Title: Extensive searches for complex intermetallic catalysts

Keywords: Catalysis, Complex Intermetallic Compounds, Machine learning, Deep learning, Density Functional Theory

Scientific description: The objective of the thesis is to establish a deeper understanding of the relations between complex intermetallics properties and activity, selectivity and stability - the important figures of merit in catalysis. Complex intermetallic compounds belong to a class of materials characterized by a large unit cell, containing several tens to several thousands of atoms, usually arranged into regularly packed clusters of high symmetry. They offer several advantages compared to substitutional alloys, such as stability and unique combinations of electronic and crystal structure, which allows a large flexibility for tuning their properties [1,2]. Each of the thousands of binary intermetallic compounds known so far has the potential to behave as a new material, opening a vast field to be

Techniques/methods in use: Heterogeneous catalysis on complex intermetallic compounds is a quickly growing field. However, modeling the many diverse active sites and reaction paths on these complex surfaces is an open challenge. Machine learning methods coupled with Density Functional Theory (DFT) will be used to address the complex potential energy landscape of complex intermetallics catalysts. More precisely, we intend to investigate regression models such as kernel logistic regression, support vector regression, or artificial neural networks to accurately interpolate energy surfaces from a few DFT estimates [3]. The computational cost of training such models is a fraction of the costs of DFT calculations, allowing systematic investigations of complex potential energy surfaces

Applicant skills: Strong background in physics or chemistry or materials science or machine learning with an interest for atomistic simulations. Good knowledge of quantum mechanics, as well as experience with Linux environment and python programming is required.

Internship supervisor(s)
Émilie Gaudry
Institut Jean Lamour, Campus Artem, Nancy, France
http://emiliegaudry.perso.univ-lorraine.fr/
emilie.gaudry@univ-lorraine.fr

Frédéric Sur
LORIA, Campus Scientifique, Nancy, France
https://members.loria.fr/FSur/
frederic.sur@univ-lorraine.fr

Internship location: Nancy, France

Possibility for a Doctoral thesis: Yes, co-funded by ANR and INRIA