\square

Machine learning

Learning:

- adapt algorithm to empirical data;
- learn different things:
- relationship between variables,
- clusters,
- classes...
in different ways:
- supervised,
- unsupervised...

Machine learning

Regression:

- relationship between variables,
- linear regression,
- probabilistic formulation,
- Gaussian processes;

Gaussian process:

- probability distribution over functions,
- specified by a kernel,
- can be applied to regression,
- and classification.

Machine learning

Regression:

- relationship between variables,
- linear regression,
- probabilistic formulation,
- Gaussian processes;

Gaussian process:

- probability distribution over functions,
- specified by a kernel,
- can be applied to regression,
- and classification.

Classification

Clustering:

- non supervised,
- groupe points together.

Classification

Clustering:

- non supervised,
- groupe points together.

Classification

Clustering:

- non supervised,
- groupe points together.

Classification:

- supervised,
- function to give the class.

Classification

Clustering:

- non supervised,
- groupe points together.

Classification:

- supervised,
- function to give the class.

Approaches for Object Classification

Two phases:

- learning of the classes separation with training data,
- estimating the class for test data.

Many different approaches:

- Support Vector Machines (SVMs),
- Adaboost,
- Voting Techniques,
- Conditional Random Fields,
- Combinations of these methods.

Approaches for Object Classification

Two phases:

- learning of the classes separation with training data,
- estimating the class for test data.

Many different approaches:

- Support Vector Machines (SVMs),
- Adaboost,
- Voting Techniques,
- Conditional Random Fields,
- Combinations of these methods,

Support Vector Machines

Support Vector Machines:

- separate classes with a line or hyperplane,
- optimizing the margin,
- under classification constraints (supervised),
- in a feature space or using a kernel (kernel method),
- quadratic programming formulation.

Support Vector Machines

Support Vector Machines:

- separate classes with a line or hyperplane,
- optimizing the margin,
- under classification constraints (supervised),
- in a feature space or using a kernel (kernel method),
- quadratic programming formulation.

Support Vector Machines

Support Vector Machines:

- separate classes with a line or hyperplane,
- optimizing the margin,
- under classification constraints (supervised),
- in a feature space or using a kernel (kernel method),
- quadratic programming formulation.

Support Vector Machines

Support Vector Machines:

- separate classes with a line or hyperplane,
- optimizing the margin,
- under classification constraints (supervised),
- in a feature space or using a kernel (kernel method),
- quadratic programming formulation.

Support Vector Machines

Support Vector Machines:

- separate classes with a line or hyperplane,
- optimizing the margin,
- under classification constraints (supervised),
- in a feature space or using a kernel (kernel method),
- quadratic programming formulation.

Linear Discriminant Function

Assumptions:

- training data points: $\left(\mathbf{x}_{i}, t_{i}\right)$,
- binary classification: $t_{i} \in\{-1,1\}$,
- optional transformation in feature space: $\phi(\mathbf{x})$,
- linearly separable (in feature space).

Separation: hyperplane:

with:

- w: parameters of the hyperplane (normal vector),
- ϕ : feature function vector
- b: bias parameter

Linear Discriminant Function

Assumptions:

- training data points: $\left(\mathbf{x}_{i}, t_{i}\right)$,
- binary classification: $t_{i} \in\{-1,1\}$,
- optional transformation in feature space: $\phi(\mathbf{x})$,
- linearly separable (in feature space).

Separation: hyperplane:

$$
y(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})+b \quad \text { or } \quad y(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b
$$

with:

- w: parameters of the hyperplane (normal vector),
- ϕ : feature function vector,
- b: bias parameter.

Classification: $\forall n, y\left(\mathbf{x}_{n}\right)>0 \Leftrightarrow t_{n}=1$

Margin

Several solutions:
\Longrightarrow maximize the margin.

Margin: formal definition

Distance of a point \mathbf{x} to the hyperplane:

- $\left|\mathbf{w}^{T} \mathbf{x}+b\right|=|y(\mathbf{x})|$, if \mathbf{w} is normalized;
- $\frac{|y(x)|}{\|\mathbf{w}\|}$, in general.

Margin:

$$
\min _{n} \frac{\left|y\left(\mathbf{x}_{n}\right)\right|}{\|\mathbf{w}\|}
$$

Maximum margin:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left|y\left(\mathbf{x}_{n}\right)\right|\right\}
$$

Margin: formal definition

Distance of a point \mathbf{x} to the hyperplane:

- $\left|\mathbf{w}^{T} \mathbf{x}+b\right|=|y(\mathbf{x})|$, if \mathbf{w} is normalized;
- $\frac{|y(x)|}{\|\mathbf{w}\|}$, in general.

Margin:

$$
\min _{n} \frac{\left|y\left(\mathbf{x}_{n}\right)\right|}{\|\mathbf{w}\|}
$$

Maximum margin:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left|y\left(\mathbf{x}_{n}\right)\right|\right\}
$$

Margin: formal definition

Distance of a point \mathbf{x} to the hyperplane:

- $\left|\mathbf{w}^{T} \mathbf{x}+b\right|=|y(\mathbf{x})|$, if \mathbf{w} is normalized;
- $\frac{|y(x)|}{\|\mathbf{w}\|}$, in general.

Margin:

$$
\min _{n} \frac{\left|y\left(\mathbf{x}_{n}\right)\right|}{\|\mathbf{w}\|}
$$

Maximum margin:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left|y\left(\mathbf{x}_{n}\right)\right|\right\}
$$

Restating the problem

Classification constraints:

$$
\forall n, \operatorname{sign}\left(y\left(\mathbf{x}_{n}\right)\right)=t_{n}
$$

Target classes:

$$
\left.\begin{array}{rl}
& \\
& \operatorname{sign}\left(y\left(\mathbf{x}_{n}\right)\right)
\end{array}\right)=t_{n} \quad \begin{aligned}
\left|y\left(\mathbf{x}_{n}\right)\right| & =t_{n} \cdot y_{n}\left(\mathbf{x}_{n}\right) \\
\Longleftrightarrow \quad\left|y\left(\mathbf{x}_{n}\right)\right| & =t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)
\end{aligned}
$$

Maximum margin solution:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right]\right\}
$$

Restating the problem

Classification constraints:

$$
\forall n, \operatorname{sign}\left(y\left(\mathbf{x}_{n}\right)\right)=t_{n}
$$

Target classes:

$$
\begin{aligned}
& \\
& \operatorname{sign}\left(y\left(\mathbf{x}_{n}\right)\right)
\end{aligned}=t_{n} .
$$

Maximum margin solution:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right]\right\}
$$

Rescaling (1/2)

We have:

$$
\begin{aligned}
\operatorname{sign}\left(y\left(\mathbf{x}_{n}\right)\right) & =t_{n} \\
\Longleftrightarrow t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) & >0
\end{aligned}
$$

$\frac{t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)}{\|\mathbf{w}\|}$ is scaled but $\left.t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}\right)+b\right)$ is not.

Rescaling (1/2)

We have:

$$
\begin{aligned}
\operatorname{sign}\left(y\left(\mathbf{x}_{n}\right)\right) & =t_{n} \\
\Longleftrightarrow t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) & >0
\end{aligned}
$$

$\frac{t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)}{\|\mathbf{w}\|}$ is scaled but $\left.t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}\right)+b\right)$ is not.

Rescaling (2/2)

For support vectors, we decide:

$$
t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)=1
$$

That is (canonical representation):

$$
\begin{equation*}
\forall n, t_{n}\left(\mathbf{w}^{t} \mathbf{x}_{n}+b\right) \geq 1 \tag{1}
\end{equation*}
$$

With these constraints, maximum margin is:

$$
\arg \max _{w, b}\left\{\frac{1}{\|w\|}\right\}
$$

Rescaling (2/2)

For support vectors, we decide:

$$
t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)=1
$$

That is (canonical representation):

$$
\begin{equation*}
\forall n, t_{n}\left(\mathbf{w}^{t} \mathbf{x}_{n}+b\right) \geq 1 \tag{1}
\end{equation*}
$$

With these constraints, maximum margin is:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|}\right\}
$$

Rescaling (2/2)

For support vectors, we decide:

$$
t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)=1
$$

That is (canonical representation):

$$
\begin{equation*}
\forall n, t_{n}\left(\mathbf{w}^{t} \mathbf{x}_{n}+b\right) \geq 1 \tag{1}
\end{equation*}
$$

With these constraints, maximum margin is:

$$
\arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|}\right\}
$$

Quadratic Formulation

Maximize $\frac{1}{\|\boldsymbol{w}\|}$ under constraints (1).
\Longleftrightarrow Maximizing any decreasing function of $\|\mathbf{w}\|$ under (1).
\Longleftrightarrow Minimizing any increasing function of $\|\mathbf{w}\|$ under (1).
Finally:

$$
\begin{aligned}
& \arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n} t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right\} \\
\Longleftrightarrow & \arg \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}\right\} \quad \text { under (1) }
\end{aligned}
$$

M variables, N constraints.

Quadratic Formulation

Maximize $\frac{1}{\|\boldsymbol{w}\|}$ under constraints (1).
\Longleftrightarrow Maximizing any decreasing function of $\|\mathbf{w}\|$ under (1).
\Longleftrightarrow Minimizing any increasing function of $\|\mathbf{w}\|$ under (1). Finally:

$$
\begin{aligned}
& \arg \max _{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n} t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\} \\
\Longleftrightarrow & \arg \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}\right\} \quad \text { under (1) }
\end{aligned}
$$

M variables, N constraints.

Summary

SVM:

- maximize the margin,
- under classification constraints;

First formulation:

$$
\left\{\begin{array}{l}
\forall n, t_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-1 \geq 0 \\
\arg \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}\right\}
\end{array}\right.
$$

Solution:

- linear constraints,
- optimization of a quadratic function,
- \Longrightarrow quadratic programming $\left(O\left(M^{3}\right)\right)$.

Summary

SVM:

- maximize the margin,
- under classification constraints;

First formulation:

$$
\left\{\begin{array}{l}
\forall n, t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)-1 \geq 0 \\
\arg \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}\right\}
\end{array}\right.
$$

- linear constraints,
- optimization of a quadratic function,
- \Longrightarrow quadratic programming $\left(O\left(M^{3}\right)\right)$.

Summary

SVM:

- maximize the margin,
- under classification constraints;

First formulation:

$$
\left\{\begin{array}{l}
\forall n, t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)-1 \geq 0 \\
\arg \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}\right\}
\end{array}\right.
$$

Solution:

- linear constraints,
- optimization of a quadratic function,
- \Longrightarrow quadratic programming $\left(O\left(M^{3}\right)\right)$.

Dual Formulation

Introducing Lagrange Multipliers $a_{n} \geq 0$:

$$
L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left(t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)-1\right)
$$

- colinear gradient for each constraint,
- first term should be smallest \Longrightarrow minimize over \mathbf{w}, b,
- second term should be largest \Longrightarrow maximize over a.

Minimizing over w, b :

$$
\begin{aligned}
& \mathbf{v}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}, \\
& -0=\sum_{n=1}^{N} a_{n} t_{n} .
\end{aligned}
$$

Dual Formulation

Introducing Lagrange Multipliers $a_{n} \geq 0$:

$$
L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left(t_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)-1\right)
$$

- colinear gradient for each constraint,
- first term should be smallest \Longrightarrow minimize over \mathbf{w}, b,
- second term should be largest \Longrightarrow maximize over a.

Minimizing over \mathbf{w}, b :

- $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \mathbf{x}_{n}$,
- $0=\sum_{n=1}^{N} a_{n} t_{n}$.

Dual Formulation

Then $L \rightarrow \tilde{L}$:

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}
$$

And we have to solve:

$$
\left\{\begin{array}{l}
\arg \max _{\mathbf{a}} \tilde{L}(\mathbf{a}) \\
\forall n, a_{n} \geq 0 \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{array}\right.
$$

N variables, $N+1$ constraints: Quadratic Programming $O\left(N^{3}\right)$. Equivalent solutions but complexity in N instead of M.

Dual Formulation

Then $L \rightarrow \tilde{L}$:

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}
$$

And we have to solve:

$$
\left\{\begin{array}{l}
\arg \max _{\mathrm{a}} \tilde{L}(\mathbf{a}) \\
\forall n, a_{n} \geq 0 \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{array}\right.
$$

N variables, $N+1$ constraints: Quadratic Programming $O\left(N^{3}\right)$. Equivalent solutions but complexity in N instead of M.

Dual Formulation

Then $L \rightarrow \tilde{L}$:

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}
$$

And we have to solve:

$$
\left\{\begin{array}{l}
\arg \max _{\mathbf{a}} \tilde{L}(\mathbf{a}) \\
\forall n, a_{n} \geq 0 \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{array}\right.
$$

N variables, $N+1$ constraints: Quadratic Programming $O\left(N^{3}\right)$. Equivalent solutions but complexity in N instead of M.

Support Vectors

Once solved, it can be shown that:

$$
\begin{aligned}
a_{n} & \geq 0 \\
t_{n} y\left(\mathbf{x}_{n}\right)-1 & \geq 0 \\
a_{n} \cdot\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\} & =0
\end{aligned}
$$

\Longrightarrow either $a_{n}=0$ or $t_{n} y\left(\mathbf{x}_{n}\right)=1$.

- $a_{n}=0$: inactive constraint,
- $t_{n} y\left(\mathbf{x}_{n}\right)=1$: support vector (\mathcal{S}).

Support Vector Machines

Normal vector:

$$
\mathbf{w}=\sum_{n \in \mathcal{S}} a_{n} t_{n} \mathbf{x}_{n}
$$

Bias:

$$
b=\frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}}\left(t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}\right)
$$

Classification:

$$
y(\mathbf{x})=\sum_{n \in \mathcal{S}} a_{n} t_{n} \mathbf{x}^{T} \mathbf{x}_{\mathbf{n}}+b
$$

Need only support vectors after training.

Support Vector Machines

Normal vector:

$$
\mathbf{w}=\sum_{n \in \mathcal{S}} a_{n} t_{n} \mathbf{x}_{n}
$$

Bias:

$$
b=\frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}}\left(t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}\right)
$$

Classification:

$$
y(\mathbf{x})=\sum_{n \in \mathcal{S}} a_{n} t_{n} \mathbf{x}^{T} \mathbf{x}_{\mathbf{n}}+b
$$

Need only support vectors after training.

Support Vector Machines

Normal vector:

$$
\mathbf{w}=\sum_{n \in \mathcal{S}} a_{n} t_{n} \mathbf{x}_{n}
$$

Bias:

$$
b=\frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}}\left(t_{n}-\sum_{m \in \mathcal{S}} a_{m} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}\right)
$$

Classification:

$$
y(\mathbf{x})=\sum_{n \in \mathcal{S}} a_{n} t_{n} \mathbf{x}^{T} \mathbf{x}_{\mathbf{n}}+b
$$

Need only support vectors after training.

Summary

SVM:

- binary classifier,
- linear separation,
- maximum margin;

Compact representation:

- active constraints,
- support vectors.

Feature Space

Back to our assumptions:

- training data points: $\left(\mathbf{x}_{i}, t_{i}\right)$,
- binary classification: $t_{i} \in-1,1$,
- optional transformation in feature space: $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$,
- linearly separable in feature space.

Why use a feature space? What if data is not linearly separable? If the data is not linearly separable, use a feature space in which they are!

$$
<\text { Video > }
$$

The dual representation is:

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} \mathbf{x}_{n}^{T} \mathbf{x}_{m}
$$

The dual representation is:

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} \phi\left(\mathbf{x}_{n}\right)^{T} \phi\left(\mathbf{x}_{m}\right)
$$

Kernel Trick

The dual representation is:

$$
\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)
$$

with $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x})^{T} \phi\left(\mathbf{x}^{\prime}\right)$
Kernel Trick: replace a dot product by a kernel.
Kernel: symmetric positive semi-definite function.
Mercer's theorem: any (continuous) such kernel \rightarrow dot product in a high-dimensional space.

Constructing a Kernel

- define ϕ,
- define $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ directly (check that it is symmetric positive semi-definite),
- $\mathbf{x}^{T} A \mathbf{x}^{\prime}$ with A a symmetric positive semi-definite matrix,
- adapt an existing kernel:
- $c k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ if $c>0$,
- $f(x) k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right)$ for any f,
- $q\left(k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)$ if q is a polynomial with positive coefficients,
- $\exp \left(k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)$,
- $k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right), k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$,
- $k\left(\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right.$,
- ...

Properties and Examples

Stationary kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Homogeneous:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right)
$$

Gaussian Kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp -\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}
$$

Radial Basis Functions:

$$
f(\mathbf{x})=\sum_{n=1}^{N} w_{n} h\left(\left\|\mathbf{x}-\mathbf{x}_{\mathbf{n}}\right\|\right)
$$

Summary

Classes not directly separable:

- usage of a kernel,
- change of feature space,
- change in dimensionality,
- can be in a infinite dimension (Gaussian kernel).

Overlapping Class Distributions

In practice:

- outlier, noise...
- overlapping classes;
- no separability in the feature space.

Introduction of slack variables ξ_{n} :

$$
\begin{cases}\xi_{n}=0 & \text { if data inside margin boundary } \\ \xi_{n}=\left|t_{n}-y\left(\mathbf{x}_{n}\right)\right| & \text { otherwise }\end{cases}
$$

Handling Slack Variables

Classification constraints:

$$
t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}
$$

Relaxation of the constraint: soft margin.
Maximize the margin while penalizing points on the wrong side:

$$
C \sum_{n=1}^{N} \xi_{n}+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

with $C>0$: trade-off between margin and slack penalty.
The dual formulation is similar:

$$
\left\{\begin{array}{l}
\arg \max _{\mathbf{a}} \tilde{L}(\mathbf{a}) \\
\forall n, C \geq a_{n} \geq 0 \\
\sum_{n=1}^{N} a_{n} t_{n}=0
\end{array}\right.
$$

Multiclass SVMs

SVMs: two class classifier.
For $K>2$ classes:

- K classifiers: one vs rest;
- but one point could be assigned to several classifiers
- chaging objective function to learn all classes together;
- $K(K-1) / 2$ classifiers: one versus one
- more costly in learning, and classification
- pairwise classifiers organized on directed acyclic graphs (DAGSVN);
- ...

Summary

SVMs:

- binary classifier,
- linear separation;

Kernel trick:

- change space to have non linear boundary;

Generalization to:

- overlapping classes,
- multiple classes.

