \Lambda, \mathbf{T}, \Omega\right)
\end{aligned}
$$

Graphical representation:

Additional elements

Plate:

- series of variables with equal dependencies:

For example:

$$
P\left(M, O_{1}, \cdots, O_{N}\right)=P(M) \prod_{i=1}^{N} P\left(O_{i} \mid M\right)
$$

Additional elements

Hyperparameters:

- probability distribution which depends on explicit parameters:

For example:

$$
P\left(S, O \mid \sigma^{2}\right)=P(S) P\left(O \mid S, \sigma^{2}\right)
$$

Additional elements

Observed variables:

- signaling which variables are observed:

For example:

$$
P(S \mid O) \propto P(S) P(O \mid S)
$$

Examples

Back to the doors:

$$
P(D \mid S) \propto P(D) P(S \mid D)
$$

Examples

Back to the doors:

$$
P(D \mid S) \propto P(D) P(S \mid D)
$$

$$
P(D \mid S, T) \propto P(D) P(S \mid D) P(T \mid D)
$$

Independence in Bayesian networks

$$
\begin{aligned}
& P(A, B, C, D, E) \\
= & P(A) P(B) P(C \mid A, B) \\
\times & P(D \mid B) P(E \mid C) P(F \mid D)
\end{aligned}
$$

Assumptions:

- $A \Perp B$,
- $D \Perp A, C \mid B$,
- $E \Perp A, B, D \mid C$,
- $F \Perp A, B, C, E \mid D$;

Independence in Bayesian networks

$$
\begin{aligned}
& P(A, B, C, D, E) \\
= & P(A) P(B) P(C \mid A, B) \\
\times & P(D \mid B) P(E \mid C) P(F \mid D)
\end{aligned}
$$

Assumptions:

- $A \Perp B$,
- $D \Perp A, C \mid B$,
- $E \Perp A, B, D \mid C$,
- $F \Perp A, B, C, E \mid D$;

We have, for example:

- $F \Perp B \mid D$,
- $E \Perp F \mid B$,
- $A \Perp B \mid F$,
- $A \Perp D$,
- ...

Independence in Bayesian networks

$$
\begin{aligned}
& P(A, B, C, D, E) \\
= & P(A) P(B) P(C \mid A, B) \\
\times & P(D \mid B) P(E \mid C) P(F \mid D)
\end{aligned}
$$

Assumptions:

- $A \Perp B$,
- $D \Perp A, C \mid B$,
- $E \Perp A, B, D \mid C$,
- $F \Perp A, B, C, E \mid D$;

But not:

- $A \Perp B \mid C$,
- $F \Perp B \mid E$,
- $C \Perp D \mid E$,
- ...

d-separation

In a graph:

- S_{1}, S_{2}, S_{3} non intersecting subsets of nodes;
- a path from S_{1} to S_{2} is blocked by S_{3} if it contains a node such that either:
- the node is in S_{3} and is head-to-tail or tail-to-tail,
- or the node is head-to-head and neither the node or its descendants are in S_{3};
- if all paths between S_{1} and S_{2} are blocked by S_{3} then S_{1} and S_{2} are d-separated by S_{3};

For a Bayesian network:

- d-separation \Leftrightarrow conditional independence of associated model.

Not true for arbitrary graphs and models.

Markov random fields

Bayesian networks:

- partial ordering between all variables,
- d-separation to indicate (cond.) independence,
- great in a lot of cases;

What with: pixels of a camera?

- pixels of a camera?
- cells in space?

Markov random fields

Markov random field:

- undirected graphical model;
d-separation and independence:
- no head-to-head issue,
- a path is blocked by S_{3} if it contains a node in S_{3},
- Markov blanket: set of neighbors;

Joint probability:

- not using Bayes' rule,
- product of potential functions over cliques.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{V}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{v}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{v}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{c} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{v}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{V}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{v}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

$$
P(A, B, C, D, E, F)=\frac{1}{Z} \phi_{A B C D}(A, B, C, D) \phi_{C D E F}(C, D, E, F)
$$

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{v}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other. Maximal clique: clique not contained into another clique.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{V}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

Joint probability distribution

Factorization:

$$
P\left(V_{1}, V_{2}, \ldots, V_{n}\right)=\frac{\prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)}{\sum_{\mathbf{V}^{\prime}} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}^{\prime}\right)}=\frac{1}{Z} \prod_{C} \phi_{C}\left(\mathbf{V}_{C}\right)
$$

where \mathbf{V}_{C} are the variables in each of the maximal cliques C and ϕ_{C} the potential function of C.
Clique: set of nodes all connected to each other.
Maximal clique: clique not contained into another clique.

$$
P(A, B, C, D, E, F)=\frac{1}{Z} \phi_{A B}(A, B) \phi_{A C}(A, C) \phi_{B D}(B, D) \phi_{C D}(C, D) \phi_{C E}(C, E) \phi_{D F}(D, F) \phi_{E F}(E, F)
$$

Expressivity

Some models can be perfectly expressed by:

- Bayesian networks,
- Markov random fields,
- both,
- none;

Expressivity

Expressivity

$$
A \not \Perp B \mid C
$$

Expressivity

Expressivity

Expressivity

$A \notin B \mid C$

$A \Perp B \mid C$

$A \Perp B \mid C, D$

$A \notin B \mid C, D$

Inference

Inference in graphical models:

- similar to algebraic representation:
- summation over free variables,
- exploit independence,
- rearrange sums;

On trees:

- message passing,
- sum-product algorithm,
- belief propagation;

On general graphs:

- junction tree (exact but can be slow),
- loopy belief propagation (approximate).

Summary on graphical models

Graphical models:

- graphical representation of probabilistic models,
- represent dependencies,
- different types,
- same inference problems;

Bayesian networks:

- directed acyclic graphs,
- direct link with Bayes' rule;

Markov random fields:

- undirected graphs,
- factorization using potentials on cliques.

Time

So far:

- probabilistic models,
- graphical representation,
- inference on variables;

What about:

- data series,
- time,

Dynamic Bayesian networks

Often you need to:

- take change into account,
- have variables whose value change with time,
- specify that relations are similar whichever instant you consider;

Solution:

- one variable per instant:

$$
P\left(S^{0}, D^{0}, S^{1}, D^{1}, S^{2}, D^{2}, \ldots, S^{T}, D^{T}\right)
$$

But:

- specify huge joint distribution,
- inference by summing over many variables.

Markov assumption

Reduce dependency using Markov assumption:

- distribution over a state at time t is independent of former timesteps given the state at $t-1$.
(Markov random fields have a similar property but with their neighbors: the Markov blanket.)

Hidden Markov Model

H.M.M.:

- hidden: state are not observed directly,
- Markov: order-1 Markov assumption,
- discrete variables;

$$
P\left(S^{0}, O^{0}, \ldots, S^{T}, O^{t}\right)=P\left(S^{0}\right) P\left(O^{0} \mid S^{0}\right) \prod_{t=1}^{T} P\left(S^{t} \mid S^{t-1}\right) P\left(O^{t} \mid S^{t}\right)
$$

Hidden Markov Model

$$
P\left(S^{0}, O^{0}, \ldots, S^{T}, O^{t}\right)=P\left(S^{0}\right) P\left(O^{0} \mid S^{0}\right) \prod_{t=1}^{T} P\left(S^{t} \mid S^{t-1}\right) P\left(O^{t} \mid S^{t}\right)
$$

You need:

- $P\left(S^{0}\right)$: prior π_{0},
- $\forall t, P\left(S^{t} \mid S^{t-1}\right)$: transition matrix A^{t} (constant for homogeneous HMMs: A),
- $\forall t, P\left(O^{t} \mid S^{t}\right)$: observation matrix B^{t} (constant for homogeneous HMMs: B):
- parameters $\theta=(\pi, A, B)$.

Hidden Markov Models

You can:

- distribution over current state based on all observations:
$P\left(S^{T} \mid O^{0}, \ldots, O^{T}, \theta\right)$: forward algorithm,
- probability value of a given observation or a series of observations: $P\left(O^{T} \mid \theta\right), P\left(O^{0}, \ldots, O^{T} \mid \theta\right)$: forward algorithm,
- probability distribution over a state given past and future observation (smoothing): $P\left(S^{t} \mid O^{0}, \ldots, O^{T}\right)$: forward-backward algorithm,
- most likely state sequence:
$\arg \max _{S^{0}, \ldots, S^{\top}} P\left(S^{0}, \ldots, S^{T} \mid O^{0}, \ldots, O^{T}, \theta\right)$: Viterbi algorithm,
- learning parameters θ based on an observation sequence: Baum-Welch algorithm,

Iterative formulation

Distribution over the last state:

$$
\begin{aligned}
& P\left(S^{T} \mid O^{0}, \ldots, O^{T}\right) \\
= & \frac{\sum_{S_{0}, \ldots, S^{T-1}} P\left(S^{0}\right) P\left(O^{0} \mid S^{0}\right) \prod_{t=1}^{T} P\left(S^{t} \mid S^{t-1}\right) P\left(O^{t} \mid S^{t}\right)}{\sum_{S_{0}, \ldots, S^{T}} P\left(S^{0}\right) P\left(O^{0} \mid S^{0}\right) \prod_{t=1}^{T} P\left(S^{t} \mid S^{t-1}\right) P\left(O^{t} \mid S^{t}\right)}
\end{aligned}
$$

Huge complexity: $O\left(N^{T} T\right)$ but...

Iterative formulation

Distribution over the last state:

$$
\begin{aligned}
& P\left(S^{T} \mid O^{0}, \ldots, O^{T}\right) \\
= & \frac{\sum_{S_{0}, \ldots, S^{T-1}} P\left(S^{0}\right) P\left(O^{0} \mid S^{0}\right) \prod_{t=1}^{T} P\left(S^{t} \mid S^{t-1}\right) P\left(O^{t} \mid S^{t}\right)}{\sum_{S_{0}, \ldots, S^{T}} P\left(S^{0}\right) P\left(O^{0} \mid S^{0}\right) \prod_{t=1}^{T} P\left(S^{t} \mid S^{t-1}\right) P\left(O^{t} \mid S^{t}\right)}
\end{aligned}
$$

Huge complexity: $O\left(N^{T} T\right)$ but...
Iterative expression:

$$
\begin{aligned}
& P\left(S^{T} \mid O^{0}, \ldots, O^{T}\right) \\
\propto & P\left(O^{T} \mid S^{T}\right) P\left(S^{T} \mid O^{0}, \ldots, O^{T-1}\right) \\
\propto & P\left(O^{T} \mid S^{T}\right) \sum_{S^{T-1}} P\left(S^{T} \mid S^{T-1}\right) P\left(S^{T-1} \mid O^{0}, \ldots, O^{T-1}\right)
\end{aligned}
$$

Same result but only $O\left(N^{2} T\right)$.

Forward algorithm

Let's define:

$$
\alpha\left(S^{t}\right)=P\left(S^{t}, O^{0}, \ldots, O^{t}\right)
$$

We have:

$$
\alpha\left(S^{t+1}\right)=P\left(O^{t+1} \mid S^{t+1}\right) \sum_{S^{t}} P\left(S^{t+1} \mid S^{t}\right) \alpha\left(S^{t}\right)
$$

Forward algorithm

Let's define:

$$
\alpha\left(S^{t}\right)=P\left(S^{t}, O^{0}, \ldots, O^{t}\right)
$$

We have:

$$
\alpha\left(S^{t+1}\right)=P\left(O^{t+1} \mid S^{t+1}\right) \sum_{S^{t}} P\left(S^{t+1} \mid S^{t}\right) \alpha\left(S^{t}\right)
$$

And:

$$
P\left(S^{t} \mid O^{0}, \ldots, O^{t}\right) \propto \alpha\left(S^{t}\right)
$$

Forward algorithm

Let's define:

$$
\alpha\left(S^{t}\right)=P\left(S^{t}, O^{0}, \ldots, O^{t}\right)
$$

We have:

$$
\alpha\left(S^{t+1}\right)=P\left(O^{t+1} \mid S^{t+1}\right) \sum_{S^{t}} P\left(S^{t+1} \mid S^{t}\right) \alpha\left(S^{t}\right)
$$

And:

$$
P\left(S^{t} \mid O^{0}, \ldots, O^{t}\right) \propto \alpha\left(S^{t}\right)
$$

And also:

$$
P\left(O^{0}, \ldots, O^{t}\right)=\sum_{S_{t}} \alpha\left(S^{t}\right)
$$

Forward-backward algorithm

Let's define:

$$
\beta\left(S^{t}\right)=P\left(O^{t+1}, \ldots, O^{T} \mid S^{t}\right)
$$

We have similarly:

$$
\beta\left(S^{t}\right)=\sum_{S^{t+1}} P\left(O^{t+1} \mid S^{t+1}\right) P\left(S^{t+1} \mid S^{t}\right) \beta\left(S^{t+1}\right)
$$

Forward-backward algorithm

Let's define:

$$
\beta\left(S^{t}\right)=P\left(O^{t+1}, \ldots, O^{T} \mid S^{t}\right)
$$

We have similarly:

$$
\beta\left(S^{t}\right)=\sum_{S^{t+1}} P\left(O^{t+1} \mid S^{t+1}\right) P\left(S^{t+1} \mid S^{t}\right) \beta\left(S^{t+1}\right)
$$

Then, smoothing:

$$
\begin{aligned}
& P\left(S^{t} \mid O^{0}, \ldots, O^{T}\right) \\
\propto & P\left(O^{t+1}, \ldots, O^{T} \mid S^{t}\right) P\left(S^{t} \mid O^{0}, \ldots, O^{t}\right) \\
\propto & \beta\left(S^{t}\right) \alpha\left(S^{t}\right)
\end{aligned}
$$

Viterbi algorithm

Most probable sequence of states given observations:

$$
\begin{aligned}
& \underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T} \mid O^{0}, \ldots, O^{T}, \theta\right) \\
&=\underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T}, O^{0}, \ldots, O^{T}, \theta\right)
\end{aligned}
$$

Viterbi algorithm

Most probable sequence of states given observations:

$$
\begin{aligned}
& \underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T} \mid O^{0}, \ldots, O^{T}, \theta\right) \\
&=\underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T}, O^{0}, \ldots, O^{T}, \theta\right)
\end{aligned}
$$

Let:

$$
\delta\left(S^{t}\right)=\max _{S^{0}, \ldots, S^{t-1}} P\left(S^{0}, \ldots, S^{t}, O^{0}, \ldots, O^{t}\right)
$$

then:

$$
\delta\left(S^{t+1}\right)=P\left(O^{t+1} \mid S^{t+1}\right) \max _{S^{t}} P\left(S^{t+1} \mid S^{t}\right) \delta\left(S^{t}\right)
$$

Viterbi algorithm

Most probable sequence of states given observations:

$$
\begin{aligned}
& \underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T} \mid O^{0}, \ldots, O^{T}, \theta\right) \\
&=\underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T}, O^{0}, \ldots, O^{T}, \theta\right)
\end{aligned}
$$

Let:

$$
\delta\left(S^{t}\right)=\max _{S^{0}, \ldots, S^{t-1}} P\left(S^{0}, \ldots, S^{t}, O^{0}, \ldots, O^{t}\right)
$$

then:

$$
\delta\left(S^{t+1}\right)=P\left(O^{t+1} \mid S^{t+1}\right) \max _{S^{t}} P\left(S^{t+1} \mid S^{t}\right) \delta\left(S^{t}\right)
$$

Same as α but with max instead of \sum.

Viterbi algorithm

Most probable sequence of states given observations:

$$
\begin{aligned}
& \underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T} \mid O^{0}, \ldots, O^{T}, \theta\right) \\
&=\underset{S^{0}, \ldots, S^{T}}{\arg \max } P\left(S^{0}, \ldots, S^{T}, O^{0}, \ldots, O^{T}, \theta\right)
\end{aligned}
$$

Let:

$$
\delta\left(S^{t}\right)=\max _{S^{0}, \ldots, S^{t-1}} P\left(S^{0}, \ldots, S^{t}, O^{0}, \ldots, O^{t}\right)
$$

then:

$$
\delta\left(S^{t+1}\right)=P\left(O^{t+1} \mid S^{t+1}\right) \max _{S^{t}} P\left(S^{t+1} \mid S^{t}\right) \delta\left(S^{t}\right)
$$

For the states:

$$
\psi\left(S^{t}\right)=\underset{S^{t-1}}{\arg \max } P\left(S^{t} \mid S^{t-1}\right) \delta\left(S^{t-1}\right)
$$

that allows backtracking.

Parameter estimation

Previous algorithms require parameters $\theta=(\pi, A, B)$. Where:

- π prior probability over the state: $P\left(S^{0}\right)$,
- A transition matrix: $P\left(S^{t+1} \mid S^{t}\right)$,
- B observation matrix: $P\left(O^{t} \mid S^{t}\right)$;

Can we get parameters from a sequence of observations?

$$
\underset{\theta}{\arg \max } P\left(O^{0}, \ldots, O^{T} \mid \theta\right)
$$

- not directly (no closed form solution),
- iterative "hill climbing" approximation,
- Baum-Welch algorithm.

Baum-Welch algorithm

Basic idea:

- take some parameters $\theta^{\text {old }}$,
- compute the distribution over state sequences,
- compute new parameters θ based on this distribution,
- loop taking the new parameters;

Baum-Welch algorithm

Basic idea:

- take some parameters $\theta^{\text {old }}$,
- compute the distribution over state sequences,
- compute new parameters θ based on this distribution,
- loop taking the new parameters;

Each time: $P\left(O^{0}, \ldots, O^{T} \mid \theta\right)>P\left(O^{0}, \ldots, O^{T} \mid \theta^{\text {old }}\right)$.

Baum-Welch algorithm

Basic idea:

- take some parameters $\theta^{\text {old }}$,
- compute the distribution over state sequences,
- compute new parameters θ based on this distribution,
- loop taking the new parameters;

More details:

- take some parameters $\theta^{\text {old }}$,
- (E) compute:
- (M) optimize $Q\left(\theta, \theta^{\text {old }}\right)$ to get the new θ,
- loop.

Summary on H.M.M.

Aims:

- time series,
- discrete variables,
- several uses:
- probability of an observation, a sequence of observations,
- probability of a state after several observations,
- smoothing (state in the middle of observations),
- most likely sequence,
- most likely parameters;

Algorithms:

- forward: iterative inference in Bayesian filters,
- forward backward: similar to message passing in chains or trees,
- Viterbi: max-product,
- Baum-Welch: specific case of Expectation-Maximization (class 11).

Summary

Graphical models:

- graphical representation of dependencies,
- Bayesian networks (directed acyclic graphs): follow Bayes' rule, difficult independence,
- Markov random fields (undirected graphs): easy independence, potential functions instead of (cond.) probability distributions;
H.M.M.:
- time series,
- discrete variables,
- inference algorithms: simpler versions than on general models.

