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3 Application : Détection de points dominants
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Discrete line and segment

A discrete line D(a, b, µ, ω) is the set of integer points (x, y) verifying
µ ≤ ax− by < µ+ ω where a, b, µ, ω ∈ Z and gcd(a, b) = 1.

Definition
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Discrete line and segment

A discrete segment is a finite set Sf of integer points bounded by the
discrete line D(a, b, µ, ω).

Definition
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Discrete line and segment

A discrete segment Sf is optimal if its vertical (or horizontal) distance
is equal to the vertical (or horizontal) thickness of its convex hull.

Definition
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Blurred segment

A sequence integer points Sf is a blurred segment of width ν if its
optimal bounding discrete segment D(a, b, µ, ω) has the vertical or
horizontal distance less than or equal to ν.

Definition
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Blurred segment

A sequence integer points Sf is a blurred segment of width ν if its
optimal bounding discrete segment D(a, b, µ, ω) has the vertical or
horizontal distance less than or equal to ν.

Definition

6 / 37



Motivation Notions ATC Points dominants Courbe décomposition Conclusion

Blurred segment

A blurred segment of witdth ν BS(i, j, ν) is maximal, and noted
MBS(i, j, ν), iff ¬BS(i, j + 1, ν) and ¬BS(i− 1, j, ν).

Definition
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Maximal blurred segment decomposition

For any discrete curve C, its decomposition into maximal seg-
ments is called a tangential cover of C.

Definition
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Maximal blurred segment decomposition

For any discrete curve C, its decomposition into maximal blurred
segments of witdth ν is called a width ν tangential cover of C.

Definition
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Maximal blurred segment decomposition

I Input: A discrete curve C and a width ν
I Output: The decomposition MBSν(C) of C
I Method: Tangential cover is computed by incrementally adding

(resp. removing) a pixel to (resp. from) the considering MBS

Algorithm

0

10

5

15

=⇒ Algorithm of decomposition is in quasi-linear time [1]
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Maximal blurred segment decomposition

I Input: A discrete curve C and a width ν
I Output: The decomposition MBSν(C) of C
I Method: Tangential cover is computed by incrementally adding

(resp. removing) a pixel to (resp. from) the considering MBS

Algorithm

0

10

15

5

=⇒ Algorithm of decomposition is in quasi-linear time [1]

9 / 37



Motivation Notions ATC Points dominants Courbe décomposition Conclusion
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Maximal blurred segment decomposition

Let MBSν(C) = {MBS(B0,E0, ν), . . . , MBS(Bm−1,Em−1, ν)} be the maxi-
mal blurred segment decomposition of witdth ν of C, we have:

B0 < B1 < ... < Bm−1 and E0 < E1 < ... < Em−1

Property
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Maximal blurred segment decomposition

I Width value ν is manually adjusted to deal with noise
I Mono-width ν is not adapted to local noise along the contour

Issues
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Maximal blurred segment decomposition

I Width value ν is manually adjusted to deal with noise
I Mono-width ν is not adapted to local noise along the contour

Issues

11 / 37



Motivation Notions ATC Points dominants Courbe décomposition Conclusion
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Maximal blurred segment decomposition

I Width value ν is manually adjusted to deal with noise
I Mono-width ν is not adapted to local noise along the contour

Issues

Tangential cover of different widths: Adaptive Tangential Cover
I appropriated widths based on a local noise estimation

I meaningful thickness detection
I parameter-free computation

Solution
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Meaningful thickness detection

I Based on the asymtotic properties of the discrete length of
maximal segments of perfect shape discretization

I Extend these properties with MBS at each point of the contour
I Compare to determine significatif width of MBS of points

I X simple connected shape in R2 with the boundary δX with a
piecewise boundary C3

I U an open connected neighborhood of p ∈ δX,
I (Lh

j ) the digital lengths of the maximal segments covering p
along the boundary of Digh(X), where h is the grid size
I if U is strictly convex/concave, then Ω(1/h1/3) ≤ (Lh

j ) ≤ O(1/h1/2)

I if U has null curvature everywhere, then Ω(1/h) ≤ (Lh
j ) ≤ O(1/h)

Theorem
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Meaningful thickness detection
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maximal segments of perfect shape discretization
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Meaningful thickness detection

I Based on the asymtotic properties of the discrete length of
maximal segments of perfect shape discretization

I Extend these properties with MBS at each point of the contour
I Compare to determine significatif width of MBS of points

1

10

100

10

se
g
m

e
n
t 

le
n
g
th

scale t (thickness)

12 / 37



Motivation Notions ATC Points dominants Courbe décomposition Conclusion

Meaningful thickness detection
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Adaptive tangential cover

Let MBSi = MBS(Bi,Ei, .),MBSj = MBS(Bj,Ej, .) be two MBS. We say
MBSj is included in MBSi, note as MBSj ⊆ MBSi, if Bi ≤ Bj and Ei ≥ Ej.

Definition
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Adaptive tangential cover

Let MBS(C) be a set of MBS of a discrete curve C. We say MBSi ∈
MBS(C) is largest if for all MBSj ∈MBS(C) with i 6= j, MBSj * MBSi.

Definition
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Adaptive tangential cover

An adaptive tangential cover (ATC) associated to the meaningful
thickness vector η of C is defined as the set of the largest MBS of{

MBSj = MBS(Bj,Ej, vk) ∈MBS(C) | vk = max{ηt | t ∈ [[Bj,Ej]]}
}

.

Definition
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Construction of adaptive tangential cover

I Input:
I A discrete curve C of n points
I Vector of meaningful thickness ν associated to each point of C

I Output:
I An ATC of C associated to the meaningful thickness vector ν

I The method for computing ATC is divided into two steps:
I Labeling the points from the meaningful thickness values

I Maximum meaningful thickness of MBS passing the point
I Building the ATC with MBS of widths from the obtained labels

I MBS of width being the label of at least one point in the MBS

Principes
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Construction of adaptive tangential cover

I Input curve

I Meaningful thickness vector ν
I Tangent covers of . . .
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Construction of adaptive tangential cover

I Step 1: Labeling points from meaningful thickness values
I α max and γ label and γi = νi at initialization

I Step 2: Determining the MBS of the ATC
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Algorithm of adaptive tangential cover construction

Input: C = (Ci)0≤i≤n−1 discrete curve of n points
η = (ηi)0≤i≤n−1 vector of MT associated to C
ν = {νk | νk ∈ η} ordered set of MT value of η
MBS(C) = {MBSνk (C)}m−1

k=0 sets of MBS of C for νk ∈ ν
Output: ATC(C) adaptive tangential cover of C

Begin
ATC(C) = ∅; γi = ηi for i ∈ [[0,n− 1]]
for νk ∈ ν do

for MBS(Bi,Ei, νk) ∈MBSνk (C) do
α = max{ηi | i ∈ [[Bi,Ei]]}
if α = νk then
γi = νk for i ∈ [[Bi,Ei]]

end if
end for

end for
. . .
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Algorithm of adaptive tangential cover construction

Input: C = (Ci)0≤i≤n−1 discrete curve of n points
η = (ηi)0≤i≤n−1 vector of MT associated to C
ν = {νk | νk ∈ η} ordered set of MT value of η
MBS(C) = {MBSνk (C)}m−1

k=0 sets of MBS of C for νk ∈ ν
Output: ATC(C) adaptive tangential cover of C

Begin
. . .
for νk ∈ ν do

for MBS(Bi,Ei, νk) ∈MBSνk (C) do
α = max{ηi | i ∈ [[Bi,Ei]]}
if ∃γi, for i ∈ [[Bi,Ei]], such that γi = νk then

ATC(C) = ATC(C) ∪ {MBS(Bi,Ei, νk)}
end if

end for
end for
End
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Examples of Adaptive Tangential Cover
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Online demonstration

An online demonstration based on the DGtal and ImaGene library at
http://ipol-geometry.loria.fr/˜kerautre/ipol_demo/ATC_IPOLDemo

22 / 37
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Dominant point

A dominant point (corner point) on a curve is a point of local maximum
curvature.

Definition

0

15

5
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Dominant point detection [2]

Dominant points of the curve is located in the common zones of suc-
cessive maximal blurred segments.

Proposition

0
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Dominant point detection [2]

Dominant point is detected as the point with minimum angle measure
estimated with extremities of the MBS composing the common zone.

Strategy
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Algorithm of dominant point detection

Input: C discrete curve of n points
Output: D set of dominant points

Begin
Build ATC = {MBS(Bi,Ei, .)}m−1

i=0
n = |C|; m = |ATC|
q = 0; p = 1; D = ∅
while p < m do

while Eq > Bp do
p + +

end while
D = D ∪min{Angle(CBq ,Ci,CEp−1) | i ∈ [[Bp−1,Eq]]}
q = p− 1

end while
End

25 / 37
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Experimental results

         Mean tangential          
         cover [6]

         Adaptive tangential     
         cover 
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Experimental results

         Mean tangential          
         cover [6]

         Adaptive tangential     
         cover 

26 / 37



Motivation Notions ATC Points dominants Courbe décomposition Conclusion
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Arcs and segments decomposition

Arcs and segments are the most appearing primitives in images
I Detection of shapes

I medical imaging, technical images, manual drawings
I Automatic character recognition

I sketch, scanned documents

Motivation
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Arcs and segments decomposition

Arcs and segments are the most appearing primitives in images
I Detection of shapes

I medical imaging, technical images, manual drawings
I Automatic character recognition

I sketch, scanned documents

Motivation

I Adaptive tangent cover
I Dominant point detection
I Tangent space representation

Tools
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Tangent space representation

Let P = {Pi}m
i=0 be a polygon, li =|

−−−−→
PiPi+1 | and αi = ∠(

−−−−→
Pi−1Pi,

−−−−→
PiPi+1)

s.t. αi > 0 if Pi+1 is on the right side of
−−−−→
Pi−1Pi and αi < 0 otherwise.

A tangent space representation T(P) of P is a step function which is
constituted of segments Ti2T(i+1)1 and T(i+1)1T(i+1)2 for 0 ≤ i < m with

I T02 = (0, 0),
I Ti1 = (T(i−1)2.x + li−1,T(i−1)2.y) for 1 ≤ i ≤ m,
I Ti2 = (Ti1.x,Ti1.y + αi), 1 ≤ i ≤ (m− 1).

Definition
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Let P = {Pi}m
i=0 be a polygon, li =|

−−−−→
PiPi+1 |, αi = ∠(

−−−−→
Pi−1Pi,

−−−−→
PiPi+1) s.t.

αi 6 α 6 π
4 for 0 ≤ i < n, T(P) the tangent space representation of P

and T(P) constitutes of segments Ti2T(i+1)1, T(i+1)1T(i+1)2 for 0 ≤ i < m,
M = {Mi}m−1

i=0 the midpoint set of {Ti2T(i+1)1}m−1
i=0 .

P is a polygon whose vertices are on a real arc only if M is a set of quasi
collinear points.

Proposition
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Tangent space representation

In the tangent space representation, the midpoints can be classified as

I isolated point if either (|Mi.y−Mi−1.y |> α) or
(|Mi.y−Mi+1.y |> α) =⇒ a jonction between two primitives

I fully isolated point if (|Mi.y−Mi−1.y |> α) and
(|Mi.y−Mi+1.y |> α) =⇒ a segment

I arc point otherwise =⇒ an arc chord
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Algorithm of arcs and segments decomposition

Input: C = (Ci)0≤i≤n−1 discrete curve of n points
ν, α test of collinear and admissible angle in tangent space

Output: ARCs and SEGs sets of arcs and segments of C

Begin
ARCs← ∅,SEGs← ∅
Detect the dominant point D of C
Transform D into the tangent space T(D)
Construct the midpoint curve {Mi}m−1

i=0 of T(D)
for i← 1 to m− 2 do

Cbi Cei the part of C corresponds to Mi
if (|Mi.y−Mi−1.y |> α)&(|Mi.y−Mi+1.y |> α) then

SEGs← SEGs ∪ {find a segment from Cbi Cei}
MBSν ← ∅

else
. . .

end if
end for
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Algorithm of arcs and segments decomposition

Input: C = (Ci)0≤i≤n−1 discrete curve of n points
ν, α test of collinear and admissible angle in tangent space

Output: ARCs and SEGs sets of arcs and segments of C

Begin
. . .
for i← 1 to m− 2 do

Cbi Cei the part of C corresponds to Mi
. . .

if MBSν ←MBS ∪ {Mi} is a MBS of width ν then
MBSν ←MBSν ∪ {Mi}
pARC← pARC ∪ {Cbi Cei}

else
ARCs← ARCs ∪ {find an arc from pARC}
pARC← ∅

end if
end for
End
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Algorithm of arcs and segments decomposition

Input curve
Adaptative tangential

cover 

Dominant point 
detection

Tangent space 
representation

Curve of midpoints 
analysisResult

angle

length

+

+

angle

length
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Experimental results

. . .
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Plan de la présentation

1 Notions de base

2 Couverture tangentielle adaptative

3 Application : Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments

5 Conclusion & perspectives
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Conclusion

Contributions
I Algorithm based on discrete structure of the curve
I Algorithm without heuristic but a simple measure of angle

Perspectives
I Parameter free method
I Adaptive-thickness
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Thank you for your attention!
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References

A. Faure, L. Buzer, and F. Feschet, “Tangential cover for thick
digital curves,” Pattern Recognition, vol. 42, no. 10, pp. 2279–2287,
2009.

T. P. Nguyen and I. Debled-Rennesson, “A discrete geometry
approach for dominant point detection,” Pattern Recognition,
vol. 44, no. 1, pp. 32–44, 2011.

A. Masood, “Dominant point detection by reverse polygonization
of digital curves,” Image Vision Comput., vol. 26, no. 5, pp. 702–715,
2008.

M. Marji and P. Siy, “Polygonal representation of digital planar
curves through dominant point detection - a nonparametric
algorithm,” Pattern Recognition, vol. 37, no. 11, pp. 2113–2130,
2004.

C. Teh and R. Chin, “On the detection of dominant points on the
digital curves,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 2,
pp. 859–872, 1989. 37 / 37


	Notions de base
	Couverture tangentielle adaptative 
	Application : Détection de points dominants
	Application : Décomposition de courbe en arcs et segments
	Conclusion & perspectives

