Motivation

langential Cove 00000000 Dominant Poin

Tangent Spa

Algorith 0000 Conclusion 000

A discrete approach for decomposing noisy digital contours into arcs and segments

Phuc Ngo Hayat Nasser Isabelle Debled-Rennesson Bertrand Kerautret

DGMM4CV Workshop 24 November 2016

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
•0					

Motivation

Arcs and segments are the most appearing primitives in images

- Detection of shapes
 - medical imaging, technical images, manual drawings
- Automatic character recognition
 - sketch, scanned documents

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
•0					

Motivation

Arcs and segments are the most appearing primitives in images

- Detection of shapes
 - medical imaging, technical images, manual drawings
- Automatic character recognition
 - sketch, scanned documents

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
•0					

Motivation

Arcs and segments are the most appearing primitives in images

- Detection of shapes
 - medical imaging, technical images, manual drawings
- Automatic character recognition
 - sketch, scanned documents

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
•0					

Motivation

Arcs and segments are the most appearing primitives in images

- Detection of shapes
 - medical imaging, technical images, manual drawings
- Automatic character recognition
 - sketch, scanned documents

Tools

- Adaptive tangential cover [Ngo16]
- Dominant point detection [Ngo15]
- Tangent space representation [Nguyen11a]

Motivation ⊙●	Tangential Cover	Dominant Point	Tangent Space	Algorithm 0000	Conclusion 000

1 MOTIVATION

Jverview

- **2** Adaptive tangential cover
- **3** DOMINANT POINT DETECTION
- **4** TANGENT SPACE REPRESENTATION
- **5** DECOMPOSITION ALGORITHM
- 6 CONCLUSION & PERSPECTIVES

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00		00000	000	0000	000

Overview

1 MOTIVATION

- **2** Adaptive tangential cover
- **3** DOMINANT POINT DETECTION
- **4** TANGENT SPACE REPRESENTATION
- **5** DECOMPOSITION ALGORITHM
- 6 CONCLUSION & PERSPECTIVES

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	●0000000	00000	000	0000	000

Discrete line and segment

Definition

A **discrete line** $\mathcal{D}(a, b, \mu, \omega)$ is the set of integer points (x, y) verifying $\mu \leq ax - by < \mu + \omega$ where $a, b, \mu, \omega \in \mathsf{Z}$ and gcd(a, b) = 1.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	○●○○○○○○	00000	000	0000	000

Discrete line and segment

Definition

A **discrete segment** is a finite set S_f of integer points bounded by the discrete line $\mathcal{D}(a, b, \mu, \omega)$.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	00●00000	00000	000	0000	000

Discrete line and segment

Definition

A discrete segment S_f is **optimal** if its vertical (or horizontal) distance is equal to the vertical (or horizontal) thickness of its convex hull.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	000●0000	00000		0000	000
Blurrec	l segment				

Definition

A sequence integer points S_f is a **blurred segment of width** ν if its optimal bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ has the vertical or horizontal distance less than or equal to ν .

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	0000●000	00000	000	0000	000
Blurred	segment				

Definition

A blurred segment of witdth $\nu BS(i,j,\nu)$ is **maximal**, and noted $MBS(i,j,\nu)$, iff $\neg BS(i,j+1,\nu)$ and $\neg BS(i-1,j,\nu)$.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	00000000				

Definition

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	00000000				

Definition

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	00000000				

Definition

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	00000000				

Definition

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	00000000				

Definition

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	00000000				

Definition

For any discrete curve *C*, its decomposition into maximal blurred segments of witdth ν is called a **width** ν **tangential cover** of *C*.

Solution

Tangential cover of different widths: Adaptive Tangential Cover

- appropriated widths based on a local noise estimation
 - meaningful thickness detection [Kerautret12]
- parameter-free computation

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	00000000	00000	000	0000	000

Construction of adaptive tangential cover

Principes [Ngo16]

- ► Input:
 - A discrete curve *C* of *n* points
 - Vector of meaningful thickness η associated to each point of C
- Output:
 - An ATC of C associated to the meaningful thickness vector η
- The method for computing ATC is divided into two steps:
 - Labeling the points from the meaningful thickness values
 - Maximum meaningful thickness of MBS passing the point
 - ▶ Building the ATC with MBS of widths from the obtained labels
 - MBS of width being the label of at least one point in the MBS

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	0000000				

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	0000000				

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	0000000				

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	0000000				

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
	0000000				

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	0000000●	00000	000	0000	000

Motivation 00	Tangential Cover 00000000	Dominant Point	Tangent Space	Algorithm 0000	Conclusion 000

Overview

1 MOTIVATION

- **2** Adaptive tangential cover
- **3** DOMINANT POINT DETECTION
- **4** TANGENT SPACE REPRESENTATION
- **5** DECOMPOSITION ALGORITHM
- 6 CONCLUSION & PERSPECTIVES

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	0000000	•0000	000	0000	000
Domin	ant point				

Definition

A **dominant point** (corner point) on a curve is a point of local maximum curvature.

 Motivation
 Tangential Cover
 Dominant Point
 Tangent Space
 Algorithm
 Conclusion

 00
 00000000
 0000
 0000
 0000
 0000
 0000

Dominant point detection

Proposition [Nguyen11b]

Dominant points of the curve is located in the **common zones** of successive maximal blurred segments.

 Motivation
 Tangential Cover
 Dominant Point
 Tangent Space
 Algorithm
 Conclusion

 00
 00000000
 0000
 0000
 0000
 0000
 0000

Dominant point detection

Proposition [Nguyen11b]

Dominant points of the curve is located in the **common zones** of successive maximal blurred segments.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	0000000	00000	000	0000	000

Proposition [Ngo15]

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	00000000		000	0000	000

Proposition [Ngo15]

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

Proposition [Ngo15]

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

Proposition [Ngo15]

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

Proposition [Ngo15]

Motivation 00	Tangential Cover	Dominant Point	Tangent Space	Algorithm 0000	Conclusion 000

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
		00000			

 Motivation
 Tangential Cover
 Dominant Point
 Tangent Space
 Algorithm
 Conclusion

 00
 0000●
 000
 000
 000
 000
 000

Motivation 00	Tangential Cover	Dominant Point 00000	Tangent Space	Algorithm 0000	Conclusion 000

Overview

1 MOTIVATION

- **2** Adaptive tangential cover
- **3** DOMINANT POINT DETECTION
- **4** TANGENT SPACE REPRESENTATION
- **5** DECOMPOSITION ALGORITHM
- **6** CONCLUSION & PERSPECTIVES

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
			000		

Tangent space representation

Definition

Let $P = \{P_i\}_{i=0}^m$ be a polygon, $l_i = |\overrightarrow{P_iP_{i+1}}|$ and $\alpha_i = \angle(\overrightarrow{P_{i-1}P_i}, \overrightarrow{P_iP_{i+1}})$ s.t. $\alpha_i > 0$ if P_{i+1} is on the right side of $\overrightarrow{P_{i-1}P_i}$ and $\alpha_i < 0$ otherwise. A **tangent space representation** T(P) of P is a step function which is constituted of segments $T_{i2}T_{(i+1)1}$ and $T_{(i+1)1}T_{(i+1)2}$ for $0 \le i < m$ with

►
$$T_{02} = (0, 0),$$

► $T_{i1} = (T_{(i-1)2}.x + l_{i-1}, T_{(i-1)2}.y) \text{ for } 1 \le i \le m$
► $T_{i2} = (T_{i1}.x, T_{i1}.y + \alpha_i), 1 \le i \le (m-1).$

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
			000		

Tangent space representation

Proposition [Nguyen11a]

Let $P = \{P_i\}_{i=0}^m$ be a polygon, $l_i = |\overrightarrow{P_iP_{i+1}}|$, $\alpha_i = \angle(\overrightarrow{P_{i-1}P_i}, \overrightarrow{P_iP_{i+1}})$ s.t. $\alpha_i \leq \alpha \leq \frac{\pi}{4}$ for $0 \leq i < n$, T(P) the tangent space representation of P and T(P) constitutes of segments $T_{i2}T_{(i+1)1}$, $T_{(i+1)1}T_{(i+1)2}$ for $0 \leq i < m$, $M = \{M_i\}_{i=0}^{m-1}$ the midpoint set of $\{T_{i2}T_{(i+1)1}\}_{i=0}^{m-1}$. P is a polygon whose vertices are on a real arc only if M_i belongs to a small width strip bounded by two real parallel lines, namely *quasi collinear* points.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00	00000000	00000	○○●	0000	000

Tangent space representation

In the tangent space representation, the midpoints can be classified as

- isolated point if either (| M_i.y − M_{i−1}.y |> α) or (| M_i.y − M_{i+1}.y |> α) ⇒ a junction between two primitives
- ► **fully isolated point** if $(|M_i.y M_{i-1}.y| > \alpha)$ and $(|M_i.y M_{i+1}.y| > \alpha) \Longrightarrow$ a segment
- ▶ arc point otherwise ⇒ an arc chord

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00		00000	000	0000	000

Overview

1 MOTIVATION

- **2** Adaptive tangential cover
- **3** DOMINANT POINT DETECTION
- **4** TANGENT SPACE REPRESENTATION
- **5** DECOMPOSITION ALGORITHM
- 6 CONCLUSION & PERSPECTIVES

Algorithm of arcs and segments decomposition

Algorithm of arcs and segments decomposition

Input: $C = (C_i)_{0 \le i \le n-1}$ discrete curve of *n* points ν , α test of collinear and admissible angle in tangent space **Output:** *ARCs* and *SEGs* sets of arcs and segments of *C*

Begin

 $ARCs \leftarrow \emptyset, SEGs \leftarrow \emptyset$ Detect the dominant point *D* from ATC of *C* Transform *D* into the tangent space *T*(*D*) Construct the midpoint curve $\{M_i\}_{i=0}^{m-1}$ of *T*(*D*) for $i \leftarrow 1$ to m - 2 do $C_{b_i}C_{e_i}$ the part of *C* corresponds to M_i if $(|M_i.y - M_{i-1}.y| > \alpha) \& (|M_i.y - M_{i+1}.y| > \alpha)$ then $SEGs \leftarrow SEGs \cup \{\text{find a segment from } C_{b_i}C_{e_i}\}$ $MBS_{\nu} \leftarrow \emptyset$ else

end if end for

Input: $C = (C_i)_{0 \le i \le n-1}$ discrete curve of *n* points ν , α test of collinear and admissible angle in tangent space **Output:** *ARCs* and *SEGs* sets of arcs and segments of *C*

Begin

```
. . .
for i \leftarrow 1 to m - 2 do
   C_{h_i}C_{e_i} the part of C corresponds to M_i
   . . .
          if MBS_{\nu} \leftarrow MBS \cup \{M_i\} is a MBS of width \nu then
              MBS_{\nu} \leftarrow MBS_{\nu} \cup \{M_i\}
              pARC \leftarrow pARC \cup \{C_h, C_{e_i}\}
          else
              ARCs \leftarrow ARCs \cup \{\text{find an arc from } pARC\}
              pARC \leftarrow \emptyset
          end if
end for
End
```

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00		00000	000	0000	000

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
				0000	

Motivation 00	Tangential Cover	Dominant Point 00000	Tangent Space 000	Algorithm 0000	Conclusion 000

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00		00000	000	00●0	000

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
				0000	

Online demonstration

An online demonstration based on the DGtal and ImaGene library at

http://ipol-geometry.loria.fr/~phuc/ipol_demo/ATC_ArcSegDecom_IPOLDemo

Arcs and Segments Decomposition of Digital Contours: Online Demonstration

article dem	o archive					
Please cite the re	ference article	if you publish result	s obtained with this online	e demo.		
This demons	tration appli	es the Adaptive	Tangential Cover alg	gorithm for arcs and	I segments decompos	sition of noisy digital curves
Select Dat	а					
Click on an ir	nage to use	it as the algorit	hm input.			
circlesNg			pentagonNoise	polygoneNoise	squareImageNoise	
image credits						
Upload Da	ta					
Upload your	own image	files to use as th	e algorithm input.			
input image	Choose file	No file chosen	⇒ upload			
Images larger than	16777216 pixel	s will be resized. Uploa	d size is limited to 16MB per	image file and 10MB for the	whole upload set .	

TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded will be publicly archived unless you switch to private mode on the result page. Only upload suitable images. See the copyright and legal conditions for details.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion

Overview

1 MOTIVATION

- **2** Adaptive tangential cover
- **3** DOMINANT POINT DETECTION
- **4** TANGENT SPACE REPRESENTATION
- **5** DECOMPOSITION ALGORITHM
- 6 CONCLUSION & PERSPECTIVES

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
00		00000	000	0000	•00
Conclu	ision				

Curve decomposition into arcs and segments with

- Adaptive tangential cover
- Dominant point detection
- Tangent space representation
- Perspectives
 - Extension to other primitives
 - Reduction of the number of parameters
 - Integration of topology into the decomposition

Motivation 00	Tangential Cover	Dominant Point 00000	Tangent Space	Algorithm 0000	Conclusion 000
Referen	nces I				

[Nguyen11a] T-P. Nguyen and I. Debled-Rennesson. Decomposition of a curve into arcs and line segments based on dominant point detection. In SCIA'11, pages 794–805, 2011.

[Nguyen11b] T-P. Nguyen and I. Debled-Rennesson, A discrete geometry approach for dominant point detection. *Pattern Recognition*, vol. 44, no. 1, pages. 32–44, 2011.

[Kerautret12] B. Kerautret, J-O. Lachaud, and M. Said. Meaningful thickness detection on polygonal curve. In *PRAM'12*, pages 372–379, 2012.

[Ngo15] P. Ngo, H. Nasser, and I. Debled-Rennesson. Efficient Dominant Point Detection Based on Discrete Curve Structure In IWCIA'15, vol. 9448 of LNCS, pages 794–805, 2011.

[Ngo16] P. Ngo, H. Nasser, I. Debled-Rennesson, and B. Kerautret. Adaptive tangential cover for noisy digital contours. In DGCI '16, vol. 9647 of LNCS, pages 439–451, 2016.

Motivation	Tangential Cover	Dominant Point	Tangent Space	Algorithm	Conclusion
					000

Thank you for your attention!