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ABSTRACT

of an information-poor content (e.g. solid color) on onessid

Given two views of the same scene, usual corresponden@d & viewpoint-dependant content on the other side. The
geometry estimation techniques exploit the well-esthblis S2Me argument can be opposed to segments described by key-
effectiveness of keypoint descriptors. However, suchufieat ~POINts in their neighborhoods [10, 11]. Conversely, one can
have a hard time in poorly textured man-made environment§€ate the initial set of matches thanks to geometric @iter

possibly containing repetitive patterns and/or spectidey;i

[12, 13, 14], yet such invariant-based methods are highiy se

such as industrial places. In that paper, we propose a novg'!tive to noise,l and often Iea(_d to very combinatorial protde
method for two-view epipolar and planar geometry esti-Finally, matching groups of lines can compensate for thie lac
mation that rst aims at detecting and matching physicaIOf information, but here again at the cost of a high combina-

vertical planes frequently present in these environmégs,
fore estimating corresponding homographies. Inferredlloc

torics [15, 16].
In our work, we take advantage of global properties of the

correspondences are nally used to improve fundamentafnvironment to guide matching:

matrix estimation. The gain in precision is demonstrated on
industrial and urban environments.

Index Terms— Epipolar geometry estimation, homogra-
phy estimation, plane detection, low-textured induseiali-
ronments.

1. INTRODUCTION

The problem of two-view correspondence geometry estima-
tion has been extensively studied over the past decades. Mos
commonly used techniques consist in matching previously ex
tracted keypoint descriptors [1]. Keypoints extractiord an
description has known its golden age as soon as SIFT was
introduced [2]. Since then, a great deal of research has fo-
cused on designing faster methods [3, 4, 5], or more invarian
ones [6]. However, those methods work well with highly tex-
tured scenes, but fail with poorly textured ones. Moreover,
the Lowe's ratio most often used to get potential matches [2]
leads to ignoring repetitive features in the initial matcket.
Therefore, line segments may appear as suitable features
for complex environments such as industrial ones, evenef li
matching remains a very tough issue. Several types of match-
ing strategies have been investigated in the past, and most
of them consist in iteratively estimating a geometric model
among a set of putative matches (RANSAC-like algorithms)
Potential segment matches can be determined from the a
pearance similarity of their neighborhoods [7, 8, 9]. How-
ever, line segments in industrial environments often corre
spond to 3D object edges, i.e. their neighborhoods consi

This work was funded by the DGA/DGE RAPID EVORA project.

First, industrial environments often contain a sub-
stantial number of vertical planes. Starting from the
observation that information about existing planes is
somehow encapsulated into vanishing points, the way
our method takes advantage of them is two-fold. First,
we associate each line segment to its vanishing point,
and that information is then used to constrain seg-
ment matching. Second, vanishing points are used as
primitives for local homography estimation, thereby
reducing the combinatorial complexity and avoiding to
place excessive reliance on sparse visual keypoints.

Second, it appears in [17] that image regions are robust
features to match, even in the presence of severe view-
point and condition changes. Indeed, appropriately-
designed descriptors of subimages can offer the advan-
tage of being robust to both viewpoint changes (as lo-
cal descriptors) and condition changes (as global de-
scriptors) [18]. In our method, subimage correspon-
dences are used as prior for vertical planes detection
and matching. By doing that, line matching is more
constrained, thereby circumventing inherent dif culties
of industrial environments, without compromising the
processing time.

Given two different views of the scene, our processing
Bi_peline is nally broken down as follows: (1lRegion cor-
espondencesre computed between images (Section 2). (2)
Local homographiesare detected between matched regions,
then merged to identify physical planes (Section 3). (3)-Seg
Phent correspondences de ned by local homographies are
used to improvepipolar geometry estimation (Section 4).



2. REGION PROPOSAL AND MATCHING

Our method for generating a set of hypotheses of matched
regions is inspired from the work ofiaderhaufet al. [17].

In their method, subimage correspondences are computed to
robustly recognize places. To do that, object proposalexre
tracted, before mid-level ConvNet features are computed fo
each of them. Thus, an image is described by a collection o
CNN descriptors corresponding to different subimages. Af-
ter a dimensionality reduction step, matching of descripto

is performed using a nearest neighbor search based on tt
cosine distance between them, followed by a cross-check er
suring that only mutual matches are accepted.

In our method, we broadly follow the same approach, ex-
cept for the fact that we directly consider high-level CortN
features €.9.the last layer before fully-connected ones) from
[19] as region descriptors, enabling us to do without the di-
mensionality reduction stefedge Boxe$20] is used as ob-
ject proposal, since it appears to be particularly suitédte
scenes made of contours, such as in industrial environment

3. LOCAL PLANAR HOMOGRAPHIES
ESTIMATION

Once subimage correspondences have been computed,
algorithm aims at detecting local homographies betwee
matched regions. To ensure ef cient estimations, we have
developed a dedicated RANSAC framework in which model
hypotheses are rst generated based on vanishing point a
visual keypoint correspondences, and then validated on ke
points and line segments. That scheme enables us to circu
vent problems encountered in poorly-textured images {spa
sity of visual keypoints and dif culties to match segments)

while taking advantage of the abundance of segments ar;qg 1. Overview of our homographies estimation method.

vanishing points characteristic of industrial environtsen Row 1: Two views of an industrial environment. Row 2: Ex-
amples of matched regions (one color per match). Row 3:
3.1. Features extraction and matching Inliers (points and segments) from homographies estimated

between matched regions (one color per homography). Row
Vanishing points (VP9 are detected in both images using 4: |nliers after merging homographies. Row 5: Inliers of the

[21]. This method detects the zenith and all existing hori- yst three planes obtained by 4-points multi-RANSAC.
zontal VPs, therefore associated to vertical planes. Eenit

are easily identi ed, and thus matched, by selecting in each
image the VP with the greatest absolute coordinate along thg . Homographies estimation
vertical axis.

Line segmentsare extracted with LSD [22]. Segments as- Selection of matched boxesDue to the speci cities of our
sociated to previously computed VPs (according to a threstenvironments, regions matched during the rst stage can be
old on the angular distance between the line the segment beensidered as vertical plane proposals. Since those pomes
longs to and the line connecting the VP to the middle of thaedences have an important overlap, testing all pairs of btixes
segment) are retained, while the others are discarded. nd homographies would unnecessarily increase the precess

Visual keypoints (KPs) are nally detected with alearned ing time. To handle that issue, pairs of boxes are roughly
variant of SIFT, called LIFT [6]. Correspondences are ob+anked from smallest ones to biggest ones, according to the
tained by applying the Lowe's ratio on both directions, thenmean area of boxes. The key idea is to process pairs of boxes
keeping only mutual matches in order to maximize the inlielin that order, while updating two maps of already visited pix
rate within the initial set of putative match8g. els. These maps have the same resolution as the original im-



ages, and each pixel takes the value 1 if a box containing thabciated to the zeniths on the one hand, and between seg-
pixel has already been tested, O otherwise. A pair of boxes iments associated to the picked horizontal VPs on the other
tested if less than 50% of the pixels of each box have alreadyand) are tested. The pairs that satisfy both tangential and
been visited. normal constraints presented in [14] are retained. To pre-
Feature selection The processing of one pair of boxes vent from degenerate cases, one segment in the original im-
rst consists in selecting features it contains (KPs, segisie age can be matched with only one segment in the target im-
VPs associated to the segments), and then in applying age (the closest in the sense of the normal constraint). From
merging procedure on line segments in order to offset ovelithere, the number of target segments involved in a pair that
segmentation induced by LSD. Among segments that shasatisfy the homographyN,.. ) is added to the number
the same VP, those to merge are determined using the sarmakkeypoint inliers, thus de ning a score for the model
kind of tangential and normal constraints as those predente&Scorg(H) = NP... + NS, - Since only the most sig-
in [14]. If segments are suf ciently aligned, they are thusni cant segments have been retained, segment matches are
merged. Finally, only the longest segments associated:to ealikely to be of equal importance. Moreover, adding both KPs
VP are retained, in order to keep the most signi cant onesand segments contribution is justi ed by the fact that ibals

and reduce the combinatorial complexity of matching. us to rely on any kind of features when the other is scarce.

Robust homography estimation Due to the dif culties Final decision Subimages matched during the rst stage
to generate correct segment correspondences, RANSAC hifray not be linked by an homography, either because they do
potheses are only generated from VPs and KPs. At each ifot contain a planar object, or because the match is indorrec
eration, we randomly pick one pair of horizontal VPs, twoThus, to distinguish between real and fake homographies, we

matched pairs of KPs, and the pair of zeniths. These fousnly consider homographies producing more than 10 inliers.

pairs of points thus de ne an homography induced by a verti-

cal plane. Unlike [9], VPs are directly used here as priragiv

to de ne the models. That choice enables us to drasticallg.3. Homographies merging

reduce the combinatorics and the reliance on visual KPs, by

limiting to just two the number of KP matches needed to genAt this point, several local homographies can identify the

erate an homography model. same vertical plane (see Fig. 1. Row 3). We thus apply a
To determine the number of RANSAC iterations, we usemerging step, which consists, for each homography, in test-

a customized version of the adaptive algorithm described iing the inliers of other homographies. If more than 50% of

[1] (Section 4.7.1). Givelmtt‘)‘t",fl’I the total number of possible the KP inliers of an homography A are also inliers of an

pairs of horizontal VPs, the probability to pick the corrpatr  homography B, and if the same performance is achieved with

at any iteration isvh,, = 1=N,"" . GivenN ", the number the segment inliers, then A and B are merged.

of putative pairs of KPs, the probability to pick a correcirpa

isw, = NP =NP., whereNP . . is the number of

point inliers in the current iteration. The numbige, of 4. EPIPOLAR GEOMETRY ESTIMATION

iterations required to ensure, with a probabifitythat at least

one set of primitives is free from outliers is thus given bg th a5 the consensus set of homographies contain pairs of seg-

formula: log(l p) ments, we now use them to improve epipolar geometry es-

00l Wreg WD) (1) timation. The main idea, inspired by [8], is to add segment

VP -Tp intersections to the set of putative KP matclsgs and then

At each iterationNj, is updated based on the current valueto give the new set of matches as input to a state-of-the-art

of wy, and the algorithm stops if the current iteration is greateepipolar geometry estimation algorithm, called ORSA [23].

Niter =

thanNiger - . In our method, segments are rst converted into lines
Note that when only one Iype of features is usHder  in both images. Then, for each consensus set, intersections
is computed asNier = % If we assume a con- between vertical lines (those generated from segments asso

guration with 2 horizontal VPs per image, 40% of point in- ciated with the zenith) and horizontal ones (those gengrate
liers, and 1% of segment inliers (hon-matched segments), ofrom segments associated with the horizontal VP) are com-
method requires 113 iterations, while the 4-point alganith puted. Since several segments can generate approxirgativel
requires 178 iterations, and the 4-segment method requirése same line (due to the merging step), and since near-
4:6 1 iterations. If the considered box pair is not correct,identical duplicate matches can disrupt the epipolar gégme
the gain in performance between our method and the 4-poimstimation algorithm, we have decided to divide both im-
algorithm is much more important. ages according to a regular grid, and to keep at most one

Model validation (RANSAC) Validation is based on KPs intersection point per square of the grid. Finally, these ne
and segments. KP inliers are determined in the classic waintersection point matches are added to the initial set of KP
whereas all possible pairs of segments (between segments asatchesSy.



Avg. nb of inliers | Avg. inlier rate (%) Our method has the highest number of inliers and the best

indus. | urban | indus. urban inlier rate, which could substantially improve the qualitfy
SIFT | 198.6 | 102.8 | 30.02 52.3 further reconstruction or pose computation steps. Figu8-il
LIFT | 207.4| 100.3 | 42.24 58.4 trates the higher number of inliers obtained with our method
Ours | 260.7 | 126.0 | 45.84 62.44 In addition, it is worth noting that there are 6 pairs of indus

) trial images on which ORSA fails at estimating a model based
Table 1. Average performance on test datasets, in terms odp, classical SIFT correspondences.

both number of inliers and inlier rate.

5. RESULTS AND CONCLUSION

Experiments have been conducted on two datasets. The rs
one consists of 46 pairs of images taken in an electricitytpla
and the second one of 14 pairs of urban images extracted froi
[24]. For each pair, the ground truth consists of approxatyat

20 pairs of points that have been placed by hand. These points ) . . .
have been selected with the aim of covering the images 39 3. Example of test images on which ORSA inliers (in

widely as possible, while ensuring an homogeneous distr9'€€Mn) &ré more numerous among our matches (right) rather
bution. Industrial images have a resolution of 128920 than among LIFT ones (left).
pixels, whereas urban ones are 6420. It must be noted
that [9] fails to detect reliable segment correspondenges i Fig. 1 shows the ability of our method to detect physi-
the considered examples. cal vertical planes (Row 4), while a classical multi-RANSAC

In the following, our method is compared to the standard’@sed on keypoint matches (Row 5) can merge points from
method composed of two steps (i) extraction and matching different planes (see green and orange inliers), or nceili
keypoints on the whole image by applying the Lowe's ratio onPUt of any physical plane (see red and green dots). Fig. 4
both directions then keeping only mutual matches (i) compuShows other examples of planes detected by our method (con-
tation of the epipolar geometry from this set of matched soin Vex hulls of point and segment inliers, after homographies
using ORSA. SIFT and LIFT are used in our comparison. Esterging step), in both industrial and urban environments.
timated epipolar geometries are nally compared in terms of
inliers (numbers and rates), and precision (error w.r.tuge

truth).
Errors w.r.t. ground truth
50 N SiFT |
I uFT
40 | Jours | |

Pixels

0
RMSE (indus.) Max Err. (indus.) RMSE (urban) Max Err. (urban)

Fig. 2. Average errors on both industrial and urban dataset:
(referred asndus.andurban), w.r.t. ground truth.

The precision of estimated fundamental matrices is as-
sessed in Fig. 2. For each image pair, the difference betwedtid. 4. Convex hulls of homographies inliers (points and seg-
ground truth points and estimated epipolar lines have beefents), after merging step, on two pairs of test images (one
measured through RMSE and maximum error. These criterigolor per homography).
have then been averaged over the datasets. In average, our
method presents the highest precision, whichever errt@a-cri These experiments demonstrate that our method can im-
rion is used. prove correspondence geometry estimation in complex mul-
Table 1 presents the quality of estimated models in term8planar environments, even in the absence of rich visual co
of inliers (here again, results are averaged over the daj)ase tent.
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