Structure discrète des courbes bruités

Couverture tantentielle adaptative et applications en analyse d'image

Phuc Ngo

Collaboration avec:

Hayat Nasser
UNIVERSITÉ
DE LORRAINE
Isabelle Debled
Bertrand Kerautret

19 Mai 2016

Motivation

- Estimateurs géométriques
- Description de formes
- Approximation polygonale
- Extraction de caractéristiques

Motivation

- Estimateurs géométriques
- Description de formes
- Approximation polygonale
- Extraction de caractéristiques

Motivation

- Estimateurs géométriques
- Description de formes
- Approximation polygonale
- Extraction de caractéristiques

Motivation

- Estimateurs géométriques
- Description de formes
- Approximation polygonale
- Extraction de caractéristiques

\Longrightarrow Présence de bruit dans l'image par l'accquisition !

Plan de la présentation

(1) Notions de base
(2) Couverture tangentielle adaptative
(3) Application : Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments
(5) Conclusion \& perspectives

Plan de la présentation

(1) Notions de base
(2) Couverture tangentielle adaptative
(3) Application: Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments
(5) Conclusion \& perspectives

Discrete line and segment

Definition

A discrete line $\mathcal{D}(a, b, \mu, \omega)$ is the set of integer points (x, y) verifying $\mu \leq a x-b y<\mu+\omega$ where $a, b, \mu, \omega \in \mathbf{Z}$ and $\operatorname{gcd}(a, b)=1$.

Discrete line and segment

Definition

A discrete segment is a finite set \mathcal{S}_{f} of integer points bounded by the discrete line $\mathcal{D}(a, b, \mu, \omega)$.

Discrete line and segment

Definition

A discrete segment \mathcal{S}_{f} is optimal if its vertical (or horizontal) distance is equal to the vertical (or horizontal) thickness of its convex hull.

Blurred segment

Definition

A sequence integer points \mathcal{S}_{f} is a blurred segment of width ν if its optimal bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ has the vertical or horizontal distance less than or equal to ν.

Blurred segment

Definition

A sequence integer points \mathcal{S}_{f} is a blurred segment of width ν if its optimal bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ has the vertical or horizontal distance less than or equal to ν.

Blurred segment

Definition

A blurred segment of witdth $\nu B S(i, j, \nu)$ is maximal, and noted $\operatorname{MBS}(i, j, \nu)$, iff $\neg B S(i, j+1, \nu)$ and $\neg B S(i-1, j, \nu)$.

Plan de la présentation

(1) Notions de base
(2) Couverture tangentielle adaptative
(3) Application: Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments
(5) Conclusion \& perspectives

Maximal blurred segment decomposition

Definition
For any discrete curve C, its decomposition into maximal segments is called a tangential cover of C.

Maximal blurred segment decomposition

Definition

For any discrete curve C, its decomposition into maximal segments is called a tangential cover of C.

Maximal blurred segment decomposition

Definition

For any discrete curve C, its decomposition into maximal blurred segments of witdth ν is called a width ν tangential cover of C.

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $M B S_{\nu}(C)$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $\mathrm{MBS}_{\nu}(\mathrm{C})$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $\mathrm{MBS}_{\nu}(\mathrm{C})$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $\mathrm{MBS}_{\nu}(\mathrm{C})$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $\mathrm{MBS}_{\nu}(\mathrm{C})$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $M B S_{\nu}(C)$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Algorithm

- Input: A discrete curve C and a width ν
- Output: The decomposition $\mathrm{MBS}_{\nu}(\mathrm{C})$ of C
- Method: Tangential cover is computed by incrementally adding (resp. removing) a pixel to (resp. from) the considering MBS

Maximal blurred segment decomposition

Property

Let $\operatorname{MBS}_{\nu}(C)=\left\{\operatorname{MBS}\left(B_{0}, E_{0}, \nu\right), \ldots, \operatorname{MBS}\left(B_{m-1}, E_{m-1}, \nu\right)\right\}$ be the maximal blurred segment decomposition of witdth ν of C, we have:

$$
B_{0}<B_{1}<\ldots<B_{m-1} \text { and } E_{0}<E_{1}<\ldots<E_{m-1}
$$

Maximal blurred segment decomposition

Issues

- Width value ν is manually adjusted to deal with noise
- Mono-width ν is not adapted to local noise along the contour

Maximal blurred segment decomposition

Issues

- Width value ν is manually adjusted to deal with noise
- Mono-width ν is not adapted to local noise along the contour

Maximal blurred segment decomposition

Issues

- Width value ν is manually adjusted to deal with noise
- Mono-width ν is not adapted to local noise along the contour

Maximal blurred segment decomposition

Issues

- Width value ν is manually adjusted to deal with noise
- Mono-width ν is not adapted to local noise along the contour

Maximal blurred segment decomposition

Issues

- Width value ν is manually adjusted to deal with noise
- Mono-width ν is not adapted to local noise along the contour

Maximal blurred segment decomposition

Issues

- Width value ν is manually adjusted to deal with noise
- Mono-width ν is not adapted to local noise along the contour

Solution

Tangential cover of different widths: Adaptive Tangential Cover

- appropriated widths based on a local noise estimation
- meaningful thickness detection
- parameter-free computation

Meaningful thickness detection

- Based on the asymtotic properties of the discrete length of maximal segments of perfect shape discretization
- Extend these properties with MBS at each point of the contour
- Compare to determine significatif width of MBS of points

Theorem

- X simple connected shape in R^{2} with the boundary δX with a piecewise boundary C^{3}
- U an open connected neighborhood of $p \in \delta X$,
- $\left(L_{j}^{h}\right)$ the digital lengths of the maximal segments covering p along the boundary of $\operatorname{Dig}_{h}(X)$, where h is the grid size
- if U is strictly convex/concave, then $\Omega\left(1 / h^{1 / 3}\right) \leq\left(L_{j}^{h}\right) \leq O\left(1 / h^{1 / 2}\right)$
- if U has null curvature everywhere, then $\Omega(1 / h) \leq\left(L_{j}^{h}\right) \leq O(1 / h)$

Meaningful thickness detection

- Based on the asymtotic properties of the discrete length of maximal segments of perfect shape discretization
- Extend these properties with MBS at each point of the contour
- Compare to determine significatif width of MBS of points

Meaningful thickness detection

- Based on the asymtotic properties of the discrete length of maximal segments of perfect shape discretization
- Extend these properties with MBS at each point of the contour
- Compare to determine significatif width of MBS of points

Meaningful thickness detection

- Based on the asymtotic properties of the discrete length of maximal segments of perfect shape discretization
- Extend these properties with MBS at each point of the contour
- Compare to determine significatif width of MBS of points

Meaningful thickness detection

Meaningful thickness detection

Adaptive tangential cover

Definition

Let $M B S_{i}=\operatorname{MBS}\left(B_{i}, E_{i},.\right), M B S_{j}=\operatorname{MBS}\left(B_{j}, E_{j},.\right)$ be two MBS. We say $M B S_{j}$ is included in MBS_{i}, note as $M B S_{j} \subseteq M B S_{i}$, if $B_{i} \leq B_{j}$ and $E_{i} \geq E_{j}$.

Adaptive tangential cover

Definition

Let $\operatorname{MBS}_{i}=\operatorname{MBS}\left(B_{i}, E_{i},.\right), M B S_{j}=\operatorname{MBS}\left(B_{j}, E_{j},.\right)$ be two MBS. We say $M B S_{j}$ is included in MBS_{i}, note as $M B S_{j} \subseteq M B S_{i}$, if $B_{i} \leq B_{j}$ and $E_{i} \geq E_{j}$.

Adaptive tangential cover

Definition

Let $\operatorname{MBS}_{i}=\operatorname{MBS}\left(B_{i}, E_{i},.\right), M B S_{j}=\operatorname{MBS}\left(B_{j}, E_{j},.\right)$ be two MBS. We say $M B S_{j}$ is included in MBS_{i}, note as $M B S_{j} \subseteq M B S_{i}$, if $B_{i} \leq B_{j}$ and $E_{i} \geq E_{j}$.

Adaptive tangential cover

Definition

Let $\operatorname{MBS}(C)$ be a set of MBS of a discrete curve C. We say $M B S_{i} \in$ $\operatorname{MBS}(C)$ is largest if for all $\mathrm{MBS}_{j} \in \operatorname{MBS}(\mathrm{C})$ with $i \neq j, \mathrm{MBS}_{j} \nsubseteq M B S_{i}$.

Adaptive tangential cover

Definition

An adaptive tangential cover (ATC) associated to the meaningful thickness vector η of C is defined as the set of the largest MBS of $\left\{M B S_{j}=\operatorname{MBS}\left(B_{j}, E_{j}, v_{k}\right) \in \operatorname{MBS}(C) \mid v_{k}=\max \left\{\eta_{t} \mid t \in \llbracket B_{j}, E_{j} \rrbracket\right\}\right\}$.

Construction of adaptive tangential cover

Principes

- Input:
- A discrete curve C of n points
- Vector of meaningful thickness ν associated to each point of C
- Output:
- An ATC of C associated to the meaningful thickness vector ν
- The method for computing ATC is divided into two steps:
- Labeling the points from the meaningful thickness values
- Maximum meaningful thickness of MBS passing the point
- Building the ATC with MBS of widths from the obtained labels
- MBS of width being the label of at least one point in the MBS

Construction of adaptive tangential cover

- Input curve

Construction of adaptive tangential cover

- Input curve
- Meaningful thickness vector ν

Construction of adaptive tangential cover

- Input curve
- Meaningful thickness vector ν
- Tangent covers of...

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

$\alpha=3$
$\nu_{k}=1$
$\alpha=3$

γ_{i}

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization

Construction of adaptive tangential cover

- Step 1: Labeling points from meaningful thickness values
- α max and γ label and $\gamma_{i}=\nu_{i}$ at initialization
- Step 2: Determining the MBS of the ATC

Algorithm of adaptive tangential cover construction

Input: $C=\left(C_{i}\right)_{0 \leq i \leq n-1}$ discrete curve of n points
$\eta=\left(\eta_{i}\right)_{0 \leq i \leq n-1}$ vector of MT associated to C
$\nu=\left\{\nu_{k} \mid \nu_{k} \in \eta\right\}$ ordered set of MT value of η
$\operatorname{MBS}(C)=\left\{\operatorname{MBS}_{\nu_{k}}(C)\right\}_{k=0}^{m-1}$ sets of MBS of C for $\nu_{k} \in \nu$
Output: $A T C(C)$ adaptive tangential cover of C

```
Begin
ATC(C)=\emptyset; }\mp@subsup{\gamma}{i}{}=\mp@subsup{\eta}{i}{}\mathrm{ for }i\in\llbracket0,n-1
for }\mp@subsup{\nu}{k}{}\in\nu\mathrm{ do
```



```
        \alpha= max{\eta}\mp@subsup{\eta}{i}{}|i\in\llbracket\mp@subsup{B}{i}{},\mp@subsup{E}{i}{}\rrbracket
        if \alpha= \nu}k\mathrm{ then
            \gammai= \mp@subsup{\nu}{k}{}\mathrm{ for }i\in\llbracket\mp@subsup{B}{i}{},\mp@subsup{E}{i}{}\rrbracket
        end if
        end for
end for
```


Algorithm of adaptive tangential cover construction

Input：$C=\left(C_{i}\right)_{0 \leq i \leq n-1}$ discrete curve of n points
$\eta=\left(\eta_{i}\right)_{0 \leq i \leq n-1}$ vector of MT associated to C
$\nu=\left\{\nu_{k} \mid \nu_{k} \in \eta\right\}$ ordered set of MT value of η
$\operatorname{MBS}(C)=\left\{\operatorname{MBS}_{\nu_{k}}(C)\right\}_{k=0}^{m-1}$ sets of MBS of C for $\nu_{k} \in \nu$
Output：$A T C(C)$ adaptive tangential cover of C

Begin

```
for }\mp@subsup{\nu}{k}{}\in\nu\mathrm{ do
```



```
        \alpha= max{\mp@subsup{\eta}{i}{}|i\in\llbracket\mp@subsup{B}{i}{},\mp@subsup{E}{i}{}\rrbracket}
        if \exists\mp@subsup{\gamma}{i}{}\mathrm{ , for }i\in\llbracket\mp@subsup{B}{i}{},\mp@subsup{E}{i}{}\rrbracket\mathrm{ , such that }\mp@subsup{\gamma}{i}{}=\mp@subsup{\nu}{k}{}\mathrm{ then}
            ATC(C)=ATC}(C)\cup{MBS(B, 的泣泣)
        end if
        end for
end for
End
```


Examples of Adaptive Tangential Cover

Online demonstration

An online demonstration based on the DGtal and ImaGene library at

 http://ipol-geometry.loria.fr/~kerautre/ipol_demo/ATC_IPOLDemo
Adaptive Tangential Cover for Noisy Digital Contours: Online Demonstration

```
article demo archive
```

Please cite the reference article if you publish results obtained with this online demo.
This demonstration applies the Adaptive Tangential Cover algorithm with the application to curve simplication.
Select Data
Click on an image to use it as the algorithm input.

image credits

Upload Data

Upload your own image files to use as the algorithm input.

$$
\text { input image } \text { Choisissez un fichier Aucun fichier choisi } \Rightarrow \text { upload }
$$

Images larger than 16777216 pixels will be resized. Upload size is limited to 10 MB per image file and 10 MB for the whole upload set
TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded will be publicly archived unless you switch to private mode on the result page.
Only upload suitable images. See the copyright and legal conditions for details.

Plan de la présentation

(1) Notions de base
(2) Couverture tangentielle adaptative
(3) Application: Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments
(5) Conclusion \& perspectives

Dominant point

Definition

A dominant point (corner point) on a curve is a point of local maximum curvature.

Dominant point detection [2]

Proposition

Dominant points of the curve is located in the common zones of successive maximal blurred segments.

Dominant point detection [2]

Strategy

Dominant point is detected as the point with minimum angle measure estimated with extremities of the MBS composing the common zone.

Dominant point detection [2]

Strategy

Dominant point is detected as the point with minimum angle measure estimated with extremities of the MBS composing the common zone.

Dominant point detection [2]

Strategy

Dominant point is detected as the point with minimum angle measure estimated with extremities of the MBS composing the common zone.

$$
\begin{aligned}
& P_{6}: \text { angle }=2.802 \\
& P_{7}: \text { angle }=2.733
\end{aligned}
$$

Dominant point detection [2]

Strategy

Dominant point is detected as the point with minimum angle measure estimated with extremities of the MBS composing the common zone.

$$
\begin{aligned}
& P_{6}: \text { angle }=2.802 \\
& P_{7}: \text { angle }=2.733 \\
& P_{8}: \text { angle }=2.653
\end{aligned}
$$

Dominant point detection [2]

Strategy

Dominant point is detected as the point with minimum angle measure estimated with extremities of the MBS composing the common zone.

Dominant point detection [2]

Strategy

Dominant point is detected as the point with minimum angle measure estimated with extremities of the MBS composing the common zone.

Algorithm of dominant point detection

Input: C discrete curve of n points
Output: D set of dominant points
Begin
Build ATC $=\left\{\operatorname{MBS}\left(B_{i}, E_{i}, .\right)\right\}_{i=0}^{m-1}$
$n=|C| ; m=|A T C|$
$q=0 ; p=1 ; D=\emptyset$
while $p<m$ do
while $E_{q}>B_{p}$ do

$$
p++
$$

end while
$D=D \cup \min \left\{\operatorname{Angle}\left(C_{B_{q}}, C_{i}, C_{E_{p-1}}\right) \mid i \in \llbracket B_{p-1}, E_{q} \rrbracket\right\}$
$q=p-1$
end while
End

Experimental results

Mean tangential cover [6]

Adaptive tangential cover

Experimental results

Mean tangential cover [6]

Experimental results

Mean tangential cover [6]

Adaptive tangential cover

Experimental results

Plan de la présentation

(1) Notions de base
(2) Couverture tangentielle adaptative
(3) Application : Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments
(5) Conclusion \& perspectives

Arcs and segments decomposition

Motivation

Arcs and segments are the most appearing primitives in images

- Detection of shapes
- medical imaging, technical images, manual drawings
- Automatic character recognition
- sketch, scanned documents

Arcs and segments decomposition

Motivation

Arcs and segments are the most appearing primitives in images

- Detection of shapes
- medical imaging, technical images, manual drawings
- Automatic character recognition
- sketch, scanned documents

Tools

- Adaptive tangent cover
- Dominant point detection
- Tangent space representation

Tangent space representation

Definition

Let $P=\left\{P_{i}\right\}_{i=0}^{m}$ be a polygon, $l_{i}=\left|\overrightarrow{\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}+1}}\right|$ and $\alpha_{i}=\angle\left(\overrightarrow{\mathrm{P}_{\mathrm{i}-1} \mathrm{P}_{\mathrm{i}}}, \overrightarrow{\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}+1}}\right)$ s.t. $\alpha_{i}>0$ if P_{i+1} is on the right side of $\overrightarrow{\mathrm{P}} \mathrm{i}-1^{\mathrm{P}_{\mathrm{i}}}$ and $\alpha_{i}<0$ otherwise.

A tangent space representation $T(P)$ of P is a step function which is constituted of segments $T_{i 2} T_{(i+1) 1}$ and $T_{(i+1) 1} T_{(i+1) 2}$ for $0 \leq i<m$ with

- $T_{02}=(0,0)$,
- $T_{i 1}=\left(T_{(i-1) 2} \cdot x+l_{i-1}, T_{(i-1) 2} \cdot y\right)$ for $1 \leq i \leq m$,
- $T_{i 2}=\left(T_{i 1} \cdot x, T_{i 1} \cdot y+\alpha_{i}\right), 1 \leq i \leq(m-1)$.

Tangent space representation

Proposition

Let $P=\left\{P_{i}\right\}_{i=0}^{m}$ be a polygon, $l_{i}=\left|\overrightarrow{\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}+1}}\right|, \alpha_{i}=\angle\left(\overrightarrow{\mathrm{P}_{\mathrm{i}-1} \mathrm{P}_{\mathrm{i}}}, \overrightarrow{\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{i}+1}}\right)$ s.t. $\alpha_{i} \leqslant \alpha \leqslant \frac{\pi}{4}$ for $0 \leq i<n, T(P)$ the tangent space representation of P and $T(P)$ constitutes of segments $T_{i 2} T_{(i+1) 1}, T_{(i+1) 1} T_{(i+1) 2}$ for $0 \leq i<m$, $M=\left\{M_{i}\right\}_{i=0}^{m-1}$ the midpoint set of $\left\{T_{i 2} T_{(i+1) 1}\right\}_{i=0}^{m-1}$.
P is a polygon whose vertices are on a real arc only if M is a set of quasi collinear points.

Tangent space representation

In the tangent space representation, the midpoints can be classified as

- isolated point if either $\left(\left|M_{i} \cdot y-M_{i-1} \cdot y\right|>\alpha\right)$ or $\left(\left|M_{i} \cdot y-M_{i+1} \cdot y\right|>\alpha\right) \Longrightarrow$ a jonction between two primitives
- fully isolated point if $\left(\left|M_{i} \cdot y-M_{i-1} \cdot y\right|>\alpha\right)$ and $\left(\left|M_{i} . y-M_{i+1} . y\right|>\alpha\right) \Longrightarrow$ a segment
- arc point otherwise \Longrightarrow an arc chord

Algorithm of arcs and segments decomposition

Input: $C=\left(C_{i}\right)_{0 \leq i \leq n-1}$ discrete curve of n points
ν, α test of collinear and admissible angle in tangent space
Output: ARCs and SEGs sets of arcs and segments of C

Begin

ARCs $\leftarrow \emptyset$,SEGs $\leftarrow \emptyset$
Detect the dominant point D of C
Transform D into the tangent space $T(D)$
Construct the midpoint curve $\left\{M_{i}\right\}_{i=0}^{m-1}$ of $T(D)$
for $i \leftarrow 1$ to $m-2$ do
$C_{b_{i}} C_{e_{i}}$ the part of C corresponds to M_{i} if $\left(\left|M_{i} \cdot y-M_{i-1} \cdot y\right|>\alpha\right) \&\left(\left|M_{i} \cdot y-M_{i+1} \cdot y\right|>\alpha\right)$ then SEGs $\leftarrow S E G s \cup\left\{\right.$ find a segment from $\left.C_{b_{i}} C_{e_{i}}\right\}$ $M B S_{\nu} \leftarrow \emptyset$
else
end if
end for

Algorithm of arcs and segments decomposition

Input: $C=\left(C_{i}\right)_{0 \leq i \leq n-1}$ discrete curve of n points
ν, α test of collinear and admissible angle in tangent space
Output: ARCs and SEGs sets of arcs and segments of C

Begin

for $i \leftarrow 1$ to $m-2$ do
$C_{b_{i}} C_{e_{i}}$ the part of C corresponds to M_{i}
if $M B S_{\nu} \leftarrow \operatorname{MBS} \cup\left\{M_{i}\right\}$ is a MBS of width ν then $M B S_{\nu} \leftarrow \operatorname{MBS}_{\nu} \cup\left\{M_{i}\right\}$ $p A R C \leftarrow p A R C \cup\left\{C_{b_{i}} C_{e_{i}}\right\}$
else
$A R C s \leftarrow A R C s \cup\{$ find an arc from $p A R C\}$ $p A R C \leftarrow \emptyset$
end if
end for
End

Algorithm of arcs and segments decomposition

Experimental results

...

Plan de la présentation

(1) Notions de base
(2) Couverture tangentielle adaptative
(3) Application : Détection de points dominants

4 Application : Décomposition de courbe en arcs et segments
(5) Conclusion \& perspectives

Conclusion

Contributions

- Algorithm based on discrete structure of the curve
- Algorithm without heuristic but a simple measure of angle

Perspectives

- Parameter free method
- Adaptive-thickness

Thank you for your attention!

References

擂
A. Faure, L. Buzer, and F. Feschet, "Tangential cover for thick digital curves," Pattern Recognition, vol. 42, no. 10, pp. 2279-2287, 2009.
T. P. Nguyen and I. Debled-Rennesson, "A discrete geometry approach for dominant point detection," Pattern Recognition, vol. 44, no. 1, pp. 32-44, 2011.

冨 A. Masood, "Dominant point detection by reverse polygonization of digital curves," Image Vision Comput., vol. 26, no. 5, pp. 702-715, 2008.
(M. Marji and P. Siy, "Polygonal representation of digital planar curves through dominant point detection - a nonparametric algorithm," Pattern Recognition, vol. 37, no. 11, pp. 2113-2130, 2004.
R. C. Teh and R. Chin, "On the detection of dominant points on the digital curves," IEEE Trans. Pattern Anal. Mach. Intell., vol. 2, pp. 859-872, 1989.

