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Abstract. Automatic image colorization is an old problem in image pro-
cessing that has regained interest in the recent years with the emergence
of deep-learning approaches with dramatic results. A careful examination
shows that these methods often suffer from the so-called “color halos” or
“color bleeding” effect: some colors are not well localized and may cross
shape edges. This phenomenon is caused by the non-alignment of edges
in the luminance and chrominance maps. We address this problem by
regularizing the output of an efficient image colorization method with
deep image prior and coupled total variation.
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1 Introduction

Image and video colorization is the process of adding colors to monochromatic
(black-and-white or sepia) pictures and movies, for example legacy documents.
This is an ill-posed problem since many solutions may match the human percep-
tion. Industrial applications require automatic methods to reduce costs. Histor-
ically, the first semi-automatic methods made use of a reference color image or
of user-defined color scribbles, in particular through variational approaches. We
refer the interested reader to the recent survey paper [14]. Since large datasets
made of pairs of monochromatic and color images are easy to build (by sim-
ply desaturating a color image), it is possible to train neural networks to infer
a color image from a monochromatic input image. Effective colorization algo-
rithms based on deep learning have therefore emerged in the past few years.
The present contribution focuses on automatic deep-learning-based approaches
without user interaction (contrary to [20] or to the hybrid [6] for instance).

Most deep-learning models infer at each pixel either a color component [7, 9,
13, 18, 19] or a probability distribution over the color space [4, 5, 10, 21]. To limit
the computing time, these models are primarily able to infer a low-resolution
color image, or are based on a super-pixel representation, or on an auto-encoder.
This requires upsampling in a further stage. Upsampling the low-resolution
chrominance information or erroneously picking a color through the learnt prob-
ability distribution are, however, likely to give colors which are poorly localized
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Fig. 1. Typical color halos in three outputs of Colorful Image Colorization [21]. The
blue halo on the lion’s rump, the orange shade on the building facade or in the sky on
the right of the lighthouse, the yellow spots on the jellyfish image should be eliminated
from colorization results. Input monochromatic images are shown in Fig. 8.

and go across shape edges, resulting in unpleasant halos (also called color bleed-
ing in [8]) across edges in some situations. Fig. 1 shows typical outputs of a
state-of-the-art method. Other examples are described in [16], a careful analysis
of DeOldify [1] which is a recent colorization software with impressive results.
DeOldify indeed renders color images at a lower resolution than the original
monochromatic image, which may give in turn erroneous color halos. This halo
effect is often quite subtle and cannot be seen in small-size images as shown in
most papers, which mainly aim at getting images with vivid colors. A careful
examination suggests, however, that color halos prevent the raw output of these
models from being used in real industrial applications.

Several contributions try to circumvent this effect. For instance, the authors
of [12] propose to adapt the variational method of [15] in order to restore the
output of a deep network [21] to reduce these unwanted defects. They make use of
the so-called coupled total variation whose minimization tends to align luminance
and chrominance edges, so that color halos are reduced. In the context of color
transfer, the authors of [2] use edge-aware texture descriptors with bilateral
filtering to reduce halos. More recently, a deep-learning method based on user-
defined scribbles was proposed [8]. However, these approaches do not explicitly
consider the role of upsampling.

In this paper, we propose to investigate an automated restoration using deep
image prior (DIP) [17] together with coupled total variation [15]. The goal is
to obtain a colorization free from color halos, based on the hypothesized prob-
ability distribution given by [21]. DIP has shown good performances in solving
super-resolution from a single image [17]. The expected benefit is thus a correct
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upsampling of color information to the resolution of the input monochromatic
image. We think that this restoration process is of interest in most colorization
methods.

Section 2 introduces deep image prior regularized by coupled total varia-
tion and its use in image colorization. Numerical experiments are presented in
Section 3. We conclude with Section 4.

2 Deep image prior and image colorization

Deep image prior [17] has been recently introduced to solve ill-posed inverse prob-
lems in image processing. It is based on the observation that convolutional neural
networks are good at producing images in many applications. The solution of an
inverse problem is thus sought as the output of a given neural network fθ, with
a fixed random input z, whose weights θ are learnt to minimise some function
based on data misfits between the observation x and the output fθ(z). Mini-
mization is performed with the standard optimization machinery based on the
back-propagation of errors. DIP falls within the scope of unsupervised learning
methods.

Although several neural architectures are possible, we use an encoder-decoder
with skip connections all along this paper. This architecture is used in [17] for
super-resolution and some other problems.

2.1 What information is captured by deep image prior?

Such a model encodes short and long range correlations between pixels, as illus-
trated by Fig. 2. This figure shows an experiment in which the preceding network
is trained so that θ minimizes ∥fθ(z)− x∥ where x is some image, the optimum
weights being denoted by θ(x). New images are then generated as fθ(x)(z′) where
the input z′ is randomly drawn. We can see that the distribution of the colors
is kept, fine textures and larger structures as well. These properties probably
explain why DIP performs well as a Bayesian prior: contrary to the classic TV
prior which tends to produce cartoon images, DIP is likely to produce textured
images with geometrical shapes.

2.2 Deep image prior and image colorization

Of course, it is hopeless to try to solve the colorization problem by simply min-
imizing with respect to θ

∥L(fθ(z))− y0∥2, (1)

where L(fθ(z)) is the luminance channel of fθ(z), y0 is the monochromatic image
to colorize, and ∥ · ∥ is the quadratic norm. The resulting fθ(z) would just show
random colors. Additional prior information is required.

From a monochromatic image, the “colorful image colorization” (CIC) model
of [21] gives, at each pixel of a low-resolution 64× 64 grid G, the probability dis-
tribution over 313 samples covering the bidimensional chrominance space (see
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Fig. 2. Experimenting with deep image prior. First column: an image x. Second, third,
and fourth columns: fθ(x)(z′) with different random inputs z′.

Fig. 3). In [21], a post-processing stage ensures a vivid output image whose
resolution is the same as the input resolution. Although very good results are
obtained, the probability distribution may not be able to clearly pick a consis-
tent color, especially around the edges of the objects which are not accurately
localized over the low-resolution grid. This is illustrated by Fig. 4. Besides, up-
sampling the chrominance channels is required to build the full-resolution output.
This step is likely to produce interpolation artifacts: in the context of coloriza-
tion, the high-resolution luminance is available but upsampling the chrominance
independently from the luminance gives color halos around some objects of the
image.

We propose to incorporate the probability distribution given by CIC over the
low-resolution pixel grid in the framework of deep image prior to produce color
images at the same resolution as the input monochromatic image.

2.3 From probability distributions over a low-resolution grid to the
color image

While an RGB output is chosen in the original DIP [17], in the present paper
the output of the neural network is made of the three channels of the CIE
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Fig. 3. The 313 color samples in (a, b) chrominance channels used in CIC [21]. Colors
correspond to the luminance value L = 50.

Fig. 4. From left to right: a monochromatic image, the output of “colorful image col-
orization” [21] (default parameters), and entropy of the hypothesized probability dis-
tribution at each pixel of the 64 × 64 grid G given by CIC. The larger the entropy,
the less sharp the distribution. Large entropy values can be noticed, especially around
edges. Color halos can be seen, for example the orange halo on the grass at the bottom
left of the butterfly, or the blue halo on the right lion’s rump.

Lab color representation, which is the color space used in [21]. Let us denote
by L and C the mappings from an Lab image to the luminance and the (a, b)
chrominance channels in CIE Lab, respectively. The original monochromatic
image is denoted by y0, and the neural network of DIP is fθ. This network takes
some fixed random z as input and produces an Lab image fθ(z) with the same
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resolution as y0. Here, the 313 samples in the bidimensional chrominance space
are denoted by (ci)1≤i≤313, and (wi(x))1≤i≤313 is the probability distribution
over the ci’s at any pixel x of the low-resolution grid G, as given by CIC. Let d
be the subsampling operator which maps images of the same resolution as y0
and fθ(z) to the grid G.

Plugging information from the CIC model into the deep image prior of Eq. (1)
can be achieved by minimizing with respect to θ the following quantity:

∑
x∈G

313∑
i=1

wi(x)
∥∥C(d(fθ(z))(x))− ci

∥∥2 + α ∥L(fθ(z))− y0∥2 (2)

where α > 0 is a hyperparameter.
If the neural network fθ is complex enough, the optimum is attained for fθ

whose luminance channel is close to y0 and chrominance channels are, at any
pixel x of the low-resolution grid, the average of the (ci) samples weighted by the
probability distribution (wi(x)). The DIP permits thus to upsample information
from the low-resolution grid G. The problem with this formulation is twofold.
First, averaging chrominances gives dull colors, especially at pixels where the
probability distribution is not sharp. Second, luminance and chrominance chan-
nels are coupled only through the hidden layers of fθ, which still gives color
halos.

We therefore adapt Eq. (2) in two ways:

1. We add a regularization term which explicitly enforces the coupling between
luminance and chrominance channels. To this end, we use the coupled total
variation (TV) introduced in [15]. If I is a color image of domain Ω, with
luminance L and chrominance channels a and b, the coupled TV writes:

TVγ(I) =

∫
Ω

√
γ∥∇L∥2 + ∥∇a∥2 + ∥∇b∥2 (3)

where ∇ denotes the gradient and γ > 0 is a hyperparameter of the model.
Minimizing the coupled TV makes the luminance and chrominance gradients
to have small values at the same pixels [15]. This consequently aligns the
edges in the chrominance and luminance channels, and reduces the color
halo effect.

2. We allow the probability distribution (wi(x)) to vary, in the same spirit
as in [12]. Minimizing

∑313
i=1 wi(x)∥C

(
d(fθ(z))

)
(x) − ci∥2 with respect to

the non-negative wi(x) amounts to solving a simple linear program, the
constraint being

∑313
i=1 wi(x) = 1. The minimum is therefore obtained at a

vertex of the polytope defined by the constraints: the optimum wi(x) is such
that there exists i∗ satisfying wi∗(x) = 1 and for any i ̸= i∗, wi(x) = 0. For
any x, the index i∗ is thus simply argmini∥C

(
d(fθ(z))(x)

)
− ci∥2. Such a

sharp probability distribution has the advantage of giving vivid colors.



Deep image prior regularized by coupled total variation. . . 7

Input: a monochromatic image y0, and probability distributions (wi(x))i=1...313 at
every pixels x of a 64× 64 grid G over samples (ci)i=1...313 spanning the bidimensional
chromatic space (from [21]).

Repeat until convergence:

1. Minimize the loss (Eq. (5)) with respect to θ.
2. For any x ∈ G, i∗(x) = argmini∥C

(
d(fθ(z))

)
(x) − ci∥ and wi(x) = 1 if i = i∗(x),

wi(x) = 0 otherwise.

Output: the RGB image obtained from the luminance channel y0 and the chrominance
channels of fθ(z).

Fig. 5. Algorithm for colorization from the low-resolution probability distributions of
CIC [21] with deep image prior and coupled total variation.

As a consequence, we seek θ and w such that ∀x ∈ G,
∑313

i=1 wi(x) = 1,
minimizing:

∑
x∈G

313∑
i=1

wi(x)
∥∥C(d(fθ(z)))(x)− ci

∥∥2 + α ∥L(fθ(z))− y0∥2 + β TVγ(fθ(z))

(4)
The optimal fθ(z) is such that all three terms are small, that is, the lumi-

nance of fθ is close to y0, halo effects are reduced (small coupled TV), and the
chrominances over the low-resolution grid are closed to ones picked from a 0-1
probability distribution.

Compared to the original DIP [17], it should be noted that the additional TVγ

regularisation term permits to get rid of overfitting. DIP is indeed known to over-
fit and requires an early-stopping strategy. The gradient descent optimization
must be stopped after a certain number of iterations, which may critically depend
on the inverse problem to solve. A classic way to prevent overfitting in neural
network learning in general and in DIP in particular is to add a regularization
term in the loss function, see [3, 11] for total-variation based regularization of
DIP. In the experiments of Section 3, we indeed simply minimize the loss function
without any early-stopping process.

2.4 Optimization algorithm

We use block coordinate descent to minimize Eq. (4): we alternate minimization
with respect to θ, the parameters of the DIP neural network, and to w, the prob-
ability distributions. Minimizing with respect to θ is achieved with the classical
back-propagation, and minimizing with respect to w amounts to solving a linear
program as explained in Section 2.3.
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Fig. 6. Minimized loss (bottom right) and its components (related to coupled TV,
luminance, and chrominance) against number of iteration in a typical case.

It can be noted that minimizing Eq. (4) with respect to θ by gradient descent
is equivalent to minimizing:∑

x∈G

∥∥C(d(fθ(z)))(x)− u(x)
∥∥2 + α ∥L(fθ(z))− y0∥2 + β TVγ(fθ(z)) (5)

with u(x) =
∑

i wi(x)ci. Indeed, with vθ(x) = C
(
d(fθ(z))

)
(x),

∇θ

(∑
x∈G

313∑
i=1

wi(x) ∥vθ(x)− ci∥2
)

= 2
∑
x∈G

313∑
i=1

wi(x)∇θvθ(x) · (vθ(x)− ci)

= 2
∑
x∈G

∇θvθ(x) ·

(
vθ(x)−

∑
i

wi(x)ci

)
= ∇θ

(∑
x∈G

∥vθ(x)− u(x)∥2
) (6)

where · denotes the dot product, since
∑

i wi(x) = 1 for any x ∈ G.
Our software implementation uses the equivalent Eq. (5) instead of Eq. (4)

for the unsupervised learning step to reduce the computational burden of back-
propagation. The resulting algorithm is given in Fig. 5. In practice, Step 2 is
performed after repeating 200 gradient descent iterations of Step 1, which limits
the number of Step 2 performed, this latter step being time-consuming in spite
that only a few pixels are concerned by a change of their probability distribution.
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Fig. 7. Chrominance channels. Left: output of CIC [21]. Right: proposed approach
(minimization of Eq. (5)). The proposed approach with regularized deep image prior
gives a better localization of the chrominance information, which explains reduced color
halos. The corresponding color images can be seen in Fig. 2. Best seen on screen.

We can see the effect of this alternating scheme in Fig. 6. The curve of the
total loss is globally smooth but contains some small jumps. The function becom-
ing asymptotically constant after 1,000 iterations, stopping after 2,000 iterations
ensures the convergence of the iterative algorithm. In all the experiments of this
paper, convergence curves are similar to Fig. 6. Contrary to the standard DIP
approach [17], there is no need for early stopping.
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3 Numerical experiments

As mentioned in the introduction, colorization is an ill-posed problem as several
different solutions may be consistent with a unique monochromatic image (for
instance, the color of a car cannot be determined from its black-and-white im-
age). Consequently, this section shows qualitative results: the goal is to assess
whether the proposed approach gives plausible colorizations without color halos.

Our software programs are freely available at the following URL:
https://gitlab.univ-lorraine.fr/pierre26/diptv

3.1 Parameters

The parameters have been chosen experimentally once and for all. On all the
tested images, the same parameters have been used: α = 1, β = 5.10−7, and
γ = 80. The β parameter controls the regularity of the image and works together
with the γ parameter. β encourages some flat areas and small variations of
the image whereas γ controls the smoothness/sharpness of the contours of the
chrominance channels and the coupling of these channels with the luminance
one. The optimizer minimizing the loss is ADAM with a learning rate of 2.10−2.

The optimization of Eq. (4) with respect to θ takes about 162 sec for 256×256
images on a GeForce GTX 1060 GPU with 6GB memory (2, 000 iterations, as
explained in the preceding section). In comparison, the computation of the initial
distribution by CIC [21] takes less than 2 seconds.

3.2 Experiments

In Fig. 7, chrominance channels are shown by applying a constant luminance
channel equal to a 50% value. This process helps to qualitatively validate the
results of a colorization algorithm by neutralising the effect of luminance. Indeed,
colorized images often seem to be visually satisfactory, in spite of poorly localized
chrominances. This is caused by the sensitivity of the human visual system to
luminance, which hides potential defects of the colorization process. We can see
that contours are sharper with our method. Moreover, regularizing with coupled
total variation removes some defects on flat areas (for instance the bottom part
of the sky below the plane). Sharpness of the chrominance channels shows some
benefits in terms of colorization results: for instance, the orange halo on the left
of the butterfly (which is the result of a wrong color assignment because of a flat
probability distribution given by CIC, as proven by Fig. 4) is removed by our
optimization scheme.

Fig. 8 shows some comparisons between [12] and the results obtained with (4).
It emphasizes the benefit of DIP with respect to a traditional variational method.
It is important to note that the outputs of [12] are themselves significant im-
provements over the output of CIC [21]. It can be seen in the lion image that
the contours are better respected. The blue halo over the lion’s skin and the
orange halo in the sky seen in the output of [12] are corrected by the proposed
regularization step. The space between the two lions is not blue as one would
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monochromatic images results of [12] our results

Fig. 8. Comparison with [12]. Left: original monochromatic images. Center: results
of [12] (from Figs. 5, 6 and supplementary material of [12]); right: proposed approach,
minimization of Eq. (5). From top to bottom: lion, close-up, lighthouse, close-up, jel-
lyfish. The proposed approach shows significant improvements over [12], which itself
improves over CIC [21] (see Fig. 1).
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expect, but it turns out that, in this area, blue has a low probability in CIC on
which our approach depends. In the lighthouse image, orange halo on the facade
of the right-hand side building seen in the output of [12] disappears with the
proposed approach. In the jellyfish image, the bottom right halo seen in [12] has
been removed. Besides, the jellyfish is colorized with [12] through a brown blurry
halo in the chrominance channels, whereas the proposed approach produces a
structured colorization well-fitted to the body of the jellyfish. However, it can
also be seen that the DIP approach produces a brown spot in the lower left of
the image, not related to any structure of the luminance channel. It turns out
that this phenomenon sometimes appears, depending on the random initializa-
tion z of DIP. It is quite rare: we show this particular output for the sake of
completeness; most outputs are not affected by it.

4 Conclusion

This paper proposed a deep image prior approach to image colorization, based
on the probability distribution given by a state-of-the-art neural network over a
low resolution pixel grid. The proposed regularization scheme was able to pro-
duce full-resolution chrominance information through a deep image prior reg-
ularized by coupled total variation, which permitted to align the chrominance
and luminance edges, the latter being available at full-resolution in the original
monochromatic image. As a result, we have shown that the so-called color halos
(or color bleeding) were reduced, which is a first step towards effective use of
colorization.

Acknowledgments This research was funded, in whole or in part, by l’Agence
Nationale de la Recherche (ANR), project ANR-21-0008-01. For the purpose of
open access, the authors have applied a CC-BY public copyright licence to any
Author Accepted Manuscript (AAM) version arising from this submission.

References

1. Antic, J., Howard, J., Manor, U.: DeCrappification, DeOldification, and su-
per resolution. Fast.ai course (2019), https://www.fast.ai/posts/2019-05-03-
decrappify.html

2. Arbelot, B., Vergne, R., Hurtut, T., Thollot, J.: Local texture-based color transfer
and colorization. Computers & Graphics 62, 15–27 (2017)

3. Batard, T., Haro, G., Ballester, C.: DIP-VBTV: A color image restoration model
combining a deep image prior and a vector bundle total variation. SIAM Journal
on Imaging Sciences 14(4), 1816–1847 (2021)

4. Deshpande, A., Lu, J., Yeh, M.C., Chong, M., Forsyth, D.: Learning diverse image
colorization. In: Proc. Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2877–2885 (2017)

5. Deshpande, A., Rock, J., Forsyth, D.: Learning large-scale automatic image col-
orization. In: Proc. International Conference on Computer Vision (ICCV). pp.
567–575 (2015)



Deep image prior regularized by coupled total variation. . . 13

6. Huang, Z., Zhao, N., Liao, J.: Unicolor: A unified framework for multi-modal col-
orization with transformer. ACM Transactions on Graphics (Proc. SIGGRAPH’22)
41(6) (2022)

7. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be Color!: Joint end-to-end learn-
ing of global and local image priors for automatic image colorization with simulta-
neous classification. ACM Transactions on Graphics (Proc. SIGGRAPH’16) 35(4),
110:1–110:11 (2016)

8. Kim, E., Lee, S., Park, J., Choi, S., Seo, C., Choo, J.: Deep edge-aware interactive
colorization against color-bleeding effects. In: Proc. International Conference on
Computer Vision (ICCV). pp. 14667–14676 (2021)

9. Kim, G., Kang, K., Kim, S., Lee, H., Kim, S., Kim, J., Baek, S.H., Cho, S.: Bigcolor:
Colorization using a generative color prior for natural images. In: Proc. European
Conference on Computer Vision (ECCV). pp. 350–366 (2022)

10. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic
colorization. In: Proc. European Conference on Computer Vision (ECCV) (2016)

11. Liu, J., Sun, Y., Xu, X., Kamilov, U.: Image restoration using total variation regu-
larized deep image prior. In: Proc. International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 7715–7719 (2019)

12. Mouzon, T., Pierre, F., Berger, M.O.: Joint CNN and variational model for fully-
automatic image colorization. In: Proc. Scale Space and Variational Methods in
Computer Vision (SSVM) Conference. Lecture Notes in Computer Science, vol.
11603, pp. 535–546 (2019)

13. Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C., Luo, P.: Exploiting deep genera-
tive prior for versatile image restoration and manipulation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44(11), 7474–7489 (2022)

14. Pierre, F., Aujol, J.F.: Recent approaches for image colorization. In: Chen, K.,
Schönlieb, C.B., Tai, X.C., Younces, L. (eds.) Handbook of Mathematical Mod-
els and Algorithms in Computer Vision and Imaging: Mathematical Imaging and
Vision. Springer (2021)

15. Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Luminance-
chrominance model for image colorization. SIAM Journal on Imaging Sciences
8(1), 536–563 (2015)

16. Salmona, A., Bouza, L., Delon, J.: DeOldify: A review and implementation of an
automatic colorization method. Image Processing On Line 12, 347–368 (2022)

17. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proc. Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

18. Vitoria, P., Raad, L., Ballester, C.: ChromaGAN: Adversarial picture colorization
with semantic class distribution. In: Proc. Winter Conference on Applications of
Computer Vision. pp. 2445–2454 (2020)

19. Xia, M., Hu, W., Wong, T.T., Wang, J.: Disentangled image colorization via global
anchors. ACM Transactions on Graphics (Proc. SIGGRAPH’22) 41(6) (2022)

20. Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A., Yu, T., Efros, A.: Real-time
user-guided image colorization with learned deep priors. ACM Transactions on
Graphics (Proc. SIGGRAPH’17) 36(4) (2017)

21. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Proc. European
Conference on Computer Vision (ECCV) (2016)


