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Abstract—In this work we present a novel approach to recover objects 3D position and occupancy in a generic scene using only 2D
object detections from multiple view images. The method reformulates the problem as the estimation of a quadric (ellipsoid) in 3D given
a set of 2D ellipses fitted to the object detection bounding boxes in multiple views. We show that a closed-form solution exists in the
dual-space using a minimum of three views while a solution with two views is possible through the use of non-linear optimisation and
object constraints on the size of the object shape. In order to make the solution robust toward inaccurate bounding boxes, a likely
occurrence in object detection methods, we introduce a data preconditioning technique and a non-linear refinement of the closed form
solution based on implicit subspace constraints. Results on synthetic tests and on different real datasets, involving challenging
scenarios, demonstrate the applicability and potential of our method in several realistic scenarios.

Index Terms—Multi-view geometry, 3D localisation, object detection, conics optimisation

1 INTRODUCTION

The detection and localisation of objects in a generic
scene is a fundamental step for the understanding of visual
world, which can enable higher level semantic tasks and
disruptive applications in every day life. Although the local-
isation of objects has been restricted mostly onto the image
plane, several attempts have been tried to lift such reasoning
into 3D by instantiating the object detection problem as a 3D
object localisation problem.

This reasoning in 3D has been generally treated in two
distinct frameworks. First with a learning paradigm, where
the object-based classification output provides directly the
object position and its 3D orientation [1], [2], [3], [4], [5], [6],
[7], [8]. While this 6D pose problem was initially studied
for custom object classes (e.g. a head [9]), now the recent
trend is to provide general solutions for several classes of
objects [10], [11]. However these approaches often require
the construction of custom pose dependent datasets that can
be complex to achieve.

A second approach consists in including geometrical
reasoning explicitly in the object detection framework. Re-
cent works have clearly pointed out that bridging the gap
between object detection and multi-view geometry might
provide surprising improvements in classical approaches.
Starting from the work of Hoeim et al. [12], the inclusion of
3D scene reasoning and rules has provided higher detection
accuracies, up to the estimation of coarse 3D geometry from
single views [13]. Notably, attempts of unifying geometry
and object representation have been achieved by defining an
elaborated Maximum a Posteriori (MAP) inferences [14] or
bundle adjustment with objects [15]. This way of pursuing
high-level object reasoning in multi-view geometry has also
inspired novel methods in Simultaneous Localisation and
Mapping (SLAM) [16]. Semantic information has been used,
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Fig. 1. Example of a set of images of a given 3D rigid scene taken from
a camera at different viewpoints. The problem consists in recovering the
3D occupancy of each object given the 2D bounding boxes detected at
each image frame.

on the other hand, to infer jointly the 3D shape and cameras
viewpoints [10].

Our work takes a different path from previous methods
by showing that it is possible to obtain accurate 3D object
localisations and occupancy using mainly multi-view ge-
ometric relations given 2D bounding boxes only. Starting
from the location and size of a set of bounding boxes
detected in a generic sequence (see Fig. 1 for a graphical
representation), we show that the localisation of objects in
3D can be instantiated as a conics optimisation problem
with a closed-form solution in the dual space. Our solution
does not use directly bounding boxes (which is a piecewise-
defined curve), but we show that the problem is mathemat-
ically feasible given a set of ellipses fitted to the original
2D bounding boxes as extracted by the detectors. In this
way, we can reformulate the problem as the estimation of
3D quadrics given known camera matrices and a set of 2D
conics in multiple views. We finally show that, for the ill-
posed case of two views, it is possible to apply a further non-
linear optimisation with object based constraints, obtaining
a performance close to the well-posed solution. Moreover,



non-linear optimisation, as well as data preconditioning,
in general boosts results whenever the bounding boxes are
inaccurate as it might happen in realistic scenarios. In such
a way, improved results are achieved in challenging real
scenarios on different freely available datasets. Differently
from previous works, we do not need geometric or semantic
priors, apart from 2D bounding boxes from detections, nor
advanced detectors yielding the 3D position of the objects.
Even without this information, the proposed approach is in
general quicker and more accurate than current methods,
which make use of stronger semantics.

The rest of the paper is structured as follows. Section 2
provides background on related work while Section 3 de-
fines our problem and the associated mathematical formali-
sation. Section 4 presents the proposed closed-form solution
together with the non-linear optimisation approach in Sec-
tion 5. Experiments on synthetic and real data are discussed
in Section 6 and 7 respectively. Finally, Section 8 presents
concluding remarks about the proposed approach.

2 RELATED WORK

In the last years many approaches were developed to infer
the location and orientation of objects from images in a
general 3D scenario. These works are mainly categorised
by the type of constraints assumed during inference, given
either by the object classes, the complexity of the scene (in-
door, outdoor) and the information available (single image,
video or RGBD). In this review we will restrict to single or
multiple views methods, for which our approach is more
closely related, and neglect the RGBD case.

As the most challenging scenario, strong efforts have
been devoted to the study of single image pose estimation
problems. One of the first examples in the literature [17]
defined image heuristics for the estimation of position and
orientation of piecewise planar objects (e.g. a chair). The so-
called Origami world assumption was dealing with specific
classes, but yet was able to provide reasonable heuristics
to deal with the ill-posedness of recovering the object pose
from a single view. These pre-defined geometrical heuristics
were the standard approach for these early works [18] but
quickly revealed their limitation in modelling the complex-
ity of the real word geometrical composition.

This led to the need to learn image to object relations in
order to generalise pose estimation in 3D to several classes
of objects. In many cases a training phase is performed
using images of a specific category of objects from different
viewpoints. This severely underconstrained problem has to
be solved by considering strong semantic information about
each object and the context, making often the algorithms
specific to a class or a subclass of objects. Many works
have exploited 3D object models (in specific CAD wire-
frames) to get a 3D interpretation of the scene. Zia et
al. [19] [20] [21] used the CAD models of cars to reconstruct
the scene and the objects, including additional information
about the ground plane. Pepik et al. [3] reformulated the
model as a 3D deformable part model by learning the
part appearances according to the CAD model. Liebelt and
Schmid [22] trained a multi-view detector to learn the object
appearance, and then linked the geometric information to
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the 2D training data to perform the pose estimation for
generic object classes.

When multiple images are available, recent works have
tried to include geometrical reasoning to explicitly use
constraints given by the multiple views. Bao et al. [23]
tried to deduce both the viewpoint motion among multiple
images and the pose of the objects using a part-based object
detector, improving the performances through a dense re-
construction and by incorporating semantic information as
category-level shape priors (learned from the object) [24]. To
reach the same goal a monocular SLAM approach was used
by Dame et al. [25], combining it with shape priors-based 3D
tracking and 3D reconstruction approaches, while Findler et
al. [26] reduced all the objects to 3D bounding boxes with
each side being a planar approximation of the object: in this
case the localisation and orientation are estimated consid-
ering the perspective reprojections of the 3D bounding box
faces onto the image frames.

Differently from these methods, the proposed approach
uses the 2D bounding boxes to define, after ellipse fitting, a
quadric reconstruction problem from multiple conics in 2D.
Previous approaches have studied the problem of quadrics
estimation for the cases of three [27] and two views [28],
mainly related to obtain a reconstruction from object con-
tours. Ma et al. [27] described all the steps to perform
the reconstruction from three views given object contours,
showing that two views only are not enough to recover a
generic ellipsoid. Cross et al. [28] illustrated a two views
method to reconstruct quadrics using again object outlines
extracted and matched from multiple images. This solu-
tion was possible by using additional epipolar constraints
between matched points in the images. Differently from
these works, we deal with the case of multiple objects in
multiple frames and we provide pre-conditioning and non-
linear optimisation in order to solve for the problem under
perspective projection.

The work of Crocco et al. [29] presented a solution
to the quadrics reconstruction problem with the simpler
orthographic camera model, which can not be used with the
experimental scenarios showing strong perspective effects,
as the ones presented in this work. Moreover, our approach
is resilient if some of the detections are missing, differently
from [29] that solves the problem using the factorisation of
a complete matrix containing the ellipses parameterisation
for every object at every frame. Lastly, [29] does not take
into account any regularisation method as we do in this
work, which improves considerably results when inaccurate
bounding box estimates are present.

3 PROBLEM STATEMENT

Let us consider a set of image frames f = 1...F repre-
senting a 3D scene under different viewpoints. A set of
i = 1...N rigid objects is placed in arbitrary position
and each object can be detected in each of the F' images.
Each object i in each image frame f is identified by a
2D bounding box B;¢, given by a generic object detector.
The bounding box is defined by a triplet of parameters
By = {wif,his,bis}, where w;y and h, are two scalars
for the bounding box height and width respectively, while
b, is a 2-vector defining the bounding box centre.



Fig. 2. Example of Bounding Boxes (yellow) and corresponding fitted
ellipses (red) for a set of objects.

Our goal is to estimate the position and space occupancy
of each object in the 3D scene given the 2D bounding boxes
and by using multi-view constraints. In order to ease the
mathematical formalisation of the problem, we move from
a bounding box representation of an object to an ellipsoid
one. This step is performed by associating at each B;; an
ellipse C; ¢ that inscribes the bounding box, as shown in
Fig. 2. In particular, each ellipse is centred in b,y and is
aligned to the image axes, with axes length equal to w;y
and h;¢. The aim of our problem is to find the 3D ellipsoids
Q; whose projections onto the image planes best fit the 2D
ellipses C; . This will solve for both the 3D localisation and
occupancy of each object starting from the image detections
in the different views.

In the following, we represent each ellipse using the
homogeneous quadratic form of a conic equation:

uTéif u=20, 1)

where u € R3 is the homogeneous vector of a generic
2D point belonging to the conic defined by the symmetric
matrix C;; € R3*3. The conic has five degrees of freedom
given by the six elements of the lower triangular part of the
symmetric matrix C;, except one for the scale since Eq. (1)
is homogeneous in u [30]. Similarly to the ellipses, we rep-
resent the ellipsoids in the 3D space with the homogeneous
quadratic form of a quadric equation:

XTQiX = Oa (2)

where x € R* is an homogeneous 3D point belonging to
the quadric defined by the symmetric matrix Q; € R***.
The quadric has nine degrees of freedom, given by the ten
elements of the symmetric matrix Q; up to one for the overall
scale.

Each quadric Q;, when projected onto the image plane,
gives a conic denoted by C;; € R3*3. The relationship
between Q; and C;; is defined by the projection matrices
P; = Ky[Rf|ty] € R3*4, where Ky € R3*3, Ry € R3%3
and t; € R**! are respectively the matrix of the intrinsic
parameters, the rotation matrix and the translation vector
of the cameras associated to each frame f. Such matrices
are assumed to be known (i.e. the camera is calibrated) and
can be estimated from the image sequence using standard
self-calibration methods.

4 DUAL SPACE FITTING

Since the relationship between Q; and C;; is not straight-
forward in the primal space, i.e. the Euclidean space of

Fig. 3. Example of a set of conics C;f, C;(y11) and C;(s40y which
represents the outlines in 3 frames of a given quadric Q;.

3D points (2D points in the images), it is convenient to
reformulate it in dual space, i.e. the space of the planes (lines
in the images) [27], [28]. In particular, the conics in 2D can
be represented by the envelope of all the lines tangent to the
conic curve, while the quadrics in 3D can be represented
by the envelope of all the planes tangent to the quadric
surface. Hence, the dual quadric is defined by the matrix
QF = adj(Q;), where adj is the adjoint operator, and the
dual conic is defined by Cj; = adj (Cir) [30]. Considering
that the dual conic C}}, like the primal one, is defined up to
an overall scale factor 3;¢, the relationship between a dual
quadric and its dual conic projections C;; can be written as:

BifCiy = PyQ;P;. &)

In order to recover Q; in closed form from the set of
dual conics {C;‘f} f=1..F, we have to re-arrange Eq. (3)
into a linear system. Let us define v = wvech(Q}) and
c;p = vech(C};) as the vectorisation of symmetric matrices
Q; and C7; respectively'. Then, let us arrange the products
of the elements of P; and P}'— in a single matrix Gy € R®*10
as follows [31]:

G =D(P @ P)E 4)

where ® is the Kronecker product and matrices D € R6%?

and E € R!6%10 are two matrices such that vech(X) =
D vec(X) and vec(Y) = E vech(Y) respectively, where X €
R9%9 and Y € R16¥16 are two symmetric matrices®. The
structure of the matrix G; is made explicit in Eq. (4), where
Dgr are all the entries of the matrix P, for ¢ = 1...3 and
r =1...4. Given Gy, we can rewrite Eq. (3) as:

B,-fcz‘f = var. (6)

4.1 Direct solution for ellipsoid reconstruction

In order to get a unique solution for v; at least three image
frames are needed. Therefore, stacking column-wise Eq. (6)
for f =1...F,with F' > 3, we obtain:

M;w; = OgF, (7)

1. The operator vech serialises the elements of the lower triangular
part of a symmetric matrix, such that, given a symmetric matrix X €
R™*™, the vector x, defined as x = vech(X), is x € RY with g =
n(n+1)

—a.

2. The operator vec serialises all the elements of a generic matrix.
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where 0, denotes a column vector of zeros of length x, and
the matrix M; € R6F*(10+F) and the vector w; € R1OTF are
defined as follows:

G1 —Cfl 06 06 N 06
G2 0(, _CZ(Q 06 N 06
*
Mi — G3 06 06 -Cj3 ... 06 . W = |:‘I£;z:| , (8)
. . i
. 0 06 0 - Og
Gr Og 0 Og ...

[Bit, Bia, - - - 761’F]T- Note that in real cases the
ellipses C;; computed by a general purpose object detector
might be inaccurate regarding the location of the bounding
box and the window sizes. Likewise, this will have an effect
on the ellipsoid fitting, inducing an error on the C;. For this
reason, if M; is the matrix given by object detections, we can
find the solution by minimising:

*
<Cip

W, =argmin [fwl} st WE=1, )
where the equality constraint ||w||3 = 1 avoids the trivial
zero solution. The minimisation problem in Eq. (9) can be
solved by applying the SVD to the M; matrix, taking the
right singular vector associated to the minimum singular
value. The first 10 entries of w; are the vectorised elements
of the estimated dual quadric, denoted by Vv;. To get back
the estimated matrix of the quadric in the primal space, we
obtain first the dual estimated quadric by:

Q; = vech ™ (¥}) (10)
and subsequently apply the following relation:
Q; = adj ™ (@) (11

where adj™! denotes the inverse of the adjoint operator.

4.2 Conics and quadrics pre-conditioning

Possible inaccuracies in the bounding boxes and in the
projection matrices estimation, embedded in the matrix M;,
propagate to the solution w; in a quite complex manner,
as described by the perturbation theory [32]. In general, if
the matrix M; is ill-conditioned, small errors on its entries
may result in a grossly inaccurate solution. One of the main
sources of ill-conditioning is the diversity in the magnitude
of the entries of M;.

In order to gain a deeper insight into the source of
such diversity, let us express a generic ellipse C}; in dual
space as an ellipse ¢, 7, centred in the image centre and
with normalised axes length, subjected to an homogeneous
transformation H;, as follows:

Uk
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In details, ¢t and t5 are the coordinates of the ellipse
centre and h = \/lf + l%, where [y, l> € R are the two semi
axes of the ellipse. Using Eqgs. (12) and (13) we can express
the vectorised conic c}‘f as:

2 % c2
heci; —t§
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hciy — 515
c
_tl

2 % c2
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(14)
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Here the first, second and fourth element of c}; have a
quadratic dependence from both the ellipse translation and
axes length. When a wide baseline sequence is considered
the projection matrices Py will project the same quadric on
very different conics in terms of size and translation. This
in turn will cause sharp diversity in the magnitudes of the
vectors ¢, across different views f, thus yielding an ill-
conditioned matrix M; f- Moreover the translation and axes
term sum up together in the elements of ¢}, despite their
different geometrical meaning. In the case of small ellipses
far from the image centre the terms related to the ellipse size
and shape become negligible with respect to the translation
terms, and consequently even small errors on cj; affect
negatively the reconstruction of the ellipsoid. This is because
the information on the ellipsoid shape, embedded in the
elements c},, cj, and ¢35 do not prevail over the translation
errors on ¢§ and ¢§.

To cope with these issues, we devised a preconditioning
strategy inspired by coordinate normalisation in multi-view
geometry. In detail, once ellipses centres and axes have
been extracted we apply the inverse of the homogeneous
transformation H; y to both the members of Eq. (3), obtaining:

BisCiy = HijPrOPFH (15)

Finally we build the matrix M; collecting the new conics
(uljf and the new projection matrices H;}P ¢ and substituting
them to C}; and Py respectively. In this way all the new
conics are centred to the origin and normalised in size.

The dual quadric representation suffers from the same
problem already seen for the dual conic, i.e. if the quadric
centre is far from the origin, the terms accounting for the
ellipsoid shape become negligible with respect to the terms



accounting for its position, possibly causing an inaccurate
ellipsoid reconstruction. To cope with this issue, we perform
a translation of the 3D coordinates, moving the quadric at
the centre of the 3D scene. Obviously the exact quadric is
unknown, but we can assume that its translation parameters
are well approximated by the quadric Q; i.e. the result of the
optimisation problem in Eq. (9). To perform such translation,
we can rewrite Eq. (15) in the following way:

BisCip = H;}PyT,T; Qi T, T P/ H; [, (16)
where T; is the translation matrix whose last column con-
tains the translation parameters of Qj . Then, we consider
the terms H;}P ¢T; in (16) as the new projection matrices and
we build accordingly a new matrix 1\715 related to the centred
quadric. Next, we solve the new problem:

~ . ~C 2 2

wi = argmin [M;wlz st [wl =1, 17)
and we find the dual quadric Qj ‘ from the vector W,
according to the same procedure used to obtain Q; from W;.
Finally we translate Q;  to the correct 3D location, applying
the translation matrix T; to Q: “ and obtaining the final

solution ij as follows:
(18)

Notice that with such procedure, the translation parameters
have been substantially decoupled from the shape param-
eters of the ellipsoid, thus reducing the ill-conditioning
problems arising from the addition of the two kinds of
parameters in the entries of the dual quadric. As a final step
we obtain the solution in the primal space as the inverse

adjoint of Q; !

5 NON-LINEAR OPTIMISATION

As seen in the previous section, moving to the dual space al-
lows an efficient linearisation of the problem. However this
implies a drawback: the algebraic minimisation is carried on
the dual quadrics in Eq. (17) and the primal one is obtained
by a matrix inversion as in Eq. (11). Thus, in presence
of relevant errors in the bounding boxes estimation, the
given primal quadric could lead to solutions that are nearly
degenerate ellipsoids or even to a different quadric like an
hyperboloid. Notice that this problem is connected to, but
different from, the one related to ill-conditioning of the
matrix M; and has to be faced with a different strategy.
To overcome this problem, we devised a non-linear cost
function that depends on a new set of variables, in which the
dual quadric is forced to lie on the subspace of ellipsoids.

In detail, a generic ellipsoid in dual space Q* can be
rewritten as follows:

Q' =zQz" (19)
where Q" is an ellipsoid centred on the origin and with the
axes aligned to the 3D coordinates and Z is an homoge-
neous transformation, accounting for an arbitrary rotation
and translation. It turns out that Z and fl* can be written
respectively as:
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where t = [t;,t,3]" is the translation vector, R(0) is the
rotation matrix function of the Euler angles 8 = [0, 02, 05] "
and a, b, c are the three semi-axes of the ellipsoid ®. There-
fore, we can express every ellipsoid in terms of the nine pa-
rameters 01,02, 03,t1,12,t3,a,b, c. Now, defining the vector
e c R ase = [91,02, 03,t1,ta,t3,a,b, ¢, B1,... BF]T we
can evaluate a functional form of the vector w(e) as follows:

11(8)%a® +112(0)*0% + r13(0)*¢® — i}
711(0)721(0)a® + 112(0)129(0) 0% + 113(0)r23(8) ¢ — t1t2
711(0)7r31(8)a® + 112(0)732(0)b® + 113(0)r33(0) c? — tat3

-

721(0)%a? + 792(0)2b% + 123(0)%c? — 13

721(0)731(0)a® + 122(0)732(0)0? + 123(0)733(0) c? — tats

w(e) = —t2 (21)
731(0)%a® + r32(0)%b% + r33(6)?c? — t3?
—1
B
BF ]
where the terms in 7,,, | m,n = 1,...,3 are the entries

of the rotation matrix R(6). Hence, the new problem in the
variables e can be reformulated as:

& = argmin [[M; w(e)|3 (22)
Notice that this formulation forces the solution to be an
ellipsoid without imposing explicit constraints.

If some prior knowledge on the range of the axes length
is available, i.e. when the detected objects have a known
scale and aspect ratio, this can be enforced in a natural way
by adding inequality constraints on the variables a, b, ¢ such
that:

ap < a < ay
g <c<ey

& = argmin [ w(e)]3 s.. 23)
e

where [a;, b, ¢;] and [ay, by, ¢,] are respectively the lower
and upper bounds on the three semi-axes a, b and ¢ of the
ellipsoid. Finally, we recover from €; the estimated ellipsoid
in the primal space, through Egs. (21), (10), (18) and (11).
The proposed regularisation takes into account the generic
3D proportion/scale properties of an object. In particular
this can be helpful when having noisy 2D bounding box
detections that could impact negatively on the 3D quadric
estimation. As a consequence, this robustness could possibly
lead to an improvement of the ellipse estimation in 2D if
there are gross inaccuracies in the object detection.

5.1

Since the cost function in Egs. (22) and (23) is non convex,
a good initialisation is mandatory. As a first initialisation
step, we computed the SVD solution from (17) in order to
find the vector w; which contains the elements defining
the primal quadric Q; and all the scale parameters 3;. The

Initialisation

3. Actually, the positivity of a?,b?,c? grants that L* represents an
ellipsoid and not a generic quadric.



main problem here is that the solution of the SVD represents
a generic quadric surface, not in specific an ellipsoid. In
light of this, we need to convert the generic quadric into
an ellipsoid as a first attempt to obtain the initial value
el(-o). This can be performed by extracting the axes using
the following relation [33]:

(0) -1

a; c )\
i det !

b | = ‘9, A (4)
(0) det QL 33

where Q1033 is the 3 x 3 upper left submatrix of the primal
adj~! (Q:c), and A\, Ao and A3 are the
eigenvalues of Q; g5.

quadric Q; =

Next, we can obtain the rotation matrix R(Ogo)), and
consequently the Euler angles 01(-0), considering that R(BEO))
is equal to the matrix of eigenvectors of Q;33. Finally, we

(0)
t;

obtain the translation vector as follows:

tz('o) = 65,33[3:,4 (25)
where Q; 4 is a vector composed by the three upper right
elements [q14, Goa, q34]" of the matrix Qf . In general, one
or more of the terms ago), bgo), cl(»o) could be imaginary num-
bers, e.g. if the estimated quadric represents an hyperboloid.
To overcome this problem, we use the modulus |a§0) |, |b§0)|
and ‘cgo)‘ as semi-axes length. This means to initialise the

0
vector e; "’ as:

el = [, ¢, 1a{”], 16”7, B,). (26)

5.2 Minimal cases: 2 and 3 views

In this section we discuss the minimal configuration under
which the solution to the problem is unique (3 views) and
the under constrained case in which some priors are needed
to obtain a solution (two views).

In the ideal case of no errors, the equality constraint in
Eq. (7) is fulfilled by a unique vector w; (for less than a scale
factor) only if the null space of the matrix M; has dimension
1, that is, just one singular value of M; is equal to zero. It
can be demonstrated that this condition holds only if at least
three views are present [28]. In case of three views the matrix
M; € R'®*13 has rank 12 and hence just one singular value
is equal to zero.

If the number of views decreases to two, the rank of
matrix M; € R12*%12 jg equal to 10. Thus, two singular values
are equal to zero and the solution to (7) is given by a family
of quadrics:

Qf(f) = Qiz +(1-9¢) Q;m

where Q; ; € R***and Q, ; € R*** are the dual quadrics ob-
tained from the two right singular vectors of M; associated to
the singular values equal to zero, and § is a scalar parameter.
Therefore two views are not sufficient to recover the correct
solution, corresponding to a single ellipsoid, unless prior
knowledge is injected in the problem.

To recover a reliable solution in this underconstrained
case, we revert to the non-linear problem in Eq. (23). In such
a way we can exclude quadrics different from ellipsoids

27)
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and quadrics whose size or aspect ratio does not fulfil the
inequality constraint on the axes, given by prior knowledge
on the object shape and dimension.

A problem here arises on how to initialise (23) since in
a real case every value of Q: (&), for an arbitrary &, could be
in principle a good starting point. To solve for this issue, we
adopted a greedy but feasible approach, evaluating Q; (¢)
over a number of values of {, obtained by discretising the
interval [0, 1] into K = 10 equally spaced values®. For each
selected Q; (€), we computed the corresponding initialisa-
tion vector ei0 (), according to the procedure described in
Section 5.1. Finally, we solved the non-linear optimisation
problem with boundary constraints on the ellipsoid axes,
initialising it with ego) (&).

To this point, we have K potentially different ellipsoids
Q; (&), resulting from the K different initialisations. In or-
der to choose the best among them, we selected the one
maximising the intersection over union Oqp ;(§) between
the areas C; ¢ of the ellipses obtained from the bounding
boxes and the areas C; 7 (§) of the ellipses reprojected from
the estimated ellipsoid Q;(£). In detail, defining:

CiNCis(§)

Ozn,i(ﬁ) = 5 5 ) (28)
f=1 sz U sz (5)
we selected the ellipsoid Q; (&) with:
& = arg max(Oap ;(£)). (29)

Despite ellipses from bounding boxes do not correspond
exactly to ground truth reprojected ellipses, the metric Ozp
was empirically found to have a good correlation with
the best 3D ellipsoid reconstruction, in terms of volume
overlap with the ground truth ellipsoid. On the contrary, we
discarded the more trivial criterion of taking the solution for
which the cost function in Eq. (23) was minimal.

6 SYNTHETIC EXPERIMENTS

We present extensive synthetic evaluation in order to asses
the correctness of the proposed approach and to test its ro-
bustness to inaccuracies of the 2D bounding boxes position.
In all the experiments, the accuracy of the estimated 3D
localisation was measured by the volume overlap defined
as:

(30)

where Q; and O, denote the volume of GT and estimated
ellipsoids respectively.

When the i-th estimated quadric is not an ellipsoid,
Osp is set to zero. Notice that, when camera views are
restricted to a small baseline or they are related to quasi-
planar trajectories, Osp could give poor results even with a
small algebraic error in Eq. (9). However, we have chosen
this metric since it measures in a direct way the success of
the algorithm in recovering the 3D position and occupancy
of an object. In the following we will denote the closed form
solution obtained with SVD (Sec. 4.2, Eq. (17)) as LfD and the

4. Since the quadric is defined up to a global scale factor, it is not
necessary to consider values of £ outside of the range [0, 1]
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Fig. 4. Results for the synthetic tests versus different types of errors. Average accuracy given by LfD or LfD+NL for RE — rotation error (a), SE — size

error (b), TE — translation error (c), measured by Osp metric.

solution from non-linear optimisation (Sec. 5, Egs. (22) and
(23)) as LID+NL. Where not specified, LD+NL will indicate
the non-linear solution without prior constraints in (22).

We tested our algorithms LfD and LfD+NL in a synthetic
scenario with 50 ellipsoids randomly placed inside a cube
of side 20 unit. The length of the largest axis L ranges from
3 to 12 units, according to a uniform PDF. The lengths of
the other two axes are equal to yL with v € [0.3, 1]. Finally,
axes orientation was fixed randomly. A set of 20 views were
generated with a camera model that has a distance from the
cube centre of 200 units and moves along a trajectory so
that azimuth and elevation angles span the range [0°, 60°)
and [0°,70°] respectively®. Given the projection matrix P
of each camera frame, GT ellipses given by the exact projec-
tions of the ellipsoids were calculated.

Synthetic tests were aimed at validating the robustness
of the proposed method against common inaccuracies af-
fecting object detectors, such as coarse estimation of the ob-
ject centre, tightness of the bounding box with respect to the
object size and variations over the object pose. Thus, each
ellipse was corrupted by three errors, namely translation
error (TE), rotation error (RE) and size error (SE), and fed to
the proposed algorithm. To impose such errors, the ellipses
centres coordinates ¢, t5, the semi axes length {1, > and the
orientation « of the first axis were perturbed as follows:

f§:t§+l_y§, a=a+ v, ij:lj (1—|—1/l), (31)
where l/jt-, v® and v/! are random variables with uniform PDF
and mean value equal to zero, and [ = (I +I3)/2. In order to
highlight the specific impact of each error, they were applied
separately. Error magnitudes were set tuning the boundary
values of the uniform PDFs of 1/;, v® and v'. In detail,
for each kind of error, we considered 10 different values
of v}, v* and v!, with uniform spacing, and we applied
the resulting error realisations to the ellipses reprojections
related to the 50 objects.

In Fig. 4 the average accuracy Osp for both LfD and
LfD+NL is displayed versus the error magnitude (i.e. the
boundary value of the uniform PDF), for RE (Fig. 4(a)), SE
(Fig. 4(b)) and TE (Fig. 4(c)). The results for both L{D and
LfD+NL are perfect in absence of errors, as expected, and

5. Notice that the variation of object appearance due to such range of
angle views can be handled by state-of-art object detectors [34]

smoothly decrease as the three errors increase. In detail, Ozp
for LfD+NL, drops from 1 (no errors) to 0.57, 0.59 and 0.38
for maximum RE, SE and TE respectively, while the accuracy
of LfD drops from 1 to 0.49 (RE), 0.41 (SE) and 0.37 (TE)
respectively. In general, LfD appears to be more sensitive to
TE with respect to SE and RE.

The performance boost brought by non-linear optimisa-
tion is remarkable for SE, with an increase in Osp of more
than 0.2 over a wide range of SE errors (from 0.17 to 0.50).
The performance boost is significant also for RE, yielding
an increase in Osp between 0.10 and 0.15 over the range
of RE [10,45]. Concerning TE, the improvement achieved
by LfD+NL over LfD is more limited. However, one has
to consider that robustness to translation errors is already
diminished by data preconditioning, applied on both LfD
and LfD+NL, thus making the contribution of non-linear
optimisation less relevant. Notice also that the accuracy of
0.37, related to the maximum TE, is a reasonable value
considering that an object detector placing the bounding box
with a TE of 0.3 is typically judged to fail the detection®.

Finally, it is to note that LfD+NL is generally more robust
toward RE and SE (Figs. 4(a), (b)), than toward TE. The
higher robustness toward RE and SE is quite important since
such kind of errors are likely to happen very frequently
whenever ellipses are fitted to bounding boxes. Even if the
detector is accurate, the bounding box quantises the object
alignment at steps of 90°, yielding a maximum RE of 45°.
This tends to overestimate the object area, thus affecting SE,
whenever the object is not aligned to the bounding box axes.

7 REAL EXPERIMENTS

We evaluate our approach in three standard datasets (ACCYV,
TUW and KITTI) for which we can obtain the ground truth
location and occupancy of the objects in various scenarios.
The imaging conditions, number of frames and camera
paths are different for each dataset, thus evaluating the
robustness of our approach under different realistic condi-
tions. We also present a real experiment based on Google
Tango where we use the odometry given by the device
to obtain the pose of the calibrated camera. Given this

6. The TE is applied independently to both the horizontal and ver-
tical components of the ellipse centre, i.e. see Eq. (31), resulting in a
maximum overall translation of 0.3v/2.



information, our method locates objects in a scene while the
user is moving. To further demonstrate the applicability of
our approach, we have as well estimated performance when
camera projection matrices are given by a self-calibration
procedure.

Finally, to better evaluate our method, we have imple-
mented two baseline approaches that find the 3D position
and occupancy of the objects directly from the bounding
boxes. The first baseline approach is the constraint propaga-
tion (CP) method developed by Farenzena et al. [35], which
has been adapted to estimate, for each object, the polyhe-
drons given by the intersections of all the pyramids having
the vertex on each camera centre and passing through the
bounding boxes of the object detections. In this way, we
can compare a cuboid based model against the proposed
quadrics parametrisation for the object position and occu-
pancy. The second baseline approach is a method based
on Interval Analysis (IA) [36], [37], which solves a similar
problem based on stereo triangulations. The main drawback
of the IA is its tendency to overestimate the intersection
volume. In fact, we have noticed that the error over the
position of the 2D bounding box vertices amplifies greatly
the extension of the 3D estimated interval.

Moreover, for the KITTI dataset we compare with
competing 3D object localisation approaches on the
dataset [38], [197.

Again, the closed form solution is named as LfD and the
solution from non-linear optimisation as LfD+NL. Where
not specified, LID+NL will indicate the non-linear solution
without prior constraints in (22). We also used the subscript
¢ (LfD., LfD. + NL) to indicate the case when the camera
parameters have been computed using self-calibration given
by a hierarchical Structure from Motion pipeline [39].

7.1 ACCV dataset evaluation

The ACCYV dataset [40] contains 15 sequences, each related
to a single object laying on a table at different camera
viewpoints (from 100 to 1000 per sequence). We selected
the subset of 8 sequences for which the 3D point cloud of
the object is provided, and limit the number of views to
100 for each sequence. For each object we evaluated the GT
ellipsoid as the envelope of the 3D point cloud. Moreover,
for each frame and each object, we generated a 2D bounding
box by simulating the output of a multi-scale object detector
providing bounding boxes with variable aspect ratio, like
the well known Deformable Part Model (DPM) [41].

In Fig. 5, first row, an example of the localisation per-
formance for the LfD method is displayed for the “Duck”
sequence. The estimated ellipsoid almost perfectly fits the
GT one in respect to location, size, eccentricity and align-
ment, as can be seen in three frames and in the overall 3D
localisation. In Table 1 the accuracy for each sequence, for
LD, is reported in terms of Ogzp.

Due to the large number of views and the good quality
of the detections,the accuracy is on average quite good even
without non-linear optimisation, with an Osp of 0.80. For

7. For the ACCV and TUW datasets it was not possible to evaluate
such algorithms because of the lack of enough training examples and
the tested objects not being part of PASCAL VOC classes.
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this reason, non-linear optimisation did not improve signif-
icantly the results on this dataset with respect to the closed
form solution. Using self-calibration, LfD, has a decrease in
performance of a limited 12% on average. The image scenes
in the dataset are well textured so it is possible to extract
reliable feature points for the camera matrix estimation.
The number of views also affects positively the CP baseline
approach, as shown in the left image of Fig. 6: More the
viewpoints span a large angle around the object, better the
method performs. Even if these results are remarkable for
CP, the average performance of LfD. and LfD is still higher
in terms of Osp. Finally, the IA approach overestimates the
volume, as it can be seen in Fig. 6.

TABLE 1
Osp for sequences from ACCV dataset for LfD, LfD. and baseline.

Iron | Duck | Ape | Can | Driller | Vise | Glue | Cat | Avg

LfD | 0.83 | 0.82 | 0.88 | 0.84 0.66 0.82 | 0.67 | 0.84 | 0.80
LfD. | 0.67 | 072 | 0.85 | 0.70 0.49 0.68 | 0.61 | 0.70 | 0.68
CP | 061 | 062 | 059 | 0.61 0.69 0.68 | 0.61 | 0.59 | 0.62

1A 029 | 012 | 027 | 031 0.31 049 | 036 | 0.12 | 0.28

7.2 TUW dataset evaluation

The TUW dataset [42] contains 15 annotated sequences
showing a table with different sets of objects deployed on
it. The number of frames per sequence ranges from 6 to 20.
A 3D point cloud for each object is also provided. As for the
ACCYV dataset, we obtained the GT ellipsoids for each object
and the 2D bounding boxes. We discarded sequences with
strong occlusions that cannot be handled by current object
detectors, and sequences where objects appear for a number
of frames lower than 3, thus retaining 5 sequences. In this
case, differently from the ACCV dataset, the objects are not
centred in the 3D scene, then the initial 3D centring helps
both the LfD and the LfD+NL to reach a better results in
terms of localisation.

All the selected sequences have been tested with the
methods LfD, LfD+NL, LfD., LfD.+NL, CP and IA. The
accuracy for each sequence is reported in Table 2, according
to O3D.

It can be noticed that the non-linear optimisation yields
an improvement in the accuracy, in terms of Osp, with
respect to the closed form method on a great part of the
tested sequences. In the case where the camera have been
self-calibrated, there is a general decrease of performance of

TABLE 2

Og3p for the sequences from TUW dataset.
Seq.1 | Seq.7 | Seq.8 | Seq.10 | Seqll | Avg
LfD 043 | 0.70 | 0.74 0.77 0.50 | 0.63
LfD. 0.34 | 040 | 0.34 0.62 0.28 | 0.40
LfD+NL 049 | 0.69 | 0.75 0.79 0.50 | 0.64
LfD.+NL | 0.35 | 040 | 0.34 0.62 0.28 | 0.40
CP 0.10 | 0.16 | 0.18 0.22 0.14 | 0.16
IA 0.00 | 0.01 | 0.01 | 0.02 0.01 | 0.01




Fig. 5. Results for the ACCV (first row) and TUW (second row) datasets. The first three columns show a close up of the views with the output of a
generic object detector (yellow bounding box) and projections of GT and estimated ellipsoids (blue and green ellipses respectively). The last column
shows the cloud points of the object (red), GT ellipsoid (blue) and estimated ellipsoid (green).

=

Fig. 6. Results for the ACCV and TUW sequences using the CP [35]
(top images) and the IA [36] (bottom images) methods. In the figures
we show the GT point clouds of the objects (red) and the estimated
polyhedrons for the different objects. It can be noticed a tendency of
both the approaches to overestimate the occupancy of the objects. This
is more evident in the TUW dataset, where the |A fails the estimation.

about 20%, this possibly due to the presence of more homo-
geneous textures in this dataset (office environment). Notice
also that there is not an appreciable difference between LfD,
and LfD_.+NL. The results of the CP method are still below
the performances of the LfD, LfD+NL, LfD, and LfD.+NL
due to the fewer number of camera poses, which clearly
do not help to reduce the generated intersection volume,
thus overestimating the occupancy of the objects, as it can
be seen in the right image of Fig. 6. Clearly, the IA method
fails at providing a solution, showing a high sensitivity to
noise and few views of the object. Fig. 5, second row, shows
an example of the localisation performance with the LfD
+ NL method for a selected sequence. The accuracy in the
estimation of the objects” pose is remarkable and this trend
is confirmed for all the other objects in the ACCV dataset in
term of size, eccentricity and alignment of GT ellipsoids.

7.3 KITTI dataset evaluation and comparisons

The KITTI dataset [43] is composed by a set of sequences
taken from a camera mounted on a moving car in an urban
environment. The dataset provides full annotations for cars
appearing in each frame from which GT ellipsoids can be
computed. We sampled 5 sub-sequences displaying parked
cars 8. We generated 2D bounding boxes using the DPM
object detector [41]. In particular, to detect the cars we used
a Latent SVM model pre-trained by Geiger et al. [43] on the
KITTI dataset.

In the KITTI dataset we only estimated the projection
matrices Py using [39], no ground truth information about
the camera pose was available for this approach. Since we
deal with an object category (the cars) for which priors on
size and aspect ratio are well defined, we imposed boundary
constraints on the ellipsoid axes, solving, for LfD.+NL,
the constrained problem as in Eq. (23) (see Section 5). In
particular, we fixed for all the semi-axes a minimum value
of 0.7 m and a maximum value of 3 m. We did not apply
stricter constraints for each semi-axis in order to give the
problem more freedom and decrease the probability of get
stuck in local minima.

Ellipsoids estimation is particularly challenging on this
dataset, since the camera motion is almost planar. Moreover,
cars are usually placed at the street borders and the camera
moves straight in most of the sequences. Hence, the range
of angles between car and camera spanned by the sequence
is very narrow and almost limited to the azimuth plane.
Finally, each car appears in a limited subset of frames. This
type of camera motion is very problematic for both CP and
IA methods, since they are not able to constrain in depth the
volume when the camera does not rotate around the objects.

In Table 3 quantitative results are displayed for the five
selected sequences. Due to the difficulty of the dataset, LfD,.
achieves a limited performance in terms of Oz = 0.05;

8. The selected sequences (Seq.) and the corresponding frames (Fr.)
defining the sub-sequences are the following: Seq. 9 (Fr. 93 - 104); Seq.
22 (Fr. 49 - 85); Seq. 35 (Fr. 0 - 19); Seq. 36 (Fr. 43 - 63).; Seq. 39 (Fr. 129 -
159)
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Sequence 9

Fig. 7. Results for the five sequences of KITTI dataset. The left and centre images show a close up of the views with the output of a generic object
detector (yellow bounding box) and projections of GT and estimated ellipsoids (blue and green ellipses respectively). The right images display the

GT ellipsoids (blue) and estimated ellipsoids (green) in 3D.

however, a sharp improvement in accuracy is obtained with
the non-linear optimisation LfD.+NL, yielding an average
Osp = 0.27. The result for LfD.+NL is visually confirmed
by looking at Fig. 7, where, for each sequence, two repre-
sentative frames and the 3D ground truth and estimated
ellipsoids are displayed. Both CP and IA tend to grossly
overestimate the volumes and they completely fail when
estimating the occupancy.

TABLE 3
Og3p for the sequences from the KITTI dataset.

S9 | 8§22 | S35 | S36 | S.39 | Avg

LD, 0.10 | 0.04 | 0.07 | 0.00 | 0.04 | 0.05
LfD. +NL | 0.30 | 0.32 | 0.15 | 0.23 | 0.36 | 0.27
CP 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

1A 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

In detail, for Sequence 9 the estimated ellipsoids fairly fit
the GT ones in six cases, while for the car on the top right
and the bottom left the reconstruction has not high accuracy:
this happens because in the first case the detections are
very noisy, while in the second case there are few detections
available (in the relative motion the car reaches the margin
of the image, then goes out from the scene quickly). In
Sequence 36 one of the cars is wrongly estimated due to the
grossly inaccurate bounding boxes from detections, caused

by the extreme distance of the car. In Sequence 39 there
is just one case of failure on the localisation for the most
distant car, for which very few and noisy detections are
available.

Comparative Analysis We compared the proposed ap-
proach on the same sequences with two recent state of the
art methods by Choi et al. [38] and Zia et al. [19] for 3D pose
estimation. In detail, Choi et al. [38] propose a tracking algo-
rithm able to estimate, given the bounding boxes provided
by an object detector, the path of moving objects in space-
time. The method employs an MCMC particle filter for the
simultaneous estimation of the extrinsic camera parameters
and of the position of the tracked elements in the 3D world
frame.

Differently, the work of Zia et al. [19] can estimate jointly
the shape and the pose of a specific object using priors on
the context and on the object class. The priors on the context
come from the monocular reconstruction of the ground
plane, where the objects are supposed to lie, while the priors
on the items are annotated manually from the dataset in the
form of CAD models. The algorithm is properly tuned for
the car class, in particular all the CAD models are generated
from the KITTI dataset.

Since each method is fed by a different implementation
of a DPM object detector (in [38] they used the release 3,
while in [19] they trained their own model), in Table 4 we
reported the number of detected objects for each sequence
and each method. As can be seen the number of objects is



nearly the same for our method (including both LfD. and
LfD.+NL) and [38], and only slightly higher for [19], thus
granting a meaningful comparison of the results.

In order to fairly compare the results of our method, we
relied on a shared metric measuring the accuracy in the 3D
object localisation. In particular we evaluated the percentage
of estimated ellipsoid centres within 1 m and 2 m from the
GT centroids of the objects. Results are reported in Table 5
for the four methods: LfD., LfD.+NL, [38] and [19].

TABLE 4
Number of objects detected from each algorithm and each sequence.

S9 | 822 | 835 | S36
LfD. | 8 7 5 5
38] | 10 | 8 8 11
[19] | 8 7 6 5 5

5.39

TABLE 5
Percentages of estimated centroids within 1 m or 2 m w.r.t. GT
centroids for the 6 sequences of the KITTI dataset.

S9 | S22 | 535 | S36 | S.39 | Avg

LfD. <lm 29 | 29 0 0 0 12
LfD+NL<Im | 86 | 8 | 20 | 40 | 67 | 60

[38] <Im 1 13 2 1 1 4
[19] <Im 24 | 50 | 53 | 11 | 47 | 37
LfD. <2m 57 | 43 | 20 | 20 | 17 | 31
LfD.+NL<2m | 100 | 86 | 60 | 80 | 83 | 82
[38] <2m 5 | 24 | 15 4 2 10
[19] <2m 57 | 65 | 71 | 24 | 72 | 58

LiD. + NL achieved a notable performance with 82%
of cars within 2 m and 60% within 1 m. Differently, LfD,
alone obtains lower results (31% < 2 m and 12% < 1 m on
average), again confirming the difficulty of the dataset and
the importance of non-linear optimisation. Notice that, even
for those quadrics estimated by LfD,. not corresponding to
feasible ellipsoids, a quadric centre can be still computed.
Results obtained with [38], are extremely low and, on av-
erage, worse than LfD, and by far worse than LfD. + NL
for both the two metrics. Differently, results yielded by [19]
are better than LfD., probably thanks to the strong priors
given by the car CAD models, but significantly worse than
LfD. + NL, the latter outperforming all the other methods
on average and on almost all the sequences.

In this dataset we also evaluated how precisely our
algorithm can estimate the orientations of the cars by using
the measure 0.,,, which is the angle in radians between
the main axes of estimated ellipsoids and GT ellipsoids. We
compared the results given by LfD, and LfD.+NL with the
orientations given by other three methods in Table 7.3. In
particular, the comparing methods are a multi-view LSVM-
based object detector trained by Geiger et al. [44], a multi-
view fast soft cascade detection algorithm by Ohn-Bar et
al. [45] and the method developed by Zia et al. [19]. All the
comparing approaches, which can estimate the orientation
through the appearance, are more accurate of 7.45 deg
on average with respect to LfD. and LfD. + NL: In our

11

TABLE 6
Oerr for the sequences from the KITTI dataset (in radiants).

S9 522 | S35 | S36 | S.39 | Avg

LD, 070 | 072 | 0.73 | 0.99 | 0.88 | 0.80
LfD.+NL | 052 | 044 | 054 | 041 | 0.26 | 043
[19] 046 | 019 | 0.16 | 035 | 0.39 | 0.31

[44] 0.32 | 0.31 | 0.25 | 0.52 | 0.20 | 0.32

[45] 043 | 034 | 026 | 0.32 | 0.13 | 0.30

geometrical methods the estimation of the orientation is
strongly affected by the 2D errors on the bounding boxes.
Computation times. We compared the computation times
of our two methods with the ones of [38] and [19], and
with CP [35] and IA [36]. In detail, we evaluated the time
required to process Sequence 9 of KITTI dataset running
the MATLAB code on an Intel i7 with a 8-cores CPU
running at 2.60 GHz. We can see from Table 7 that our
two methods are comparable with [38], while are much
faster with respect to [19]. We made explicit the timing 7.
for the calibration step with the hierarchical Structure from
Motion pipeline [39] in case of LfD, LfD+NL, CP and IA.
The T, is the optimisation time intrinsic to LfD and LfD+NL.
LfD optimisation via SVD is performed in 0.60 s, while the
LfD+NL lasted 12 s. Notice that [38] and CP are almost
entirely optimised in C++, therefore a corresponding imple-
mentation of LfD+NL on C++ would highlight even more
the computational advantage of our method. Finally, [19]
has a probabilistic approach requiring high computation
time: with respect to our methods it has between 1 and 2
orders of magnitude of difference.

TABLE 7
Computation time (in seconds) for each algorithm in case of the
Sequence 9. The values T. and T, refer to the time spent for
calibration [39] and optimisation with our method.

LfD LED+NL | [38] | [19] cP IA
24T.+060T, | 24T, +12T, | 34 | 2400 | 24 7. +1.33 | 24 T.. + 1.07

7.4 Minimal configurations test

In order to stress the method capabilities, we also tested
minimal configurations of three and two views, the latter
being solvable only with non-linear optimisation including
inequality constraints, due to its ill-posed nature. We have
chosen a set of views with a wide baseline (about 30 degrees
in rotation) in order to make the tested case more challeng-
ing. Notice that in such condition standard methods based
on feature point matching or disparity maps for 3D structure
estimation are hardly applicable, due to the large variation
in appearance that impairs the matching of points across
different images.

Table 8 shows the results in terms of Ogzp. In the case of
2 views, for all the objects of all the sequences, we found
a & which maximises the intersection over union of the 2D
reprojections and we applied the inequality constraints an
the ellipsoid axes (as explained in the Sec. 5.2). The results
confirm that in general accuracy is lower or slightly lower
than in case of more views but still remaining reasonable



for all the datasets. For the 3 views case and non-linear
optimisation , the Ozp performance on average decreases
of about 23% in the ACCV dataset and 7% in KITTI dataset
with respect to non-minimal cases reported in the previous
experiments, while it remains unchanged for TUW dataset.
Moving to two views, the Osp performance is further re-
duced of about 10%, 1% and 4% for ACCV, TUW and KITTI
datasets respectively. For the ACCV dataset, the difference
of Ozp in case of 3 views between the LfD and LfD+NL
is not remarkable because, for each sequence, there is only
one object at about the 3D coordinate centre. This makes
the matrix Q:C better conditioned, and even without the
non-linear optimisation process a good reconstruction is
achieved. For the other datasets the initial quadric centring
is not always capable to find the correct centre location
of each object. If the centring in the 3D coordinates is
not accurate, the matrix Q:C is not well conditioned as in
the ACCV dataset, and the results with LfD are poor in
terms of Osp; in general the results obtained by performing
non-linear optimisation provide increments in performance
coherent with the previous tests on non-minimal cases for
the all the datasets.

In Table 9 we reported the percentage of cars for which
the distance between the GT centroids and the estimated
ones is < 1 m and < 2 m, for the KITTI dataset. In case
of 3 views, the percentage of objects with a centroid < 1
m is 16% using LfD,, and 51% using LfD.+NL: In general,
the non-linear optimisation improves the localisation of the
objects if the initialisation is not far away from the exact
solution. If we consider the case of 2 views, results are
generally worse than with three views, for the LfD,+NL
solution. However the search over the values of parameter
& (see Section 5.2) guarantees a good initialisation, limiting
the number of outlying errors and leading consequently
to better performance in terms of < 2 m on a couple of
sequences (Seq. 35 and 39).

TABLE 8
Average Osp in case of minimal configurations for the sequences from
ACCV, TUW and KITTI dataset.

3 views
ACCV | TUW | KITTI
LfD 0.66 0.53 0.07
LfD+NL 0.67 0.63 0.20
2 views
ACCV | TUW | KITTI
LfD+NL 0.57 0.62 0.16

7.5 TANGO dataset

As a further evidence of the applicability of our method in
real cases, we used the proposed LfD approach in combina-
tion with a tablet device equipped with a Google Tango sys-
tem [46]. The device uses several sensor modalities (inertial
measurement unit, a depth camera and a fisheye camera)
in order to localise the tablet in indoor environments. This
setup is a fitting test-bed for our method, since the device
also outputs the corresponding projective camera matrix at
each image frame.
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TABLE 9
Percentages of estimated centroids within 1 m or 2 m w.r.t. GT
centroids for the 5 sequences of the KITTI dataset in case of minimal
configurations.

3 views
S9 | 5§22 | S35 | S.36 | S.39 | Avg
LfD. <1m 13 29 20 20 0 16
LfD. <2m 25 57 60 40 33 43

LfD. + NL <Im | 63 71 20 20 83 51
LfD. + NL <2m | 87 71 60 60 83 72

2 views
S9 | S22 | S35 | S.36 | S.39
LfD.+NL <1m 0 11 20 20 50 20
LfD. +NL <2m | 38 67 80 20 100 61

To this end, we have implemented the LfD approach on
the Tango tablet, in order to obtain a localisation of the ob-
jects while the user is navigating in an unknown area. Near
real-time object detection was implemented on a server
receiving timestamped images from the Tango device. The
server continuously run a a Faster R-CNN [47] detector,
this method represents an excellent compromise between
detection accuracy and speed. Once the bounding boxes are
extracted, they are matched in the video sequence using
the tracking by detection method, developed by Geiger et
al. [48] for the street road scenario of the KITTI dataset. For
each sequence, a 3D point cloud is generated by the Tango
system, which is used only for visualisation purposes and
not for the localisation and object occupancy estimation. We
considered the point cloud as a GT reconstruction of the
scene, and we aligned the 3D CAD models of the objects to
quantitatively evaluate the performances of LfD. , CP and
IA methods in terms of Osp.

Fig. 8(a) and 8(b) show respectively the tested indoor
and outdoor sequences. The top images of Fig. 8 show two
frames of each sequence, together with the 2D detections
given by the faster R-CNN object detector and the reprojec-
tions of the estimated 3D quadrics. The bottom images of
Fig. 8 display the estimated ellipsoids over the point cloud
generated by the Tango device. As it can be noticed from the
indoor sequence (Fig. 8(a)), the method can correctly localise
the objects in the environment and the alignment with re-
spect to the objects position is quite remarkable, also thanks
to the camera estimates provided by the Tango. The average
Osp given by LfD, over all the objects is 0.32. In particular,
the bottles and the toy car are well reconstructed, while the
ellipsoid associated to the monitor has a larger depth than
expected, due to the almost planar structure of the object
that can not be estimated properly. The CP and IA methods
do not provide any usable localisation because both of them
are highly affected by errors over the detections. We have
also tested the system in a challenging outdoor scenario,
where Tango is supposed to provide worse camera poses
since the device has been developed for being used indoor.
From the object localisations in Fig. 8(b), it can be seen
that the ellipsoids have a reasonable volumetric occupancy.
The LfD, generates ellipsoids with a small displacement in



depth over the position, possibly due to the drifting effect of
the Tango system in the outdoor environment. Finally, LfD,.
obtains an O3p of 0.19, which is similar to the Ozp of the CP.
However, the CP can estimate the left car and the person,
while it can not reconstruct the right car. As in the previous
case, the IA fails completely the estimation.

TABLE 10
Og3p for the sequences from the TANGO dataset.
Outdoor | Indoor
LfD. 0.19 0.32
cr 0.18 0.00
1A 0.00 0.00

8 DISCcUSSIONS AND FUTURE WORK

This paper presented a closed-form solution to recover the
3D occupancy of objects from 2D detections in multi-view.
This algebraic solution is achieved through the estimation
of a 3D quadric given 2D ellipsoids fitted at the objects de-
tectors bounding boxes. Moreover a non-linear optimisation
approach was devised to cope with possible ill-conditioning
of the problem. The approach was tested against the com-
mon inaccuracies affecting object detectors such as coarse
estimation of the object centre, tightness of the bounding box
in respect to the object size and variations over the object
pose. Experiments show that even with relevant errors, the
estimated quadrics are able to localise the object in 3D and
to define a reasonable occupancy.

Results on three different public datasets and two newly
generated sequences using a Tango device demonstrate
the practical applicability of the method and the ability
to overcome baseline and state-of-art methods in terms
of localisation accuracy when challenging conditions are
present. The solutions of this problem has strong practical
breakthroughs given the recent evolution of recognition
algorithms. In particular, object detection is certainly going
towards increased generality, so providing detectors for
several object classes [49]. Thus, the proposed method can
give a very efficient solution to leverage the 2D information
for 3D scene understanding where objects can now be inter-
related given their position in the metric space. This will
inject important 3D reasoning in classic frameworks for
object detection that are mostly restricted to 2D.

Regarding future work, mis-detections (i.e. outliers)
might affect negatively the estimation of the quadrics. Thus,
including further robustness in the optimisation by using
additional information from trained multi-pose detector or
exploiting the accuracy of a new generation of semantic
segmentation [50] that might improve the performance of
the system. This information would also greatly help in
the estimation of the object orientation by avoiding the
ambiguities of a purely geometrical approach.
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