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Abstract

Background: Reliably measuring sharp details in displacement and strain maps returned
by full-field measurement techniques remains an open question in the photomechanics com-
munity.
Objective: The primary objective of this study is to improve and fine-tune a deconvolu-
tion algorithm in order to limit the blur that obscures the details in displacement and strain
maps.
Methods: Checkerboard patterns are used and processed with a spectral method, namely
the Localized Spectrum Analysis (LSA), and the raw maps returned by this technique are
deconvolved. The influence of various settings on the quality of the results is studied by
using synthetic images deformed through a well-vetted reference displacement field.
Results: It is shown that linking the size of the analysis window used in LSA on the one
hand, and the size of the second derivative kernel employed in the deconvolution algorithm
on the other hand, ensures the convergence of the deconvolution algorithm in all cases. This
was not the case with the initial version. The ratio between these sizes, which optimizes the
metrological performance of LSA followed by deconvolution, is identified. The influence of
the sampling density of the checkerboard pattern in the images is also examined. The effi-
ciency of the deconvolution algorithm employed with optimized settings is illustrated with
strain maps obtained on two specimens, one in shape memory alloy, and the other in wood.
Conclusions: It is shown in this study that deconvolution with optimized settings is an
effective tool to enhance small and sharp details in strain maps obtained with LSA.
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1 Introduction

Full-field measurement techniques are now widespread in the experimental mechanics com-
munity. Thanks to a good compromise between ease of use and metrological performance,
Digital Image Correlation (DIC) is the most popular one. Assessing and improving the
metrological performance of this measurement technique has garnered extensive research
attention in this community, as illustrated by numerous papers recently published on this
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subject. This literature shows that DIC is well suited to situations for which the strain
distribution gently spatially changes throughout the specimen. Capturing small details in
those distributions is however much more challenging, if not impossible. The reason is that
DIC behaves like a low-pass filter, so DIC cannot return small details which necessitate high-
frequency spatial components to be correctly described if the corresponding frequencies are
higher than the cutoff frequency of the corresponding filter. In addition, specific problems
due to the fact that random speckles are used to mark the surface of the specimen arise, as
recently pointed out in [10] with the Pattern-Induced Bias (PIB). Limiting if not removing
PIB can be achieved by using periodic patterns like checkerboards instead of random ones.
In addition, it has been shown that image gradient is maximized for such patterns [12],
which leads sensor noise propagation to be minimized in the final displacement and strain
maps. The problem is that classic versions of DIC cannot process periodic patterns. Even
though it has been recently shown in [39] that a dedicated version of DIC could process such
patterns, DIC basically relies on the iterative minimization of the optical residual, which
makes this technique quite demanding in terms of computer resources. An alternative solu-
tion discussed in [14, 17] is to switch the minimization of the optical residual from the spatial
to the frequency domain since this considerably speeds up the procedure without reducing
the metrological performance. Specific spectral techniques such as the Localized Spectrum
Analysis (LSA) can be used to reach this goal [21]. Like classic subset-based DIC [38, 37],
a limitation is however that LSA does not directly return the true and sought quantity, but
this quantity convolved by a kernel, which is known a priori [43]. In general, the negative
effect of convolution on displacement and strain maps cannot be directly removed by us-
ing classic deconvolution algorithms, the latter being developed under assumptions that are
valid for natural images, not for displacement or strain maps [19]. In addition, the primary
goal is not to render images that are pleasant to the eye but to provide measurement maps,
which means that the errors must also be quantified. A deconvolution algorithm suitable for
displacement or strain maps has been proposed in [15], but it is shown in this reference that
this algorithm does not converge in all cases. In addition, the settings were not optimized.

In this context, the objective of this contribution is to improve the deconvolution algo-
rithm introduced in [15] by i- ensuring convergence of this algorithm in any case, and ii- by
proposing a setting such that the metrological performance of the deconvolution procedure
is optimized. The paper is illustrated with simulations performed with synthetic images
obtained with a suitable image rendering algorithm [42]. The optimized version of the de-
convolution algorithm is finally applied in two real cases, for which it is of prime importance
to render in a reliable way tiny details in strain maps.

The paper is organized as follows. First, we recall the basics of the different tools used
in this study, namely the way synthetic checkerboard images are obtained and deformed
through a well-vetted reference displacement field, the spectral method employed to process
these images, and the deconvolution algorithm. The influence of various parameters govern-
ing the quality of the final results is examined in the second part, and optimized settings are
deduced. The deconvolution algorithm with optimal setting is finally used in two real cases
dealing with phase change in a shape memory alloy and the estimation of the strain field in
a wood specimen embedding a knot. The definition of the four parameters characterizing
the metrological performance discussed in the paper is given in a separate appendix.

2 Methods

2.1 A brief reminder on the Localized Spectrum Analysis

The gray level distribution of a checkerboard pattern can be regarded as the superposition
of two signals denoted by frng, each being 2π-periodic along one of two perpendicular direc-
tions. These directions are the bisectors x′′

1 - and x′′
2 of the natural axes of symmetry of the

checkerboard, see Figure 1. This gives
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Figure 1: Different coordinate systems involved in the calculation. Nominal period p of the
checkerboard = twice the size of the squares forming the checkerboard. Period used to process

the checkerboard images: p

√
2

2
. (x1, x2) are the axes of the pixel coordinates, (x

′
1, x

′
2) are the so-

called natural axes of symmetry of the checkerboard, and (x′′
1 , x

′′
2) define the directions rotated by

+45 degrees with respect the x′
1 and x′

2 directions. They are called the bisectors in the following.

s(x1, x2) =
A

2

(
2 + γfrng
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√
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p
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)
+ γfrng

(
2π

√
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p
+Φ′′
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(1)

where A is the average global field illumination, γ is the contrast. p is the nominal period

of the periodic signals measured along its natural axes of symmetry x′
1 or x′

2, so
√
2

2
p is the

period along the bisectors x′′
1 and x′′

2 of the x′
1 and x′

2-directions. Φ
′′
1 , Φ

′′
2 are the modulations

of these two signals along the x′′
1 - and x′′

2 -directions, respectively. s, Φ
′′
1 and Φ′′

2 are obtained
over a grid of pixels, so they are given as a function of the coordinates of those pixels, namely
x1 and x2.

Each displacement component measured along the x′′
1 - and x′′

2 -directions is proportional
to the phase change along the corresponding direction. After a change of basis to get the
displacement components in the x1- and x2-directions (denoted by u1 and u2, respectively),
we have

ui(x1, x2) = − 1

2π

√
2

2
p
(
Φcur

i (x1 + u1(x1, x2), y + u2(x1, x2))− Φref
i (x1, x2)

)
i ∈ {1, 2}.

(2)
Determining u1(x1, x2) and u2(x1, x2) is not direct but quasi-direct, in the sense that

the displacements along x1 and x2 appear in both parts of the equation. These quantities
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are found numerically by using a fixed-point algorithm, which means that a first estimate is
obtained by zeroing u1(x1, x2) and u2(x1, x2) in the right-hand side of Equation 2. This first
estimate is then placed in the right-hand side of Equation 2, which enables us to determine
a second and more precise estimate used in turn to feed the right-hand side of the equation,
etc. The procedure quickly converges as the derivatives of the phases are such that

p/2π∥∇Φcur∥∞ < 1, (3)

where ∥ · ∥∞ denotes the supremum of a function, as explained in [20]. In this case, the
Banach fixed-point theorem [25] ensures the convergence of the algorithm. Since we are
interested here in measuring small strains, which induce small phase derivatives, only one
or two iterations at most are generally sufficient to reach convergence.

In Equation 2, Φref
i and Φcur

i , i ∈ {1, 2}, are the phase distributions of this periodic
pattern in the reference and current configurations, respectively. These two phases are
deduced from the images by using a spectral technique. The Localized Spectrum Analysis
(LSA) is one of these techniques [21]. With LSA, the first step is to calculate the windowed
Fourier transform (WFT) of the signal (here the gray level distribution) s. The sought
phase is then obtained by taking the argument of the resulting complex number distribution.
This quantity is denoted by FwLSA(s), where w denotes the analysis window. The WFT is

calculated for only one spatial frequency f which is equal to the nominal frequency f =

√
2

p
of

the periodic pattern, and for a direction defined by an angle θ with respect to the horizontal
axis in Figure 1. This gives

FwLSA(s)(x1, x2, θ) =

∫ +∞

−∞

∫ +∞

−∞
s(η, ξ)wLSA(x1 − η, x2 − ξ)e−2iπf(ηcosθ+ξsinθ)dηdξ (4)

with i2 = −1. The analysis window wLSA is centered at the pixel of coordinates x1, x2 where
FwLSA(s)(x1, x2, θ) is calculated. The 2D Gaussian window defined by

wLSA(x1, x2) =
1

2πℓ2LSA
e

−
x2
1 + x2

2

2ℓ2LSA


(5)

constitutes the best tradeoff between various constraints, see [44] for 2D grids. This point
is also discussed further in Section 5. In Equation 5, ℓLSA is the standard deviation of this
Gaussian function. Similarly to the subset size in DIC, ℓLSA can be considered as a handy
parameter which governs the apparent size of the analysis window used in LSA. However,
contrary to the subset size in DIC, ℓLSA is a real-valued quantity.

The Gaussian function has no compact support. Its apparent width is classically ar-
bitrarily considered to be equal to 6 × ℓLSA according to the so-called “3 − σ rule” [13].
Figure 2 (a) shows the Gaussian analysis window plotted with ℓLSA = 9.3 [px]. Its apparent
size is equal to 6× 9.3 ≃ 56 [px] according to this rule. In practice, the size of the support
used in the calculation is finite and must be greater than this apparent size. In the calcula-
tions performed in this paper, the size of this support was equal to 2 × ceil(4 × ℓLSA) + 1,
where ceil(.) denotes the smallest integer number larger than “.”. In the present case, this
gives 2 × 38 + 1 = 77 [px]. Note that the Gaussian analysis window strictly integrates to
one over this compact support. This property is simply obtained by dividing the expression
given in Equation 5 by its integral calculated over this support.

In Equation 4, θ represents the angle of the direction along which the WFT is calculated.
This WFT is calculated along two directions since 2D displacement components must be

calculated. These two directions are θ = α+
π

4
and θ = α+

3π

4
, where α is the angle which

gives the orientation of the natural axes of symmetry of the periodic pattern with respect
to the (x1, x2) axes, see Figure 1. α ̸= 0 in order to avoid aliasing in the images, see [41].
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(a) Gaussian analysis window. Particular case with
ℓLSA = p = 9.3 [px]

(b) Opposite of the second derivative kernel along x1 (de-

noted by w,11) with ℓHess
ℓLSA

= 0.67 [-] and ℓLSA = p =

9.3 [px]

(c) Bi-triangular analysis window discussed in Section 5.
The borders are aligned with the bisectors of the squares
forming the checkerboard. Width = 2ℓLSA = 2p =
18.6 [px]

Figure 2: (a)- and (c) Analysis windows. (b) Second derivative kernel.
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Compared to other spectral techniques, a big advantage of LSA is the short computing
time. The main reason is the fact that a Fast Fourier Transform is employed to switch
the calculation from the spatial to the frequency domain. Another reason is the fact that
the argument of F(wLSA)(x1, x2, θ) is generally considered to be directly equal to the phase
of the periodic signal involved in Equation 2. However and as demonstrated in [43], the
argument of FwLSA(s)(x1, x2, θ) is well approximated by the convolution of the true (and
sought) phase along θ and the analysis window wLSA. The idea is thus to deconvolve the
phase maps obtained with LSA to retrieve the true phase distributions, or at least a quantity
closer to the true phase distributions than their convolved versions, and eventually a better
estimation of the displacement field.

2.2 Synthetic displacement field

Pairs of synthetic checkerboard images in reference and in deformed configurations were
used here to assess this metrological performance. They were obtained with a program
named CheckerboardRender available online ∗. This program works with the same prin-
ciple as BSpekleRender introduced in [42] to render random speckles suitable for DIC. Its
major benefit is to render synthetic images which are not affected by interpolation. The
checkerboard pattern was rotated by α = 10 degrees. Eight different sampling densities ρ
were used to generate the checkerboard images in order to examine the influence of this
parameter on the results. ρ was equal to 5.3 to 12.3 pixels/period, with a step equal to
1.0 pixels/period. These non-integer values more faithfully reproduce what happens in real
experiments because having integer values for ρ requires a precise but tedious setting of the
optical device and of the respective positions of the specimen and the camera. Noiseless and
noisy images were obtained in each case, with a variance of the noise σimage modelled by an
affine function of the gray level, as suggested in [11]. The slope a is equal to a = 0.0342, and
the intercept to b = 0.2679. These are typical values for a digital camera. The dimensions
of the synthetic checkerboard images were 501×2000 [px2] along the vertical and horizontal
axes, respectively, They were slightly deformed with a sine wave along the x2-direction of
period pwave, this period lying between 10 and 150 pixels, the displacement u1(x1, x2) along
the x1-direction being null. The amplitude of the wave is equal to 0.5 [px], this quantity
corresponding to a case for which the interpolation bias is null when the images are pro-
cessed with DIC. This is not the case here but we stick with this value to be consistent with
other studies where such a reference displacement field is used, and the images processed
with DIC, see [17, 36] for instance. The reference displacement field along the x2 direction is
such that the period gently increases from the left to the right. The closed-form expression
of the u2 displacement reads as follows:

u2(x1, x2) = 0.5× cos

(
2π

pwave

(
x2 −

H + 1

2

))
(6)

with

pwave = pmini
wave +

pmaxi
wave − pmini

wave

L− 1
(x1 − 1) (7)

H and L are the height and the length of the map, respectively. pmini
wave and pmini

wave are
the minimum and maximum values of the period of the wave respectively. In the present
case, we have L = 2000 [px], H = 501 [px], pmini

wave =10 [px] and pmaxi
wave = 150 [px]. The

u2 displacement field is represented in Figure 3. This displacement field is suitable for
the analysis of the progressive damping of the amplitude of the sine wave returned by the
measuring system when the frequency of this wave increases, thus when going to the left-hand
side of the map. The curve representing the cross-section of this field along the horizontal
midline (denoted by ∆ in Figure 3) is generally plotted to study in depth this damping.

∗https://members.loria.fr/FSur/software/BSpeckleRender/

6

https://members.loria.fr/FSur/software/BSpeckleRender/


200 400 600 800 1000 1200 1400 1600 1800 2000

100

200

300

400

500 -0.5

0

0.5

Figure 3: Reference displacement field. Throughout the paper, the cross-section of the different
u2 displacement fields will be given along the midline ∆.

This type of synthetic displacement has already been used in previous papers dealing with
the metrological performance of full-field measurement methods, see [19, 14, 3, 17, 36, 6, 46].
It was christened the “STAR” displacement field in [36].

2.3 Deconvolving phase maps to reduce the bias

A deconvolution algorithm dedicated to phase maps obtained by LSA has been proposed in
Ref. [16]. Deconvolving phase maps leads to an enhancement of the quality of these maps, as
well as that of the displacement and strain fields returned by the measuring technique. More
precisely, the spatial resolution (the definition of this quantity is given in the Appendix)
becomes smaller (thus better), which enables us to sharpen details in strain maps. The
noise level increases but in a lower proportion. This leads the sum of the random error
and the systematic error to be lower after deconvolution, the decrease of this total error
being significant for “intermediate” spatial frequencies, as illustrated in the results of the
numerical simulations discussed in the following sections.

Deconvolution procedures are generally performed under appropriate assumptions con-
cerning the problem at hand, in order to make the procedure robust to noise. Compared
to natural images of everyday life (and even images of patterns used in photomechanics like
random speckles or checkerboards), phase or displacement maps much more gently spatially
change, apart from in the case of cracks where they become discontinuous. The deconvo-
lution procedure proposed in [16] thus consists in considering the Taylor expansion of the
convolution product between the true (and sought) phases gathered in vector Φtrue, and the
analysis window wLSA used in LSA. This leads to the following link between Φtrue and the
vector Φ containing the phases returned by LSA:

Φtrue = Φ− δΦ (8)

After mild approximations (see details in Ref. [16]), the equation above gives the following
iterative procedure to estimate the correction of the phases returned by LSA:

Φ̃
0
= Φ

Φ̃
it+1

= Φ− δΦ̃
it
, with δΦ̃

it
=

1

2

∑
i={u,v}

2∑
k,l=1

Φ̃it
i,kl Ikl ei

, (9)

The procedure returns a vector Φ̃, whose components are closer to the components of
Φtrue than the components of Φ. In this equation, Φ̃it

i,kl is the second derivative of Φ̃it with

respect to directions k and l at the it-th iteration. u and v are the directions along which Φ̃
is determined, x1 and x2 since in practice, deconvolution is applied to the phases expressed
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Algorithm 1 Deconvolution of a phase map

1: input: Φ: phase map to be restored, wHess: second-order derivative kernel
2: Ikl ←

∫∫
(η1,η2)∈ℜ2 wHess(η1, η2)ηkηl dη1 dη2 for any k, l ∈ {1, 2}

3: initialisation: it = 0, Φ0 = Φ
4: while it ≤ 10 do

5: δΦ̃
it ← 1

2

∑
i={u,v}

∑2
k,l=1 Φ̃

it
i,kl Ikl ei

6: Φ̃
it+1 ← Φ̃− δΦ̃

it

7: it← it + 1
8: end while
9: output: deconvolved phase map

in the x1 and x2 directions. Ikl is the second moment of the kernel wHess with respect to the
xk and xl directions, k, l ∈ {1, 2}. It is defined as follows:

Ikl =

∫∫
(η1,η2)∈ℜ2

wHess(η1, η2)ηkηl dη1 dη2 (10)

In Equation 9, the second derivatives are estimated by convolving the two components

of Φ̃
it
with a second-order derivative kernel, chosen here as a classic “Mexican hat” aligned

with the direction(s) of derivation. Such a kernel is defined by the second derivatives of a
Gaussian distribution defined by a standard deviation denoted by ℓHess. For instance, the
second derivative of a phase map along x1 is obtained by convolving this phase map by the
second derivative of the following Gaussian function with respect to x1:

wHess(x1, x2) =
1

2πℓ2Hess
e

−
x2
1 + x2

2

2ℓ2Hess


, (11)

which gives

∂w2
Hess(x1, x2)

∂x2
1

= − 1

2πℓ4Hess

(
1− x2

1

ℓ2Hess

)
e

−
x2
1 + x2

2

2ℓ2Hess


. (12)

With the numerical implementation of this kernel, it is important to check that∫∫
(η1,η2)∈D

∂w2
Hess(η1, η2)

∂x2
dη1 dη2 = 0 (13)

where D is the domain over which the second derivative kernel is estimated. Since the
support is compact and not infinite, this integral is nullified by adding a suitable constant
to this second derivative. The same remark holds for the other components of the Hessian.

The opposite of the second derivative filter along x1 (denoted by wHess,11) is depicted in

Figure 2 (b) with ℓHess
ℓLSA

= 0.67 [-] and ℓLSA = 9.3 [px], as for the Gaussian analysis window

shown in Figure 2 (a). 0.67 is a particular value that will be justified later in the paper. It
can be seen that the apparent size of this kernel is visually smaller than the apparent size
of the Gaussian analysis window. The support of this kernel used in the calculations must
be greater than the apparent size visually observed in Figure 2 (b). In the present paper,
the size of this support was equal to 2× ceil(6× ℓHess) + 1. With this example, this again
gives 2× 38+ 1 = 77 [px], as for the Gaussian analysis window, but the size of this support
is in general different from the size of the support of the Gaussian analysis window.

The main steps of the deconvolution procedure are given in Algorithm 1.
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A key point in this procedure is the choice of the size of the support over which the
second-derivative filter is defined. This size is governed by ℓHess. In Ref.[16], ℓHess was
constant whatever the value of ℓLSA, and it was observed that the procedure converged
only for values of ℓLSA lower than or close to the nominal period p of the checkerboard.
This procedure diverged for greater values, which was a limitation. We will see below that
choosing ℓHess to be proportional to ℓLSA and suitably adjusting the proportion between these
two quantities leads the deconvolution procedure to converge for all the values tested in this
study, which covers a range including usual values of the size of the analysis window, thus
of ℓLSA.

2.4 Impact of convolution/deconvolution on the displacement
and strain maps

Displacement maps are deduced from the phase maps by using Equation 2 and the asso-
ciated fixed-point algorithm. This algorithm does not equally affect all the pixels of the
phase distributions when the displacement is retrieved. Consequently and strictly speaking,
displacement maps obtained by LSA and the fixed-point algorithm are not directly the true
displacement maps convolved by the analysis window. However, this spatial fluctuation
may reasonably be considered as sufficiently small to be neglected compared to the effect
of convolution. Thus, displacement maps deduced from Equation 2 will be considered as
convolved by the analysis window even though they are deduced from the convolved phases
with Equation 2 and the associated fixed-point algorithm. In the same way, if deconvolved
phase maps are used in this equation, the resulting displacement field will also be considered
as the deconvolved one.

Concerning strain, it is worth remembering that the derivative of the convolution of two
functions is the convolution of one of the functions with the derivative of the other. Thus,
the following equations holds for any functions g and w:

(g ⊗ w)′ = g ⊗ w′ = g′ ⊗ w (14)

where symbol ′ denotes derivation and ⊗ convolution. Considering here that g is one of
the two displacement components u1 or u2, and w the analysis window wLSA used in LSA,
it means that the convolution by the analysis window affects in the same way both the
displacement and the strain maps.

We now consider the particular case of the reference displacement field presented in
Section 2.2 and the corresponding ε22 component. The closed-form expression of the ε22
strain distribution can be deduced from the expression of u2 given in Equation 6. This leads
to:

ε22 = −0.5× 2π

pwave
× sin

(
2π

pwave

(
x2 −

H + 1

2

))
(15)

In the particular case considered here, the relative change in amplitude of both the u2

displacement and the ε22 strain components are the same. It means that if the real dis-
placement field is dominated by a given cosine distribution along a direction, the strain field
along this direction is dominated by a sine wave featuring the same period. Consequently,
the relative change in amplitude is the same for both the displacement and the strain along
this direction. This remark will turn out to be useful in Section 8.1, where a real strain map
will be discussed. Note that this remark is not valid in the general case, the local response
being influenced by numerous harmonics, with coefficients being not proportional between
displacement and strain distributions.
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2.5 Influencing parameters

In conclusion, considering that the analysis window wLSA used in the LSA procedure is a
2D Gaussian function, the quality of the results obtained with LSA and deconvolution is
mainly governed by three parameters:

• The width of this Gaussian analysis window, which is proportional to its standard
deviation ℓLSA.

• The width of the second-derivative filter used to estimate the Hessian of the phase
distributions. This filter is a “Mexican hat” deduced by double derivation from a
2D Gaussian function denoted by wHess. Its standard deviation, denoted by ℓHess, also
governs the size of this window.

• The sampling density ρ [px/period], which is equal to the number of pixels per nominal
period p of the checkerboard. The minimum value for ρ enabling to correctly encode
the squares of a checkerboard is equal to 5 pixels [15], but the usual values for this
quantity in real experiments is close to 6 to limit the negative effect of the Point Spread
Function of the lens, as underlined in [33]. This value is consistent with the average
number of 3 pixels per dot recommended in [35] for correctly sampling dots in random
speckles used with DIC.

To make the results comparable between different values of ρ, the first two parameters
ℓLSA and wHess are normalized with respect to this quantity, as well as the period pwave

defined in Equation 7, the cutoff frequency fc(λ) and the Metrological Efficiency Indicator
MEI defined in the Appendix. This gives:

ℓ̃LSA =
ℓLSA
ρ

, ℓ̃Hess =
ℓHess
ρ

, p̃wave =
pwave

ρ
, f̃c(λ) = fc(λ)ρ, M̃EI =

MEI

ρ
, (16)

These normalized parameters will be used in the following. Changing the sampling
density to encode the periodic signal can be interpreted, ceteris paribus, as a change in
the distance between camera and specimen. This is not strictly the case in the synthetic
images considered in the simulations since the amplitude of the reference displacement field
defined in Section 2.2 is equal to 0.5 [px] whatever the value of ρ, which means that the real
amplitude (in [m]) of the sine wave in those images changes from a value of ρ to another.
The consequence is that the displacement resolution σu (see definition in the Appendix)
was not normalized here. Indeed, since the amplitude of the sine wave remains the same
(0.5 [px]) as the value of ρ changes, σu is already a parameter, which is normalized with
respect to ρ.

Note finally that the deconvolution procedure described in Algorithm 1 is iterative, so
the number of iterations is also a potential influencing parameter. However, it has been
observed that the solution is only marginally refined when using more than 10 iterations.
All the results discussed in this paper were therefore obtained with a number of iterations
equal to 10.

In the following, we will investigate the influence of the value of these three user-defined
parameters, namely ℓ̃LSA, ℓ̃Hess and ρ, on the quality of the results obtained after decon-
volution, the objective being to get optimized values when it is possible, or to have a clear
view on the influence of these parameters on the quality of the results.

3 Benefit of choosing ℓ̃Hess proportional to ℓ̃LSA on
the convergence of the deconvolution algorithm

We illustrate here the benefit of adjusting the size of the second-derivative kernel used
to calculated the Hessian, to the size of the analysis window used to extract the phase
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distributions field from the checkerboard images, thus ℓ̃Hess to ℓ̃LSA. In Ref. [16], the size
of the former was considered as a constant but the deconvolution procedure progressively
diverged as ℓ̃LSA became greater than one, which is a strong limitation. We show here
that choosing a value of ℓ̃Hess proportional to ℓ̃LSA and correctly setting this proportion
ensures the deconvolution algorithm to converge in all the cases that were tested. The
intuitive explanation of this trick is that the variations of the convolved phase have a scale
proportional to the size of the convolution kernel, thus to ℓ̃LSA. Consequently, it makes
sense to measure these variations with a derivative kernel with a standard deviation ℓ̃Hess
proportional to ℓ̃LSA.

Figure 4 is a typical example of the improvement caused by having ℓ̃Hess proportional
to ℓ̃LSA instead of having ℓ̃Hess equal to a constant value. In this example, the sampling
density ρ is equal to 6.3 pixels/period (results obtained with other values of ρ are discussed

in Section 6). The calculations were performed with different values of ℓ̃LSA lying between√
2

2
and 3.0×

√
2

2
[-], with a step of 0.1×

√
2

2
] [-]. Thus ℓ̃LSA ∈ {1.0×

√
2
2
, 1.1×

√
2

2
, · · · , 2.9×

√
2

2
, 3.0×

√
2

2
} [-].

We consider first the case for which the value of ℓ̃Hess remains constant for all values of
ℓLSA. This constant value is the same as that used in Ref. [16], where we had ℓHess = 2.1×2 =

4.2 pixels and ρ = 6[px/period], thus ℓ̃Hess = 4.2/6 = 0.70 for any value of ℓLSA. Figure 4 (a)
shows the u2 displacement along the midline ∆ found in this case. The curves obtained after
deconvolution show that the algorithm converges for the smallest values of ℓ̃LSA. The curve

exhibits large fluctuations when ℓ̃LSA becomes greater than about 1.4×
√

2
2

≃ 1 [-]. Indeed,
the difference between the curves corresponding to the successive steps of the iterative
procedure monotonically increases. Since this phenomenon becomes more pronounced as

ℓ̃LSA increases, the curves corresponding to ℓ̃LSA > 1.8×
√
2

2
[-] are not shown in this figure.

In Figure 4 (b), the value of ℓ̃Hess is no longer constant, but proportional to the value of

ℓ̃LSA, with ℓ̃Hess = 0.70× ℓ̃LSA. This value of 0.70 is obtained by dividing the constant value of
ℓ̃Hess used in [16] (4.2 [px]) by the nominal period of the checkerboard used in this reference,
namely p = 6 [px]. Figure 4 (b) shows that the algorithm converges whatever the 21 values

of ℓ̃LSA tested in this study, which illustrates the fact that ℓ̃Hess should be proportional to
ℓ̃LSA.

This phenomenon can be regarded as a scale effect. Indeed, since LSA returns the true
phase convolved by the analysis window used in LSA, increasing the size of this analysis
window causes a wider zone to be affected by this convolution. It seems therefore logical to
adjust in proportion the size of the zone over which the Hessian is estimated. In Figure 4 (b),
it is worth noting that the curves obtained after deconvolution are regularly spaced. They
are shifted to the right as ℓ̃LSA stepwise increases, which means that the spatial resolution

1
fc(−10%)

as defined in the Appendix regularly decreases. We will see in Section 7 that this

shift is rigorously proportional to ℓ̃LSA.
The preceding figures were obtained with noiseless synthetic images. Non-blind decon-

volution (in the sense that the kernel is known a priori, blind deconvolution meaning that
this kernel is unknown) is however an ill-posed problem in the presence of noise, so it is
important to check the robustness of the algorithm in this case. Figure 4 (c) shows the
same types of curves as those shown in Figure 4 (b), but this time with displacement maps
retrieved from pairs of noisy images. Noise is characterized by the values of a and b given
in Section 2.2. The curves are therefore noisy, and the noise is all the higher as the analysis
window used in LSA decreases (from the light blue to the dark blue curves). However, the
important point is that deconvolution still converges with noisy data. In addition, the am-
plitude of the noise after deconvolution remains reasonable, which illustrates the robustness
of the procedure. It is observed that lower noise levels are obtained with greater values of

the ℓ̃Hess

ℓ̃LSA
ratio, as discussed in the following section. This is a consequence of the fact that

a greater number of pixels is involved in the calculations when this ratio increases, which
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(a) Case 1: ℓ̃Hess constant (ℓ̃Hess = 0.70 [-]) whatever the value of ℓ̃LSA
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(b) Case 2: ℓ̃Hess proportional to ℓ̃LSA, with ℓ̃Hess = 0.70× ℓ̃LSA[−], noiseless data
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(c) Case 3: same as Case 2 above, but with noisy data

Figure 4: Influence of ℓ̃Hess on the convergence of the deconvolution algorithm, with ℓ̃LSA increas-
ing stepwise from

√
2/2 [-] to 2

√
2/2 [-] (value of the step: 0.1 ×

√
2/2 [-]). ℓ̃Hess is constant

in -(a), and proportional to ℓ̃LSA in -(b) and -(c), with ℓ̃LSA = 0.70 × ℓ̃Hes. The red line is the
reference value of the amplitude along ∆: 0.5 [px].
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leads to more efficiently smoothing out this noise.

4 Optimizing the ratio between ℓ̃Hess and ℓ̃LSA

The ratio between ℓ̃Hess and ℓ̃LSA is now investigated in detail in order to see if an optimal
value can be found.

As a general remark, increasing the value of ℓ̃Hess for a given and fixed value of ℓ̃LSA
increases the zone over which the Hessian is calculated. This should therefore increase the
blur and decrease (thus deteriorate) the cutoff frequency beyond which high-frequency de-
tails cannot be retrieved. The counterpart is to decrease (thus improve) the displacement
resolution because the number of pixels covered by the second-derivative kernel increases,
thus averaging the effect of noise over a wider zone. At the same time and for the same
reason as for ℓ̃Hess, the value of ℓ̃LSA directly influences both the spatial resolution and the
measurement resolution. As a conclusion, two parameters influence the two latter metro-
logical parameters of the measuring technique: namely ℓ̃Hess and ℓ̃LSA, and the goal here is
to estimate the best ratio between the two since they should be proportional to ensure the
convergence of the deconvolution algorithm.

In this section, we first show that for a given value of ℓ̃LSA, two regimes can be distin-
guished when examining the influence of ℓ̃Hess. Second, both the values of ℓ̃LSA and ℓ̃Hess are
changed in order to span a space of reasonable values for these quantities, and see if an
optimal solution emerges for the ratio between the two.

4.1 Existence of two regimes

As an example, we consider first that the value of ℓ̃LSA is fixed, with ℓ̃LSA =

√
2

2
[-] (in

Figure 4 (b), this corresponds to the fifth curve obtained from the lowest possible value of

ℓ̃LSA). The corresponding value of ℓ̃LSA is the closest to 1.00 since 1.40×
√

2
2

≃ 1. Thus ℓLSA

is close to the nominal period of the checkerboard expressed in pixels. ℓ̃LSA being fixed, ℓ̃Hess

stepwise increases from 0.60 to 1.0 [-], with a step equal to 0.02 [-]. Other values of ℓ̃LSA
will be discussed in the following section. The value of the sampling density is fixed here to
6.3 pixels/period.

Figure 5 (a) shows various curves which are cross-sections along ∆ of the displacement

field retrieved with noiseless images and after deconvolution, with ℓ̃LSA =
√
2

2
× 1.4 [-], and

ℓ̃Hess stepwise increasing from 1.0 ×
√
2

2
to 3.0 ×

√
2

2
with a step equal to 0.1 ×

√
2

2
. When

ℓ̃Hess decreases, the color of the curves turns from light to dark blue. It can be observed that
decreasing the value of ℓ̃Hess progressively straightens out the curves, which causes the spatial
resolution 1

f̃c(−10%)
to decrease. Two regimes can be distinguished. Indeed, for the lowest

values of ℓ̃Hess (curves plotted in dark blue), the curves remain above the reference amplitude
of 0.5 pixel on the left-hand side of the figure, see “Regime A” reported in Figure 5 (a). For

the highest values of ℓ̃Hess (curves plotted in light blue), the curves are strictly monotonic
and remain under the red horizontal line representing the reference value of 0.5 pixel, see
“Regime B”. Additional simulations performed with a smaller value of the increase between
consecutive values of ℓ̃Hess show that the limit between these two regimes is obtained with

about ℓ̃Hess

ℓ̃LSA
= 0.72, see the green curve plotted in Figure 5 (a).

Finding the value of ℓ̃Hess for which λ = +10% is reached can be done by adjusting
the value of ℓ̃Hess in such a way that the curve after deconvolution is tangent to the red
horizontal dashed line with dots corresponding to λ = +10%. This numerical value is
chosen to be consistent with previous studies dealing with the metrological performance of
full-field measurement systems, in which a loss of amplitude of 10% was chosen to determine
the cutoff frequency and the spatial resolution, [17, 36] for instance.
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On close inspection of the different curves plotted in Figure 5 (a), it can be seen that the

value of the ℓ̃Hess

ℓ̃LSA
ratio should lie between ℓ̃Hess

ℓ̃LSA
= 0.64 and ℓ̃Hess

ℓ̃LSA
= 0.66. Refining further this

search leads to a value of ℓ̃Hess

ℓ̃LSA
equal to 0.6515. This parameter corresponds to the lowest

possible value of the ℓ̃Hess

ℓ̃LSA
ratio for which the maximum value of λ is equal to +10%. For

higher values of ℓ̃Hess, the peak observed in the different curves of Regime A progressively

vanishes, then switching from Regime A to Regime B for ℓ̃Hess
ℓ̃LSA

= 0.72.

Considering that the value of λ should remain lower than +10 %, the lowest possible
value of the spatial resolution 1

f̃c(−10%)
is obtained by considering Regime A and the steepest

and leftmost curve that can be plotted while keeping an absolute value of λ lower than +10%,
see the blue curve in Figure 5 (b). Point M gives the spatial resolution beyond which the
amplitude is returned with a value of λ bounded by ±10%. It is obtained with the lowest

possible value of the ℓ̃Hess

ℓ̃LSA
ratio. Decreasing this ratio causes the maximum value of λ to be

greater than +10%.
These two regimes were described here for a particular value of ℓ̃LSA, but they can be

observed for any value of ℓ̃LSA.

4.2 Seeking the optimal ℓ̃Hess
ℓ̃LSA

ratio

The objective here is to find the optimal ℓ̃Hess
ℓ̃LSA

ratio. This is the ratio, which leads to the

lowest value of M̃EI. This is justified by the fact that the settings should ideally lead to the
highest possible cutoff frequency for a given value of λ, but ever smaller values of ℓ̃Hess must
be considered to reach this goal for a given value of ℓ̃LSA. This leads the calculations of the
second derivates to rely on an ever smaller number of pixels, and thus to become increasingly
sensitive to sensor noise which propagates to the final displacement and strain maps. An
increasing value of the measurement resolution should reflect this. In addition, the preceding

results were obtained for a value of ℓ̃LSA fixed to ℓ̃LSA =
√

2
2

×1.4 while this quantity can also
continuously change, and changing this quantity also influences both the spatial resolution
and the measurement resolution. The objective now is to see how these two parameters,

namely ℓ̃LSA on the one hand, and the ℓ̃Hess
ℓ̃LSA

ratio on the other hand, should be combined

to reach the best metrological performance. The latter can be estimated by considering
separately the normalized spatial resolution 1

f̃c(−10%)
and the measurement resolution, but

both quantities can also be combined to form M̃EI. The lowest value of this quantity should
ideally be obtained to reflect the best possible global metrological performance.

A second simulation was therefore performed for various values of ℓ̃Hess and ℓ̃LSA. For each

value of ℓ̃LSA, the
ℓ̃Hess

ℓ̃LSA
ratio increased from 0.60 to 1.00 [-], with a step equal to 0.02 [-]. ℓ̃LSA

also increased from

√
2

2
[-] to 3×

√
2

2
[-], with a step equal to 0.1×

√
2

2
[-]. The displacement

resolution and the normalized spatial resolution were then estimated for each pair of ℓ̃LSA

and ℓ̃Hess

ℓ̃LSA
values, by considering, in turn, noiseless and noisy pairs of images. As for the

preceding simulations, ρ was arbitrarily fixed to 6.3 [px/period], but we will see latter in

this paper (Section 6) that the optimal ℓ̃Hess
ℓ̃LSA

ratio does not depend on ρ.

In the preceding section, two regimes could be distinguished concerning the shape of the
curve obtained when plotting the cross-section of the displacement field along ∆. For each
combination of the parameters, the spatial resolution was found by automatically detecting
the intersection point of the curve and the horizontal line representing λ = −10%. However,
this may potentially lead to a value of λ greater than λ = +10% when Regime A is reached,
thus for the lowest values of ℓ̃Hess. The corresponding cases were therefore discarded from
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(a) Cross-section of the u2 map along ∆ for various values of the ℓ̃Hess
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(b) Finding the lowest possible value of 1
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for a given value of ℓ̃LSA

Figure 5: Influence of ℓ̃Hess on the convergence of the deconvolution algorithm, with ℓ̃LSA =√
2
2 × 1.4 [-]. (a)- ℓ̃Hess stepwise increases from 0.60 [-](dark blue) to 1.00 [-] (light blue), with a
step equal to 0.02 [-]. The green curve is at the boundary between Regime A and B, characterized

by ℓ̃Hess = 0.72× ℓ̃LSA (b)- Determination of the lowest possible value of 1

f̃c(−10%)

.

the selection of the optimal ratio.

The influence of both ℓ̃LSA and the ℓ̃Hess
ℓ̃LSA

ratio on the metrological performance after

deconvolution is illustrated in Figure 6, ρ being fixed to 6.3 [px/period].
Figure 6 (a) first shows the displacement resolution σu (see definition in the Appendix)

as a function of ℓ̃LSA and ℓ̃Hess

ℓ̃LSA
. It can be observed that σu is a decreasing function of both

these quantities. This is logical since both are linked to the number of pixels covered by the
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Gaussian or the Mexican hat windows, thus increasing either quantity causes the number
of pixels used to perform each calculation to increase. This progressively smoothes out the
noise. Thus σu decreases.

The normalized spatial resolution 1

f̃c(−10%)
is depicted in Figure 6 (b). Contrary to σu,

1

f̃c(−10%)
is an increasing function of both ℓ̃LSA and ℓ̃Hess

ℓ̃LSA
. This is logical since the curves

obtained along the midline ∆ are shifted toward the right as either quantity increases. The
values obtained for Regime A and for a vertical coordinate of the summit of the curve
discussed in Section 5 greater than 10% are highlighted. It can be seen that this is the case

for the last three smallest values of ℓ̃Hess
ℓ̃LSA

.

Figure 6 (c) shows the value of M̃EI as a function of ℓ̃LSA and the ℓ̃Hess
ℓ̃LSA

ratio. This is

the point-by-point product of the two preceding distributions. The most striking conclusion
is that the value of M̃EI obtained after deconvolution does not depend on ℓ̃LSA since the
plot of M̃EI is invariant with respect to a translation along the ℓ̃LSA axis. This result
was demonstrated for LSA before deconvolution in [14], but it can be seen here that it
remains valid after deconvolution. Another interesting result is that for a fixed value of

ℓ̃LSA, decreasing the ℓ̃Hess

ℓ̃LSA
ratio (thus ℓ̃Hess) reduces (thus improves) M̃EI up to a certain value

beyond which it increases.
The points corresponding to the cases for which Regime A is reached and λ > 10%

are highlighted in Figure 6 (c). It is worth noting that this minimum value of M̃EI is
obtained in the last case for which a value of λ lower than 10% is obtained. Refining these

simulations with intermediate values of the ℓ̃Hess
ℓ̃LSA

ratio leads to an ultimate value of 0.67 for

ρ = 6.3 [px/period]. This value is slightly greater than the value for which the summit of

the curve is obtained in Figure 5 (b), which means that the optimal value of the ℓ̃Hess
ℓ̃LSA

ratio

corresponds to λ lower than λ = +10%. Indeed, the corresponding value is λ = +4.4%.

5 Changing the shape of the analysis window

The main benefit of deconvolution is to improve the spatial resolution while the measurement
resolution is impaired in a lower proportion. However, the spatial resolution is directly
governed by the size of the analysis window since the larger this window, the higher (thus
the worst) the spatial resolution. As suggested in [44], we employed in this study Gaussian

analysis windows, the minimum value of the standard deviation being equal to ℓ̃LSA =
√
2
2
.

If the goal is to obtain small details in a strain map, for instance, the reader may wonder
why an analysis window sharper than this smallest Gaussian window is not directly used.
Indeed, regardless of the impact on the noise level, this would automatically improve the
spatial resolution without performing deconvolution.Triangular or bitriangular windows are
potentially sharper than the smallest Gaussian windows employed in this study. They have
been used for a long time with 2D-grids, [1, 32, 30, 29] for instance, generally with the
lines of the 2D grids aligned with the boundaries of the images. Using a checkerboard
instead of 2D grids improves the contrast in the images, and thus reduces the noise level
in the final maps [15]. Non-alignment of the periodic pattern with the borders prevents
the images from aliasing if a suitable tilt angle is employed [41]. The effect of the shape
of the analysis window on the quality of the results is discussed in Ref. [44], and the main
conclusion is that the Gaussian window offers the best tradeoff between various constraints.
In particular, it is shown that analysis windows sharper than a Gaussian window such as
bitriangles may potentially cause harmonics to appear and disturb the phase distribution
if non-integer values of the sampling density are employed. However, this conclusion was
drawn from results obtained with 2D grids aligned with the boundaries of the images. To
the best of the authors’ knowledge, no result with windows other than the Gaussian window
is presented in the literature when tilted checkerboard images are processed, so this point is
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(a) Displacement resolution σu

(b) Normalized spatial resolution 1

f̃c(−10%)

(c) M̃EI = σu

f̃c(−10%)

Figure 6: Displacement resolution σu (a), normalized spatial resolution 1

f̃c(−10%)

(b) and nor-

malized MEI (M̃EI) (c) obtained after deconvolution as a function of the normalized standard

deviation of the Gaussian window used in LSA ℓ̃LSA, and the ℓ̃Hess
ℓ̃LSA

ratio. In subfigures b- and c-,

the points corresponding to the cases for which λ > 10% are highlighted. Simulations performed
with ρ equal to 6.3 [px/period].
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briefly illustrated with an example in this section.
We consider here the case of a bitriangular window, see Figure 2 (c). Its width is equal

to twice the period of the checkerboard along its diagonal. Comparing windows represented
in Figure 2 (a) and (c) shows that the latter is much sharper than the former. In Ref. [44],
it is shown that the width of such a bitriangular window should be a multiple of the period
of the periodic pattern to prevent spurious fluctuations caused by harmonics to appear in
the strain fields. With tilted checkerboard patterns and a non-integer number of pixels per
period, it is however clear that this condition cannot be satisfied.

Figure 7 (a) shows the displacement field obtained by using this type of bitriangular
window. A sampling density ρ equal to ρ = 9.3 [px/period] is employed here. The overall
appearance is similar to the reference one displayed in Figure 3. Enlarging this map however
shows that data are missing at places periodically placed on the map, see Figure 7 (c), which
is speckled with dots. This phenomenon is caused by the phase map which is affected by
a “periodic noise”. This is also clearly visible in Figure 7 (b), which represents the cross-
section of the displacement field along ∆. Harmonics likely causes these periodic fluctuations
in the phase distribution, the effect of which is clearly visible in Figure 7 (d). A similar
phenomenon was observed in the phase maps shown in Ref. [44]. Phase derivatives become
too high at these places. The consequence is that the condition given by Equation 3 is no
longer satisfied, and this causes the fixed-point algorithm used to calculate the displacement
to diverge at these places.

This phenomenon is illustrated here with a sampling density ρ equal to ρ = 9.3 [px/period],
lower values such as 6.3 [px/period] leading to results even more corrupted by these peri-
odic fluctuations. This brief illustration of the use of a bitriangular window emphasizes the
relevancy of employing a Gaussian window to extract the phases, and to deconvolve these
maps to improve the spatial resolution without being affected by any negative impact of har-
monics. In addition, the Gaussian window is isotropic, while the bitriangular one shall be
aligned with the directions of the lines of diamonds forming the periodic pattern processed
by LSA.

6 Influence of the sampling density ρ

So far, the sampling density ρ was considered as fixed. The goal of this section is to assess
its influence on the metrological performance.

6.1 Invariance of the spatial resolution

We examine here the influence of the sampling density ρ on the results found above, with
ρ ∈ {5.3, 6.3, · · · , 11.3, 12.3} [px/period]. Figure 8 shows the results found in these eight
cases by plotting the cross-section along ∆ of the displacement fields found before and after
deconvolution. We considered here the two bounds that were taken in the calculations
above for optimizing the ℓ̃Hess

ℓ̃LSA
ratio, namely 0.60 and 1.00 [-], as well as 0.67, which is the

optimal value for this ratio. The coordinate along the horizontal axis is the normalized
period p̃wave = pwave

ρ
of the sine wave used for the reference displacement field along x2. As

mentioned in Section 2.5, the amplitude reported along the vertical axis is already normalized
with respect to ρ. Considering normalized quantities enables us to fairly compare the results
obtained for these eight different sampling values. The main remark is that the curves plotted
in Figure 8 only shrink along the horizontal axis as the value of ρ increases. The eight curves

in each of the four sets ( ℓ̃Hess

ℓ̃LSA
= 0.60, 0.67, 1.00 and the no-deconvolution case) are nearly

superposed. Only the height of the spike observed for ℓ̃Hess
ℓ̃LSA

= 0.60 and ℓ̃Hess
ℓ̃LSA

= 0.67 changes,

in the case ρ = 5.3 [px/period] and, to a much lesser extent, in the case ρ = 6.3 [px/period].

It means that over the range of ℓ̃LSA values considered here, the sampling density only
marginally influences the quality of the results as long as noiseless data are considered.
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Figure 7: Results obtained after deconvolution, and by using LSA with a bitriangular analysis
window of width equal to 2 times the nominal period of the checkerboard, with ρ = 9.3 [px].19
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Figure 8: For eight values of ρ, cross-section along ∆ of the displacement field as a function of
the normalized value p̃wave of the sine wave of the reference displacement field. Normalization is
performed with respect to ρ in each of the eight cases. The brighter the blue, the higher the value
of ρ and thus the shorter the curves because of normalization. The closeup view shows that the

dashed curves representing the results after deconvolution with ℓ̃Hess
ℓ̃LSA

= 1.00 [-] are superposed,

apart from the case ρ = 5.3 [-] for which it is slightly shifted.

6.2 Influence of ρ on σu and M̃EI

The spatial resolution is one of the metrological parameters for characterizing full-field mea-
surements. The metrological performance must however be assessed in terms of compromise
between measurement resolution and spatial resolution. The normalized value of the MEI
(M̃EI) already discussed above is considered for this purpose. Three cases are considered
for the sake of simplicity, namely ρ = 6.3, 9.3, and 12.3 [px/period]. Figure 9 shows the

distribution of this quantity as a function of ℓ̃Hess
ℓ̃LSA

and ℓ̃LSA. The main conclusion is that the

general shape of the three distributions is the same. In particular :

1. In each of the three values of ρ, M̃EI does not depend on the value of ℓ̃LSA whatever
the value of ρ.

2. For any given value of ℓ̃LSA, the location of the minimum of M̃EI is not influenced by

ρ, which means that the optimal values of ℓ̃Hess
ℓ̃LSA

given in Section 4.2 remains valid for

any acceptable value of ℓ̃LSA.

3. For ρ = 12.3 [px/period], the value of M̃EI is missing for the highest values of both

ℓ̃LSA and the ℓ̃Hess

ℓ̃LSA
ratio. This is due to the fact that the curves obtained when plotting

the cross-section of the displacement field along ∆ are progressively shifted toward the
right as any of these two quantities increases. The consequence is that no intersection
point with the red horizontal line characterizing λ = −10% (see Figure 4) can be

found beyond a certain value of ℓ̃LSA and/or ℓ̃Hess
ℓ̃LSA

. These points are actually outside

the reference displacement field represented in Figure 3. Extending this displacement
field toward the right (thus for greater values of p̃wave) by generating longer synthetic
checkerboard images would give the possibility of finding such intersection points.
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(a) ρ = 6.3 [px/period] (b) ρ = 9.3 [px/period]

(c) ρ = 12.3 [px/period]

Figure 9: M̃EI as a function of ℓ̃LSA and ℓ̃Hess
ℓ̃LSA

for three different values of the sampling density ρ.

4. The only real difference between the three cases is the value of M̃EI. Indeed, M̃EI
decreases as ρ increases. This can be explained by the fact that M̃EI is defined by the
product of σu and 1

f̃c(−10%)
. As mentioned above, the latter quantity is not influenced

by ρ. On the other hand, the former is sensitive to this parameter. Indeed, increasing
the number of pixels/period means that the number of pixels beneath the analysis

window used in LSA increases as ℓ̃LSA increases since the physical size of this window
is linked to the physical size of the period of the checkerboard. Hence, the influence of
sensor noise automatically decreases as ρ increases, and so the measurement resolution
σu. Note that this improvement of M̃EI as ρ increases is counterbalanced by the fact
that the field of view becomes smaller in proportion. This improvement is discussed

in the following section for the optimal value of the ℓ̃Hess
ℓ̃LSA

ratio.

6.3 Conclusion

The optimized value of the ℓ̃Hess

ℓ̃LSA
ratio has been determined. The objective of the following

section is to quantify the improvement that is achieved when using this optimized ratio in the
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deconvolution process, in particular in terms of spatial resolution since a simple predictive
formula will be proposed to estimate this quantity.

7 Quantifying the improvement brought by decon-
volution with optimal settings

The objective here is to quantify the improvement brought by deconvolution with optimal
settings. We propose first a closed-form expression giving the value of the spatial resolution

1

f̃c(−10%)
after deconvolution as a function of the size of the analysis window chosen by

the user to process the images with LSA, which enables us to assess the improvement of
this metrological parameter after deconvolution. Noise is then taken into account and the
improvement in terms of M̃EI is given. We finally assess this improvement by using an
estimator widely used in the DIC community, namely the optical residual.

7.1 Closed-form expression of the spatial resolution before de-
convolution

The theoretical value of 1
fc(λ)

before deconvolution can be obtained by using the transfer

function of the Gaussian analysis window used in LSA. Indeed, the transfer function of any
linear filter is equal to the Fourier transform of its impulse response. F(wLSA) being the
continuous Fourier transform of the analysis window wLSA defined in Equation 5, we have

F(wLSA)(f cos θ, f sin θ) = e−2π2ℓ2LSAf
2

(17)

where θ defines the direction along which the phase is extracted.

For a given and necessarily negative value of λ, the cutoff frequency satisfies e
−2π2ℓ2LSAf

2
c(λ) =

1 + λ. Thus, the spatial resolution, which is defined by its inverse, reads as follows:

1

fc(λ%)

= π

√
−2

log(1 + λ)
× ℓLSA, λ < 0 (18)

Normalizing both the spatial resolution (hence the cutoff frequency) and the standard
deviation of the Gaussian analysis window with respect to ρ and substituting λ by −10%,
we have

1

f̃c(−10%)

= π

√
−2

log(0.9)
× ℓ̃LSA (19)

≃ 13.69× ℓ̃LSA (20)

which shows that 1

f̃c(−10%)
is proportional to ℓ̃LSA. This remark also holds for the corre-

sponding non-normalized quantities linked through Equation 18.

7.2 Comparison with the results deduced from the synthetic
images

The values of 1

f̃c(−10%)
obtained with Equation 20 are reported in Figure 10 (black diamonds)

for ℓ̃LSA ∈ {1.0×
√
2
2
, 1.1×

√
2

2
, · · · , 2.9×

√
2
2
, 3.0×

√
2

2
}. The values of 1

f̃c(−10%)
deduced from the

curves (i. e. from the cross-sections of the displacement fields along ∆ defined in Figure 3)
are also plotted in this figure, see the small circles featuring various shades of blue. Various
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sampling densities ρ were considered in the synthetic images. However, the results obtained
from one value of ρ to another can directly be compared since the spatial resolution 1

f̃c(−10%)

is normalized with respect to ρ. The results being line fitted and the number of points
deduced from the curves decreasing as ρ increases (because the intersection point between
the cross-section of the displacement filed along ∆ and the horizontal line λ = −10% is
outside the figure as ℓ̃LSA increases), only the cases ρ ∈ {5.3, 6.3, 7.3, 8.3, 9.3} [px/period]
were considered here.

Line fitting gives a negligible value for the intercept (1.85E-03 [-]), so it is not taken

into account. Consequently and as expected, 1

f̃c(−10%)
is directly proportional to ℓ̃LSA. In

Figure 10, the relative difference between the theoretical value given by Equation 20 (black
diamonds) and from the curves (blue triangles) is quite small. The slope of the line giving

1

f̃c(−10%)
as a function of ℓ̃LSA is equal to 13.69 according to Equation 20, while line fitting the

results obtained from the curves for all the values of ρ ∈ {5.3, 6.3, 7.3, 8.3, 9.3} [px/period]
gives 13.03, thus a 5 % relative difference. Bearing in mind the number of calculations needed
to obtain the blue points, namely rendering pairs of synthetic reference/deformed images
with as little bias as possible, extracting the displacement maps from these images, and
deducing the spatial resolution from the curves obtained in each case, the relative difference
between the two slopes seems reasonable.

The results found after deconvolution lead to the set of small triangles plotted in various

shades of red in Figure 10. The points are plotted for the optimal value of the ℓ̃Hess
ℓ̃LSA

ratio

found in Section 4.2, namely ℓ̃Hess

ℓ̃LSA
= 0.67. Interestingly, these points are also aligned. A

complete set of 21 red triangles is available for each value of ρ, which was not the case for
the circles. Indeed, the curves representing the displacement after deconvolution along ∆
are much steeper than before deconvolution, so the spatial resolution deduced from these
curves could be found for all the 21 values of ℓ̃LSA considered here.

Line fitting the results gives the slope and the intercept in each case. The intercept
being small (highest amplitude: 1.6E-03 [-]), it is neglected, which causes again the spatial

resolution 1

f̃c(−10%)
to be proportional to ℓ̃LSA. The slope of the red lines is equal to 3.54 [-]

on average.
In conclusion, and considering the value found with line fitting in the “before deconvo-

lution” case for the sake of consistency, we have:

Before deconvolution:
1

f̃c(−10%)

≃ 13.03× ℓ̃LSA (21)

After deconvolution:
1

f̃c(−10%)

≃ 3.54× ℓ̃LSA (22)

Combining the results obtained before and after deconvolution leads to an improvement
of the spatial resolution by a factor equal to 13.03/3.54 ≃ 3.68 [-]. Both 1

f̃c(−10%)
and ℓ̃LSA

being dimensionless, their corresponding values in [px] are obtained by multiplying them by
the value of ρ observed in the experiment, and eventually in [m] by multiplying this last
quantity by the physical size of a pixel after projection on the specimen under study.

Reducing the value of ℓ̃LSA improves the spatial resolution even before deconvolution,
but the noise level (thus σu) increases. In the same spirit as for the spatial resolution, we
calculated the ratio between σu after and before deconvolution for the optimal value of the
ℓ̃Hess

ℓ̃LSA
ratio (equal to 0.67). Figure 11 is the probability distribution of this ratio estimated

with the set of 8 different values of ρ and, for each of these values, 21 values of ℓ̃LSA. The
noise level is multiplied by 2.02 on average, but the spatial resolution is divided by a ratio
equal to 3.68, as discussed just above. This gives on average a reduction of M̃EI by a factor
3.68/2.02 = 1.82. This is reflected by calculating point-wise the ratio between the values of
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Figure 10: Comparison between the values of the spatial resolution before and after deconvolution

with the optimized value for the ℓ̃Hess

ℓ̃LSA
ratio and for ℓ̃LSA lying between

√
2
2 and 3.0×

√
2
2 . Diamonds:

results obtained with Equation 20. Other points: results from simulation obtained with noiseless
synthetic images sampled ρ ∈ {5.3, 6.3, 7.3, 8.3, 9.3} [-]. Dashed/solid lines: line fitting of the
results obtained with simulated values of 1

f̃c(−10%)
before/after deconvolution.

M̃EI before and after deconvolution reported in Figure 12. Only the points for which the
normalized spatial resolution 1

f̃c(−10%)
could be determined from the curves are shown in

this figure. This ratio should be equal, on average, to 1/1.82 = 0.549, while the mean value
of the values represented in Figure 12 is equal to 0.547, which is very close.

7.3 Impact of deconvolution on the optical residual

The readers being certainly accustomed to the use of DIC, we examine here how decon-
volution impacts the optical residual estimated with the synthetic reference and deformed
checkerboard images. The latter is obtained by deforming the reference image through the
reference displacement field defined in Section 2.2. These images considered here are those
obtained in the typical case ρ = 6.3 [px/period].

The optical residual is often used to assess the metrological performance of DIC [27, 5, 23].
It is obtained by calculating the difference in gray level at each pixel between the reference
image, and the deformed image corrected by the displacement field measured. To obtain
this latter image, an interpolation of the gray level is necessary, since the displacement is
usually not an integer. This interpolation is often performed with spline functions, which
are considered to be optimal since they lead to the lowest interpolation errors, as reported
in [24]. This method was thus used in the present study. Four displacement fields were
considered here to deform the reference image and calculate the optical residual:

1. The displacement field obtained with LSA without deconvolution, with ℓ̃LSA = 1 [-].

2. The displacement field obtained with LSA with deconvolution, with ℓ̃LSA = 1 [-] and
ℓ̃Hess

ℓ̃LSA
=1.0 [-].

3. The displacement field obtained with LSA with deconvolution, with ℓ̃LSA = 1 [-] and
ℓ̃Hess

ℓ̃LSA
=0.67 [-].
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Figure 11: Ratio between σu after and before deconvolution for the optimal value of the ℓ̃Hess
ℓ̃LSA

ratio (equal to 0.67), with ρ ∈ {5.3, 6.3, 7.3, 8.3, 9.3, 10.3, 11.3, 12.3} [px/period], and ℓ̃LSA ∈
{1.0×

√
2
2 , 1.1×

√
2
2 , · · · , 2.9×

√
2
2 , 3.0×

√
2
2 } [px/period]. Mean value of this ratio: 2.02 [-].
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Figure 12: Ratio between M̃EI after and before deconvolution for the optimal value of the ℓ̃Hess
ℓ̃LSA

ratio (equal to 0.67), with ρ ∈ {5.3, 6.3, 7.3, 8.3, 9.3} [px/period], and ℓ̃LSA ∈ {1.0 ×
√
2
2 , 1.1 ×√

2
2 , · · · , 2.9 ×

√
2
2 , 3.0 ×

√
2
2 } [-]. Mean value of this ratio: 0.547 [-]. Defined only when 1

f̃c(−10%)

can be found by graphical construction from the reference displacement field retrieved before
deconvolution.

25



4. The reference displacement field defined in Section 2.2.

The second case corresponds to a typical deconvolution for which the value of the ℓ̃Hess
ℓ̃LSA

ratio is not optimal, whereas this ratio is optimal in the third case since ℓ̃Hess
ℓ̃LSA

= 0.67. In

Figure 13, the standard deviation of the residual is calculated columnwise. This quantity is
denoted by σresidual. Noisy images were used here, so σresidual was normalized in each case
with respect to σimage, which is the standard deviation of image noise estimated over the
whole image. This normalization step is common in studies dealing with the metrological
performance of DIC [22, 28] for instance, since it leads to a “perfect target value” equals to
σresidual
σimage

= 1.00, which is independent of the noise level. The results obtained for the first

three cases listed above are plotted in different shades of blue for the first three displacement
fields. The normalized standard deviation obtained with the residual estimated with the
reference displacement field is also plotted in red. Both the horizontal displacement u1

and the vertical displacement u2 were considered in the four different cases to compute the
residual, even though the amplitude of the horizontal displacement is much lower than the
amplitude of the vertical one for the first three cases (the reference displacement along x1

is rigorously null in the last case). Several conclusions can be drawn from the results shown
in this figure:

• The highest normalized standard deviation is obtained with the raw displacement field
returned by LSA (i.e. without deconvolution), successively followed by the displace-

ment field obtained with deconvolution using the non-optimal ℓ̃Hess
ℓ̃LSA

ratio, and by its

counterpart obtained with the optimal ratio equal to 0.67. This conclusion is consistent
with the ranking obtained in terms of spatial resolution or normalized MEI.

• The normalized value of the residual is nearly the same in all cases for the highest values
of p̃wave. On close inspection (by considering a close-up view of these curves on the
right-hand side, not shown here), the residual obtained with the reference displacement
field is always lower than the three others.

• Interestingly, the residual increases on the left (towards the high spatial frequencies)
even with the reference displacement field. One of the causes is certainly interpola-
tion. Indeed, it becomes progressively difficult to correctly interpolate the gray level
distribution as the spatial frequency of the displacement increases. It is worth noting
that image gradient is significant in checkerboard images, which makes it difficult to
properly reconstruct the gray level by interpolation in case of high-frequency displace-
ments.

• The normalized spatial resolution 1

f̃c(−10%)
estimated with the first three displacement

fields is also reported in this figure. The spatial resolution and the residual are cor-
related since the lower the former, the lower the value of p̃wave for which the curve
straightens, which seems logical.

• The value of the normalized residual is by definition greater than one. Its order of
magnitude is close to one on the right and progressively increases when going to the
left, thus when the spatial frequency of the displacement increases. Depending on
the test case, a successful image analysis can be considered with normalized residuals
ranging from 1 to 3 [22, 28]. As seen in Figure 13, this must be weighted in some
cases, e.g. in case of high-frequency displacements. Over the range of p̃wave values
for which deconvolution notably improves the raw displacement returned by LSA,
say between the spatial resolution of LSA before ( 1

f̃c(−10%)
= 12.80 [−]) and after

( 1

f̃c(−10%)
= 3.47[−]) deconvolution with optimal settings, it is worth noting that the

normalized residual lies between 1.06 and 2.64 [-], which is consistent with the values
of this residual for which the displacement found with the measurement technique can
be considered as of good quality.
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Figure 13: Standard deviation of the normalized residual calculated column wise before and

after deconvolution with (0.67) and without (1.00) optimal ℓ̃Hess
ℓ̃LSA

ratio. The normalized spatial

resolution 1

f̃c(−10%)

is reported in each of the three cases.

• Some singular results are observed in the four curves for p̃wave ≃ 6[-]. This is due to
an interplay, for a given wave period, between the periodic pattern and the periodic
vertical displacement field.

• Only the normalized standard deviation of the residual estimated columnwise is rep-
resented and discussed here. Indeed, it is worth noting that plotting the Root Mean
Square Error gives exactly the same type of curves, which means that no bias impacts
the results

8 Application to real images

Before closing the paper, we illustrate the benefit of using on real images the deconvolution
procedure with optimized settings. Two different examples are considered. The first one is a
disk made of a single crystal of shape memory alloy (SMA). It is subjected to a cooling which
induces an austenite-to-martensite phase transformation. Both phases coexist, with sharp
interfaces inbetween. “Sharp” means that a strain jump theoretically occurs from one phase
to another. It also means that the border between these two phases goes through the analysis
window when processing the images, which makes it challenging to return a reliable strain
value in the corresponding small zones. The second example deals with a wood specimen
subjected to a tensile test. Heterogeneities in the strain field are caused here by the presence
of annual rings and by a knot embedded in the tensile specimen. Compared to the preceding
example, the strain level is globally much lower, which decreases the signal-to-noise ratio.
The heterogeneities are also less marked than in the preceding case. The optimal value for

the ℓ̃Hess

ℓ̃LSA
defined in Section 4.2 is chosen for finding all the strain distributions discussed in

these two examples.
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Figure 14: Closeup view of the pattern printed by laser marking on the SMA specimen. Size of
the black or white squares forming the checkerboard: 30 microns. Red circle: apparent size of
the Gaussian window used in LSA according to the “3-σ rule” [13]. The diameter of the blue
(resp. green) circle is equal to 1

fc(−10%)
before (resp. after) deconvolution. Sampling density

ρ = 8.2 [px/period]. The pattern is slightly inclined to avoid aliasing [41]. The effect on the
phase maps of the printing defects which are visible in this picture are compensated by the
fixed-point algorithm used when solving numerically Equation 2.

8.1 Shape memory alloy specimen

As discussed in a recent review paper [9], there is a wide literature on the use of full-
field measurement techniques to study the peculiar thermomechanical properties of shape
memory alloys, [26, 34, 48, 40, 2] for instance. We show with this example that using
optimized checkerboard patterns, LSA, and deconvolution leads to a detailed strain map
enabling to highlight the microstructures underlying these properties.

The specimen considered here is a 33 mm in diameter, 3 mm thick disk made of a single
crystal of CuAl13.9Ni4.6 (wt%) SMA. The chemical composition was chosen to allow for full
austenite (A) state to be observed at room temperature (approximately equal to 23◦ C).
This is the reference state for the strain measurements shown and discussed below. The
specimen was placed on a Pelter cell and cooled, so the martensite (M) phase appeared
without any external mechanical load. The A→M transformation manifests itself here by
the appearance of martensitic microstructures, which involve different variants of martensite.
The same strain tensor takes place in all these variants, but its orientation with respect
to the (parent) austenite phase changes from one variant to another. The A→M phase
transformation was therefore tracked by its impact on the strain maps measured on the
surface of the specimen. These strain maps were obtained by preliminary depositing a
checkerboard pattern on one of the two surfaces of the specimen considered in the austenite
state. The nominal period p of this periodic pattern was 60 microns, see Figure 14. Full
details on the patterning technique, which relies on laser marking, are given in [4]. Three
circles are superposed to this figure. The red one is, according to the “3-σ rule” [13], the
apparent size of the Gaussian analysis window used in LSA. The diameter of the blue circle
is equal to the spatial resolution 1

fc(−10%)
before deconvolution. The diameter of the green

circle is also equal to the spatial resolution, but after deconvolution, so it is smaller than
the blue one. It can be observed that the green circle is smaller than the apparent size of
the Gaussian analysis window.
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This patterned surface was filmed by a Prosilica GT 6600 camera featuring a CCD sensor
of size 6576×4384 ≃ 28.8E+06 [px], with a gray depth equal to 256 [bits]. The shutter time
was equal to 8 [ms], and the number of frames per second to one. In the checkerboard images,
the sampling density was ρ = 8.2 [px/period]. This camera was equipped with a telecentric
lens. The images shot during the test were processed by using the LSA procedure described
in Section 2.1 above, and deconvolution was applied to the phase maps to sharpen fine
details in the strain maps that revealed the appearance and evolution of the microstructures
during the tests. A complete discussion of the results found during this experiment will
be available in a separate paper. We only give here one of the numerous maps which were
obtained, and illustrate the benefit, in terms of detail sharpening, of using the deconvolution
procedure with optimized settings.

Figure 15 shows a typical U12 map before and after deconvolution. This is one of the
components of the right stretch tensor denoted by U , this latter quantity being more suitable
than the linearized strain tensor ε to study microstructures in SMAs. Figure 15 (a) is the raw

output of the LSA procedure, employed here with a Gaussian window set with ℓ̃LSA =
√
2

2
[-].

The reader is invited to zoom in the electronic version of the paper in order to appreciate
the details. Indeed, the strain resolution for this measurement technique is typically some
10−4 [-], and since the strain to be measured is equal to some 10−2 [-], the signal-to-noise

ratio is here quite favorable. ℓ̃LSA was therefore chosen to be equal to its lowest possible value
in order to boost the ability of the technique to reveal the smallest possible details. The size
of both the raw and the deconvolved maps is 4384× 4592 ≃ 20.13E+06 [px], among which
15.64E+06 [px] correspond to the surface of the specimen. The diameter of the red circle

in Figure 14 is equal to 8.16× 6×
√
2

2
≃255 [microns]. It means that the strain maps were

obtained with 15.64 millions of disk-shaped strain gages, each of them having a diameter of
255 [microns] and being shifted by one pixel =60/8.16 ≃ 7.35 [microns] from one another.
There is therefore a strong overlap between these disks, which causes the blur in the raw
strain maps to occur. The idea is therefore to observe here to what extent deconvolution
limits this blur. Obtaining with LSA the in-plane components of the right stretch tensor took
61 [s] with a computer equipped with an Intel 8-core, i9-11950H @ 2.60Ghz. Deconvolution
being more time-consuming, 744 [s] were necessary to obtain the deconvolved components
of the right stretch tensor.

The improvement brought by deconvolution is not readily apparent when comparing
Figures 15 (a) and (b), but Figure 15 (c) shows that a difference exists. Two small zones were
first chosen and enlarged to observe the change caused by deconvolution clearly. They are
represented by the blue and red rectangles, respectively. These enlargements are represented
in Figures 16 and 17, respectively. Figures 16 (a) and (b) clearly show over the red rectangle
that the maps are sharper and more defined after deconvolution, with small details becoming
visible. The same circles as those plotted in Figure 14 are superposed in Figure 16 (a) (blue
circle) and 16 (b) (green circle), so that the reader can easily compare their size with the
size of the sharp details in the strain distribution. The cross-section of the U12 distribution
shown in Figures 16 (d) is obtained along the black arrow superposed to the maps shown
in Figures 16 (a), (b) and (c). It is clear that the peaks and valleys become sharper after
deconvolution, as expected.

We can check the consistency of the results found here with those discussed in Section 4.2
with the reference displacement field. Indeed, we are here in a case for which the strain
distribution in Figure 16 (d) is wave-like, locally dominated by a portion of sine with a
certain period. According to the conclusion of Section 2.4, we are here in a case for which
the relative difference between strain after and before deconvolution is the about same as
that observed on the displacement distribution. We can therefore at least check that the
order of magnitude of the enhancement of the experimental strain distribution is the same as
that observed in the reference displacement field for the same local period of the wave. For
instance, Points B1 and C1 in Figure 16 (d) can be regarded as roughly forming a half sine
wave with half a period equal to the difference of the abscissa between those points, and an
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(a) U12 before deconvolution [-]
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(b) U12 after deconvolution [-]
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Figure 15: Typical U12 maps before and after deconvolution. The diameter of the specimen is
equal to 3.5 cm. The reader is invited to zoom in the electronic version of the paper in order to
appreciate the details.
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Figure 16: Closeup view of the red rectangle in the U12 maps before and after deconvolution.
Size: 3.54× 4.42 mm2.
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Figure 17: Closeup view of the blue rectangle in the U12 maps before and after deconvolution.
Size: 13.98× 5.15 mm2.
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amplitude equal to half the distance of the coordinates of these two points along the vertical
axis. This amplitude measured this time on the strain distribution after deconvolution (see
Points A1 and D1) gives another value. The relative difference between the two enables us
to assess the apparent “damping” caused by convolution.

In practice, finding these quantities consists in estimating the values given by those
curves after and before deconvolution, for a period equal to that estimated in Figures 16 (d)
with Points B1 and C1 (or Points A1 and D1, which is the same), and in assessing from
these curves to what extent the amplitude of the signal increases thanks to deconvolution.
For instance, we consider the peak-to-valley values given by Points B1-C1 on the one hand,
and by Points A1-D1 on the other hand. They are equal to 0.0261-(-0.0128) = 0.0389 and
to 0.0312-(-0.0245) = 0.0557, respectively. The relative increase of the amplitude between
the two is equal to 0.0557−0.0389

0.0389
≃ 43.2 %. Considering that the value of the periodic

distribution locally dominating the displacement distribution at Points A1 to D1 is equal to
23 × 2 = 46 pixels and that the period of the checkerboard is equal to 8.16 pixels/period,
the value of p̃wave is equal to 46/8.16 ≃ 5.64 [-]. Reporting this value on the graphic
representation of the curve deduced along ∆ from the displacement field obtained from the

synthetic images before and after deconvolution with ℓ̃LSA =
√
2
2

[-] and ℓ̃Hess
ℓ̃LSA

= 0.67 [-],

presented in Figure 16 (e), enables us to obtain the enhancement of the amplitude of the
reference displacement field retrieved by LSA for this value of p̃wave. This relative increase
is equal to 0.509−0.376

0.376
≃ 35.4 %. This quantity is lower than the relative increase observed in

the experimental strain map (43.2 %), but we only consider the sine function, which locally
dominates the strain distribution. Other harmonics are potentially influential, and thus also
impact the improvement brought in this case by deconvolution. In addition, this period is
roughly estimated. It is indeed an integer value since the information is sampled, which also
induces an approximation. Finally, any slight fluctuation of this period strongly influences
the amplitude retrieved in Figure 16-(e), since the slope of the curves representative of the
amplitude before and after deconvolution for this value of p̃wave is significant. We can only
conclude that the order of magnitude of the enhancement brought by deconvolution is the
same for both the experimental strain map and the reference displacement map for this
value of p̃wave. The same reasoning applied on the pseudo-period defined by Points A2-D2-
A3 and B2 C2-B3 leads to a local value of p̃wave equal to 4.23 [-]. The corresponding local
increase of the amplitude is equal to 58.7 % for the experimental strain map and 74.9 % for
the reference displacement field at the same value of p̃wave. This again gives the same order
of magnitude.

Figure 17 now illustrates the enhancement brought by deconvolution over the blue rect-
angle. Plotting the strain distribution along the black arrow for the raw and the deconvolved
distributions along this line enables us to observe this enhancement, see Figure 17 (d). Com-
pared to the preceding case, the period of the sine wave that locally approximates the strain
distribution is smaller, and the correction induced by deconvolution is consequently more
pronounced. For instance, the local apparent period between Points A1 and D1 in Fig-
ure 17 (d) is equal to 14 [px], thus the local value of p̃wave is equal to 14/8.16 ≃ 1.72 [-],
which is much lower than the normalized spatial resolution after deconvolution, equal here
to 2.39 [-], see Figure 16 (e). It means that even though it can be seen to the naked eye that
the correction brought by deconvolution is significant, it is certainly not sufficient to reach
an absolute value of λ lower than λ = 10%.

The green rectangle represented in Figure 15 is now considered. It is free of any mi-
crostructure, so the idea is to observe here how noise changes between the raw and the
deconvolved strain maps. The closeup view in Figure 18 shows that the sensor noise in the
specimen images causes a spatially correlated noise in the displacement and strain maps,
hence the “blobs” in the maps. This spatial correlation is quantified by the out-of-diagonal
terms of the covariance matrix of this noise given in [43]. Indeed, the deconvolution pro-
cedure does not distinguish the features caused by reliable information, and those due to
noise. As discussed in [16], deconvolution can be applied only to spatial frequencies lower
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Figure 18: Closeup view of the green rectangle in the U12 maps before and after deconvolution.
Size: 2.07× 3.68 mm2.

than a certain threshold value fixed by the user. However, it can be checked that fixing this
threshold value as the inverse of the value of p̃wave below which LSA returns no real infor-
mation, does not decrease the noise level while deconvolving the phase maps. Comparing
the colorbars in Figures 18 and 17 or 16 however shows that the noise is lower in amplitude
than the strain level observed in the microstructures that appear in the specimen.

8.2 Wood specimen

We consider here a parallelelipipedic wood specimen already discussed in Ref. [4], so the
reader is referred to this paper for more details about the testing conditions. The presence
of a knot at the center of the gage section as well as of annual rings (see the zone of
interest in Figure 19 (a)) causes heterogeneities in the strain field. Such heterogeneities are
generally studied with DIC, [31, 45, 8] for instance, so the idea is to see here how LSA and
deconvolution render them.

The dimensions of the specimen are 250× 35× 15 mm2. The checkerboard pattern was
deposited on the front face of this specimen by laser marking. Its period was 100 microns,
which corresponds to 6.23 pixels in the images. The images of the pattern were shot with
the same camera as in the preceding example. This specimen was subjected to a tensile test
along the x1-direction. The magnitude of the load was such that the normal stress was lower
than the limit of elasticity. Two main differences are noticeable compared to the preceding
example:

• The strain level is much lower here since the mean value remains lower than 10−3 for
the three in-plane strain components, with some localized peaks not higher than a
few 10−3. This is about ten times lower than the strain peaks reached in the SMA
specimen of the first example. It means the information barely emerges from the noise
floor in this second example.
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• The strain field is “less heterogeneous” in the sense that the fluctuations of the strain
distribution throughout the specimen are smoother.

The sharpness of the details must be evaluated with respect to the size of the analysis
window. A brief comparison between various settings for the analysis window is offered
below. Only the ε22 is discussed, but similar results and conclusions could be obtained with
the other two in-plane strain components ε11 and ε12.

We show first in Figure 19 (b) the ε22 strain map obtained by choosing the smallest

possible value for ℓ̃LSA = 1 ×
√
2
2

[-]. This case is referred to as “Case 1” in the following.
The heterogeneities caused by the presence of the knot and the annual rings are clearly
visible. The noise level in this map is higher than in the preceding example. This is
confirmed by plotting in Figure 20 the cross-section of the ε22 strain map along the inclined
arrow superposed to this map. Indeed, fluctuations with significant amplitude affect the
corresponding curve (in black in this figure). Deconvolution mainly causes here the noise
level to increase without any clear improvement of the real details in the ε22 map (not shown
here). It means that the real strain map, which remains unknown here, does not significantly
activate the frequency range restored by deconvolution.

Deconvolution can however be employed to improve the quality of this measurement in a
different way. Indeed, in the case of noisy maps, the standard solution to decrease the noise
level consists in filtering them. The noise level decreases but the actual details too if they
are too sharp. Equivalently, we can also apply LSA here with a larger analysis window. An
example is given in Figure 19 (c), where ℓ̃LSA is multiplied by a factor equal to 3.68, thus

ℓ̃LSA = 3.68×
√
2
2

[-]. This case is referred to as “Case 2a” in the following. Comparing the
results obtained in Cases 1 and 2a clearly show that the noise level decreases in the second
case, but the details are also blurred, as can be seen by examining the effect of the knot and
the annual rings in these figures. Indeed, enlarging the analysis window by a factor k causes
the displacement resolution to be reduced by the same factor, and the strain resolution by
a factor

√
k, as discussed in [43, 18, 20]. This is visually confirmed when representing in

Figure 19 (d) the difference between the results obtained in Cases 2a and 1.

Multiplying ℓ̃LSA by a factor k = 3.68 causes the spatial resolution to be multiplied
by a factor 3.68, but according to the discussion in Section 7.2, applying deconvolution
(“Case 2b”) causes the spatial resolution to be divided by the same factor. Thus, combining
these two results causes the spatial resolution to be the same in both the Cases 1 and 2b. The
map obtained in Case 2b is displayed in Figure 19 (e). The strain map is noisier compared
to Case 2a, but the features corresponding to the knot and the annual rings are sharper than
in Case 2a. Figure 19 (f) shows the difference between the strain maps obtained in Cases 1
and 2b. The features caused by the knot and the annual rings are nearly not distinguishable,
which means that the actual details caused by the knot are correctly restored.

Plotting in Figure 20 the cross-section of the strain maps obtained in these different
cases confirms this noise reduction when going from Case 1 to Case 2b. It is even more
marked than in the strain maps directly, the eye being less sensitive to the color change
corresponding to the amplitude change. The reason is certainly that the same features can
be observed in Cases 2a and 2b.

In conclusion, applying deconvolution on the results obtained in Case 2a is equivalent
to applying a low-pass filter on the results obtained in Case 1, but without affecting the
frequencies lower than the inverse of the spatial resolution corresponding to the latter case.
This is confirmed by applying the same procedure on the reference displacement map and
plotting the displacement obtained in Cases 1, 2a, and 2b along ∆, see Figure 21. It can
be seen that the normalized cutoff frequency is the same in Cases 2b and 1. Its inverse
is equal to 1

f̃c(−10%)
= 9.06 [-] in Case 1 according to Equation 21, and the same result is

obtained in Case 2b with Equation 22. This spatial resolution is observed to be equal to
9.21 [-] from the curves. The difference between the two is due to the fact that the results
given by Equations 21 and 22 are approximate. It is also worth noting that the frequencies
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greater than the cutoff frequency (which is the same in Cases 1 and 2b) are more “rapidly”
damped in Case 2b.

9 Conclusion

The improvement of a deconvolution algorithm suitable for displacement and strain maps
obtained with LSA was discussed in this paper. Three main conclusions can be drawn from
the results which were discussed:

• The deconvolution algorithm mainly relies on the calculation of the Hessian matrix
of the phase maps obtained with LSA. The corresponding second derivatives are cal-
culated by using a second-order derivative kernel, namely a so-called “Mexican hat”.
The convergence of the deconvolution algorithm is ensured if the size of this derivative
kernel is proportional to the size of the Gaussian analysis kernel employed in LSA, and
if the ratio between the two is within an acceptable range.

• An optimal value for the ratio between the sizes of the “Mexican hat” on the one hand,
and the Gaussian analysis window on the other hand, has then been estimated. This
optimal value shall be employed to achieve the lowest (thus the best) possible Metro-
logical Efficiency Indicator (MEI), which is used here to assess the global metrological
performance of the measuring technique. In addition, it has been observed that this
indicator remains invariant after deconvolution as the size of the analysis window used
in LSA changes. This invariance was demonstrated so far to be invariant only before
deconvolution.

• Changing the sampling density with which the periodic pattern is encoded only affects
the measurement resolution, thus the noise level observed in the final displacement and
strain maps. The systematic error and the spatial resolution, which are consequences of
the fact that LSA behaves like a low-pass filter, are not impacted by this density beyond
the minimal value which is recommended for this quantity, namely approximately 5
pixels/period according to [15, 33]. Increasing the sampling density improves (thus
reduces) the MEI, which is counterbalanced by the fact that the field of view diminishes

Two examples illustrate the improvement brought by deconvolution with these optimal
settings. The first specimen is a disk made of shape memory alloy. Sharp microstructures
appear when the specimen is thermally loaded. The second one is a parallelepipedic wood
specimen where a knot is embedded. It is subjected to a tensile test. The signal-to-noise
ratio is about ten times higher in the first example than in the second. The first example
underlines the fact that the present measuring technique is well-suited to restore sharp
details which appear in strain maps. In the second case, deconvolution is used to filter out
the noise without damping the actual details up to a spatial cutoff frequency, which is higher
than the one that would be obtained by directly filtering the strain maps with a smoothing
kernel.
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Figure 19: Zone of interest and ε22 strain maps obtained with various settings. Red, blue and
green circles: same definition as in the preceding example, see Section 8.1. The diameter of the
green circle in subfigure (e) is the same as the diameter of the blue circle in subfigure (b).
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Figure 20: Cross-section of the ε22 strain map obtained with different settings along the portion
of line shown in Figures 19 (b),(c) and (e).
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Appendix: metrological parameters

The metrological performance of the full-field measurement techniques discussed in this pa-
per is estimated with four parameters, namely the measurement resolution σu, the matching
bias, the spatial resolution and the metrological efficiency indicator. These quantities are
defined as follows:

• The displacement resolution σu quantifies the random noise level which affects these
maps. It is mainly caused by sensor noise propagation. According to [7], σu is equal
to the standard deviation of the noise in the displacement maps.

• The systematic error (or bias) reflects that the amplitude of small details is generally
lower than the real one. This change in amplitude is expressed as a percentage λ of the
amplitude of a sine wave characterized by a given period pwave. Thus, considering the
reference displacement field of amplitude 0.5 [px] defined in Section 2.2, and denoting
by “ampl” the amplitude of the sine wave returned by the measuring system for a
certain period pwave, we have:

λ =
ampl− 0.5

0.5
× 100 [%] (23)

It is worth noting that contrary to the maps returned by DIC or by LSA for which λ
is negative since we have a loss of amplitude, deconvolution may return an amplitude
of the signal greater than the reference one, λ becoming positive in this case.

• The spatial resolution reflects the ability of the technique to distinguish close features
in a displacement/strain map. According to [47], it is defined as the period of the
sine wave for which the value of λ equal to a threshold value arbitrarily fixed to -
10 %, as in previous studies dealing with the metrological performance of full-field
measurement techniques [14, 3, 17, 36]. The inverse of this period is referred to as the
cutoff frequency. It is denoted by fc(λ). Changing the threshold value λ also changes
the value of this frequency.

• These three quantities are not independent but linked. They depend in particular on
some settings made arbitrarily by the user, the main one being the size over which
calculations are performed around a given pixel to obtain a measurement at this pixel.
With the present approach, this is the size of the analysis window used in LSA. With
a Gaussian window, this size is governed by the standard deviation ℓLSA. A quantity
independent of this size has been introduced in [14] to overcome this shortcoming,
namely the Metrological Efficiency Indicator denoted by MEI. It is merely defined
as the product between the spatial resolution and the displacement resolution. The
advantage of using the MEI is that it is independent of ℓLSA before deconvolution, as
discussed in [14]. The MEI is, therefore, a parameter that is intrinsic to the technique
and thus enables a fair comparison between different techniques [14, 17], or between
different versions of the same techniques like DIC [3, 36]. An issue addressed in this
study is to know if MEI is still independent of ℓLSA after deconvolution, and to what
extent the sampling density ρ influences this quantity. These questions are addressed
in Sections 4.2 and Sections 6, respectively.

Note that, in this paper, fc(λ) and MEI are normalized with respect to the sampling
density of the periodic pattern denoted by ρ, see Section 2.5. The corresponding normalized
quantities are denoted by f̃c(λ) = fc(λ) × ρ and M̃EI = MEI

ρ
, respectively.
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[3] B. Blaysat, J. Neggers, M. Grédiac, and F. Sur. Towards criteria characterizing the
metrological performance of full-field measurement techniques. application to the com-
parison between local and global versions of DIC. Experimental Mechanics, 60(3):393–
407, 2020.

[4] Q. Bouyra, B. Blaysat, H. Chanal, and M. Grédiac. Using laser marking to engrave op-
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niques. In M. Grédiac and F. Hild, editors, Full-field measurements and identification
in solid mechanics, pages 1–29. 2012. Wiley.

[8] C. Chun-Wei and L. Far-Ching. Strain concentration effects of wood knots under lon-
gitudinal tension obtained through digital image correlation. Biosystems Engineering,
212:290–301, 2021.

[9] D. Delpueyo, A. Jury, X. Balandraud, and M. Grédiac. Applying full-field measure-
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