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Motivation
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Arcs and segments decomposition

Arcs and segments are the most appearing primitives in images
> Detection of shapes

» medical imaging, technical images, manual drawings
» Automatic character recognition

» sketch, scanned documents
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» sketch, scanned documents
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» Adaptive tangential cover [Ngo16]

» Dominant point detection [Ngo15]

» Tangent space representation [Nguyenlla]
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Tangential Cover
00000000

Discrete line and segment

Definition

A discrete line D(a, b, i1, w) is the set of integer points (x,y) verifying
w<ax—by < p+wwherea, b, u, w € Zand gcd(a, b) = 1.
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Discrete line and segment

Definition

A discrete segment is a finite set Sy of integer points bounded by the
discrete line D(a, b, y1, w).
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Discrete line and segment

Definition

A discrete segment Sy is optimal if its vertical (or horizontal) distance
is equal to the vertical (or horizontal) thickness of its convex hull.

> Vertlical distance
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Blurred segment

Definition

A sequence integer points S is a blurred segment of width v if its
optimal bounding discrete segment D(a, b, 1, w) has the vertical or
horizontal distance less than or equal to v.
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Blurred segment

Definition
A blurred segment of witdth v BS(i,j,v) is maximal, and noted
MBS(i,j,v), iff =BS(i,j + 1,v) and —-BS(i — 1,j,v).
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Maximal blurred segment decomposition

Definition

For any discrete curve C, its decomposition into maximal blurred
segments of witdth v is called a width v tangential cover of C.
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Maximal blurred segment decomposition

Definition

For any discrete curve C, its decomposition into maximal blurred
segments of witdth v is called a width v tangential cover of C.

Tangential cover of different widths: Adaptive Tangential Cover
» appropriated widths based on a local noise estimation
» meaningful thickness detection [Kerautret12]

» parameter-free computation
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Construction of adaptive tangential cover

Principes [Ngo16] 1

» Input:

» A discrete curve C of n points

» Vector of meaningful thickness 7 associated to each point of C
» Output:

» An ATC of C associated to the meaningful thickness vector n
» The method for computing ATC is divided into two steps:

» Labeling the points from the meaningful thickness values

» Maximum meaningful thickness of MBS passing the point

> Building the ATC with MBS of widths from the obtained labels
» MBS of width being the label of at least one point in the MBS
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Examples of Adaptive Tangential Cover
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Examples of Adaptive Tangential Cover
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Dominant point

Definition

A dominant point (corner point) on a curve is a point of local maximum
curvature.
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Dominant point detection

Proposition [Nguyenl1b]

Dominant points of the curve is located in the common zones of suc-
cessive maximal blurred segments.

MBS(0,9,1.4):

IMBS(4,10,1.4)! !
' MBS(6,15,1.4)
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Dominant point detection

Proposition [Ngo15]

Dominant point is detected as the point with minimum angle measure
estimated with extremities of MBS composing the common zone.
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Dominant point detection

Proposition [Ngo15]

Dominant point is detected as the point with minimum angle measure
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Dominant point detection

Proposition [Ngo15]

Dominant point is detected as the point with minimum angle measure
estimated with extremities of MBS composing the common zone.

: angle=2.802 Dominant point
. angle=2.733 FEo

: angle=2.653
: angle=2.717

S,V

MBS(0,9,1.4)1 | b
MBS (4,10,1.4).

; MBS(6,15,1.4)
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Dominant point detection

PR
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Dominant point detection results
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Dominant point detection results
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Tangent Space
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Tangent space representation

,

Let P = {P;}!" , be a polygon, [; =| PiPi;1 | and oy = Z(P;_1P;, PiPi11)

—
s.t. a; > 0if Pi1q is on the right side of P;_1P; and «; < 0 otherwise.
A tangent space representation T(P) of P is a step function which is
constituted of segments T;pT(i11y1 and T ;1)1 T(iy1)2 for 0 < i < m with
> Tox = (0,0),
> Th = (T(,-_l)z.x +1i_q, T(i—l)z']/) forl <i<m,
> Tp = (Th.x, Tiny+ o), 1<i<(m-1).
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P, P, P, P, P, Ps
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Tangent space representation

Proposition [Nguyenlla] .

Let P = {Pl}lm:() be a pOlngH, li =| PiPi+1 |, o = A(Pi—lpiypipi-&-l) s.t.
a; < a <  for 0 <i < n, T(P) the tangent space representation of P
and T(P) constitutes of segments T T (i11y1, T(i+1)1T(i+1)2 for 0 <i <m,
M = {M;}!";! the midpoint set of {ToT(i11)1}/,'- P is a polygon
whose vertices are on a real arc only if M; belongs to a small width strip
bounded by two real parallel lines, namely quasi collinear points.

Ts2 Ts
ay :
Ts; T4
5 )y
2 T3 T3
T
2 12 Ta
g a
T, T
Po Ps P2 Ps Py Ps

Length segment
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Tangent space representation

In the tangent space representation, the midpoints can be classified as
> isolated point if either (| M;.y — M;_1.y |> «) or

(| Mi.y — Miy1.y |> o) = a junction between two primitives
> fully isolated point if (| M;.y — Mi_1.y |> o) and

(| Mi.y — Mit1.y |> o) = a segment

> arc point otherwise = an arc chord

Angle variation

Po Py Py P3 PyPy PsP; Py PoPig Pyy (2% P13

Length segment
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Algorithm of arcs and segments decomposition

Adaptative tangential
cover

|

‘ Dominant point

>

Input curve —»‘

detection

|

‘ Tangent space

representation

|

Curve of midpoints
analysis

Result <— ‘

length
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Algorithm of arcs and segments decomposition

Input: C = (Ci)o<i<n—1 discrete curve of n points
v, a test of collinear and admissible angle in tangent space
Output: ARCs and SEGs sets of arcs and segments of C

Begin
ARCs + (,SEGs « 0
Detect the dominant point D from ATC of C
Transform D into the tangent space T(D)
Construct the midpoint curve {M; ;”:_01 of T(D)
fori< 1tom —2do
Cy,C,, the part of C corresponds to M;
if (| M.y —M;_1.y |> a)&(| My — M1y |> a) then
SEGs «+ SEGs U {find a segment from C;,C,}
MBS, + 0
else

end if
end for
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Algorithm of arcs and segments decomposition

Input: C = (Ci)o<i<n—1 discrete curve of n points
v, a test of collinear and admissible angle in tangent space
Output: ARCs and SEGs sets of arcs and segments of C

Begin

fori< ltom—2do
Cy,C,, the part of C corresponds to M;

if MBS, < MBS U {M;} is a MBS of width v then
MBS, < MBS, U {M;}
pARC + pARC U {C},C,, }
else
ARCs < ARCs U {find an arc from pARC}
pARC « 0
end if
end for
End
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Experimental results
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Online demonstration

An online demonstration based on the DGtal and ImaGene library at

http://ipol-geometry.loria.fr/~phuc/ipol_demo/ATC_ArcSegDecom_IPOLDemo

Arcs and Segments Decomposition of Digital Contours: Online Demonstration
article || demo || archive

Please cite the reference article if you publish results obtained with this online demo.

This demonstration applies the Adaptive Tangential Cover algorithm for arcs and segments decomposition of noisy digital curves.
Select Data

Click on an image to use it as the algorithm input.

®We s ¥ ¢

circlesNoise symbolNoise pentagonNoise polygoneNoise  squarelmageNoise
image credits
Upload Data
Upload your own image files to use as the algorithm input.

input image Choose file No file chosen  upload|

Images larger than 16777216 pixels will be resized. Upload size is limited to 16MB per image file and 10MB for the whole upload set
TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded will be publicly archived unless you switch to private mode on the result page.
Only upload suitable images. See the copyright and legal conditions for details.
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Conclusion

» Curve decomposition into arcs and segments with
» Adaptive tangential cover

» Dominant point detection

» Tangent space representation

» Perspectives
» Extension to other primitives

» Reduction of the number of parameters

» Integration of topology into the decomposition
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Thank you for your attention!



	Motivation
	Adaptive tangential cover
	Dominant point detection
	Tangent space representation
	Decomposition algorithm
	Conclusion & perspectives

