Errata for the book Hybrid System Identification by F. Lauer and G. Bloch
Notations
-
Page xiv, the definition of the indicator function should be:
Indicator function, $1_A$ is 1 if the boolean expression $A$ is true and 0 otherwise
Chapter 4
-
Page 89, in Equation (4.20) the argmax should be an argmin and (4.20) should read
$$
q_k \in \underset{j\in[s]}{\arg\min}\ \ell(y_k - f_j(\boldsymbol{x}_k)),\quad k=1,\dots,N.
$$
Chapter 5
-
Page 107, the unnumbered Equation in the middle of the page should be written with a non-strict inequality sign as
$$
\max_{k\in \mathcal{I}_1(\g \theta^*)} | y_k - \g x_k^\top \g \theta | \leq \epsilon
$$
-
Page 127: section 5.4 considers a cost function for switching linear regression that is the sum of squared errors instead of the mean. Therefore, Eq. (5.24) shoud be
$$
J(\g \theta) = \sum_{k=1}^N \min_{j\in[s]}(y_k - \g x_k^\top \g \theta_j)^2
$$
instead of
$$
J(\g \theta) = \frac{1}{N} \sum_{k=1}^N \min_{j\in[s]}(y_k - \g x_k^\top \g \theta_j)^2
$$
-
Page 133, the last line of Eq. (5.43) should be
$$
\geq \sum_{k\in \mathcal{I}_0(B)} \left\{\left(e_k^U(B) \right)_+^2 + \left(e_k^L(B)\right)_-^2, \ \epsilon^2 \right\} + \min_{\g \theta\in B} \sum_{k\in \mathcal{I}_1(B)} e_k^2(\g \theta) + \epsilon^2 |\mathcal{I}_2(B)|
$$
instead of
$$
\geq \sum_{k\in \mathcal{I}_0(B)}\min_{j\in[s]} \left\{\left(e_k^U(B_j) \right)_+^2 + \left(e_k^L(B_j)\right)_-^2 \right\} + \min_{\g \theta\in B} \sum_{k\in \mathcal{I}_1(B)} e_k^2(\g \theta) + \epsilon^2 |\mathcal{I}_2(B)|
$$
Appendix B
-
Page 249, Section B.2.8.1, in the definition of $\boldsymbol{S}^+$, there is an extra $q$ that ought not to be there and the Eq. should read
$$
\g S^+ = \begin{bmatrix}
\frac{1}{\sigma_1} & 0 &\dots& 0& \dots & 0 \\
\vdots & \ddots & & \vdots & & \vdots\\
\vdots & & \frac{1}{\sigma_r} & \vdots & & \vdots\\
% \vdots & & 0 & 0 \\
0 & \ldots & \ldots & 0 & \ldots & 0
\end{bmatrix}
$$
- Page 249, Section B.2.8.2, $\tilde{U}$ should appear in bold as $\tilde{\g U}$ in the text "Indeed, since $\tilde{\g U}$ is orthogonal".