Adaptive Tangential Cover for Noisy Digital Contours

Phuc Ngo Hayat Nasser Isabelle Debled-Rennesson Bertrand Kerautret

Universite de Lorraine LORIA, ADAGio team, UMR CNRS 7503, France

DGCI, Nantes, France 20 April 2016

Motivation

- Shape analysis
- Pattern recognition
- Polygonal approximation

Content

BACKGROUND NOTIONS

ADAPTIVE TANGENTIAL COVER

APPLICATION TO DOMINANT POINT DETECTION

CONCLUSION

Content

BACKGROUND NOTIONS

ADAPTIVE TANGENTIAL COVER

APPLICATION TO DOMINANT POINT DETECTION

CONCLUSION

Discrete line and segment

Definition

A **discrete line** $\mathcal{D}(a, b, \mu, \omega)$ is the set of integer points (x, y) verifying $\mu \le ax - by < \mu + \omega$ where $a, b, \mu, \omega \in \mathcal{Z}$ and gcd(a, b) = 1.

Discrete line and segment

- S_f is a sequence of integer points.
- A discrete line D(a, b, μ, ω) is said to be **bounding** for S_f if all points of S_f belong to D.

Discrete line and segment

Definition

A bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ of S_f is **optimal** if its vertical (or horizontal) distance $\frac{\omega-1}{max(|a|,|b|)}$ is equal to the vertical (or horizontal) thickness of the convex hull of S_f .

Blurred segment

Definition

A sequence integer points S_f is a **blurred segment of width** ν if its optimal bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ has the vertical or horizontal distance less than or equal to ν .

Blurred segment

Definition

A blurred segment of width ν is **maximal**, and noted $MBS(i, j, \nu)$, iff $\neg BS(i, j + 1, \nu)$ and $\neg BS(i - 1, j, \nu)$.

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation of the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: Application to the curvature. In: DGCI. LNCS, vol. 1568, pp. 31-40 (1999)

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation of the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation of the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation of the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation of the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation of the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Property

Let $MBS_{\nu}(C)$ be the maximal blurred segment decomposition of witdth ν of C: $MBS_{\nu}(C) = \{MBS(B_0, E_0, \nu), \dots, MBS(B_{m-1}, E_{m-1}, \nu)\}.$ Then, $B_0 < B_1 < \dots < B_{m-1}$ and $E_0 < E_1 < \dots < E_{m-1}.$

Width estimator (Meaningful scale, Meaningful Thickness)

Adaptive Tangential Cover

Background

000000

- **Meaningful scale**[1, 2] was designed to locally estimate what is the best scale to analyze a digital contour.
 - asymptotic properties of the discrete length L of maximal segments
- Meaningful scale detection has been extended to the detection of the Meaningful Thickness (MT)[3]

 Kerautret, B., Lachaud, J.O.: Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(12), 2379-2392 (Dec 2012)
 Kerautret, B., Lachaud, J.O.: Meaningful Scales Detection: an Unsupervised Noise Detection Algorithm for Digital Contours. Image Processing On Line 4, 98-115 (2014)
 Kerautret, B., Lachaud, J.O., Said, M.: Meaningful Thickness Detection on Polygonal Curve. In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods. pp. 372-379. SciTePress (2012)

Width estimator (Meaningful scale, Meaningful Thickness)

- Meaningful scale[1, 2] was designed to locally estimate what is the best scale to analyze a digital contour.
 - asymptotic properties of the discrete length L of maximal segments
- Meaningful scale detection has been extended to the detection of the Meaningful Thickness (MT)[3]

In our work :

Background

000000

maximal blurred segment

Adaptive Tangential Cover

thickness/width parameter of the maximal blurred segment

 Kerautret, B., Lachaud, J.O.: Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(12), 2379-2392 (Dec 2012)
 Kerautret, B., Lachaud, J.O.: Meaningful Scales Detection: an Unsupervised Noise Detection Algorithm for Digital Contours. Image Processing On Line 4, 98-115 (2014)
 Kerautret, B., Lachaud, J.O., Said, M.: Meaningful Thickness Detection on Polygonal Curve. In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods. pp. 372-379. SciTePress (2012)

Meaningful Thickness

Content

BACKGROUND NOTIONS

ADAPTIVE TANGENTIAL COVER

APPLICATION TO DOMINANT POINT DETECTION

CONCLUSION

Width ν tangential cover

Definition

The sequence of all maximal blurred segments with a constant width ν along a digital contour *C* is called the **width** ν **tangential cover of** *C*.

Width ν tangential cover

Definition

The sequence of all maximal blurred segments with a constant width ν along a digital contour *C* is called the **width** ν **tangential cover of** *C*.

Width ν tangential cover

Definition

The sequence of all maximal blurred segments with a constant width ν along a digital contour *C* is called the **width** ν **tangential cover of** *C*.

Background	Adaptive Tangential Cover	Application to dominant point detection	Conclusion
000000	0●000		0000

Issues

Issues

- value of ν is manually adjusted
- inadequate in case of noisy curve (noise can be random along the contour)

Issues

- value of ν is manually adjusted
- inadequate in case of noisy curve (noise can be random along the contour)

Solution

we introduce a new notion, **Adaptive Tangential Cover** (ATC), tangential cover with different width values based on the Meaningful Thickness detection.

- parameter free
- adequate in case of noisy curves

Background 000000	Adaptive Tangential Cover 00●00	Application to dominant point detection 0000	Conclusion 0000
Definit	ion		
	 <i>MBS_j</i> is said to be included in <i>MBS_i</i> if <i>B_i</i> ≤ <i>B_j</i> and <i>E_i</i> ≥ <i>E_j</i>, and noted by <i>MBS_j</i> ⊆ <i>MBS_i</i> a maximal blurred segments is said largest if for all <i>MBS_j</i> ∈ <i>MBS</i>(<i>C</i>) with <i>i</i> ≠ <i>j</i>, <i>MBS_j</i> ⊈ <i>MBS_i</i> 		

 $\nu = 1$

14 / 26

 $\nu=2$

Backgro 00000	und Adaptive Tangential Cover > 00000	Application to dominant point detection 0000	Conclusion 0000
Def	inition		
	• MBS_j is said to be inc $E_i \ge E_j$, and noted by	cluded in MBS_i if $B_i \leq B_j$ and $MBS_j \subseteq MBS_i$	
	• a maximal blurred se $MBS_j \in MBS(C)$ with	egments is said largest if for all $i \neq j$, $MBS_j \nsubseteq MBS_i$	

Backgrou 000000	and Adaptive Tangential Cover	Application to dominant point detection 0000	Conclusion 0000
Def	inition		
	• $\eta = (\eta_i)_{0 \le i \le n-1}$ vector associated to each C_i	of Meaningful Thickness of C	
	 An Adaptive Tangen Meaningful Thickne set of the largest MBS MBS(C) v_k = max{η 	tial Cover associated to ss (ATC_{MT}) of <i>C</i> is defined as of { $MBS_j = MBS(B_j, E_j, v_k) \in$ $t_i \mid t \in [\![B_j, E_j]\!]$ }	the

Strategy

Input:

- $C = (C_i)_{0 \le i \le n-1}$ discrete curve of *n* points
- η = (η_i)_{0≤i≤n−1} vector of Meaningful Thickness associated to each point C_i of C

Strategy

Input:

- $C = (C_i)_{0 \le i \le n-1}$ discrete curve of *n* points
- $\eta = (\eta_i)_{0 \le i \le n-1}$ vector of Meaningful Thickness associated to each point C_i of C
- ► $MBS(C) = \{MBS_{\nu_k}(C)\}_{k=0}^{m-1}$ sets of maximal blurred segments of *C* for each width value $\nu_k \in \nu$ and $\nu = \{\nu_k \mid \nu_k \in \eta\}$

Strategy

The method for computing ATC_{MT} is divided into two steps :

- label the point from the Meaningful Thickness values
- ► build the *ATC_{MT}* of the curve from the labels previously obtained

Adaptive Tangential Cover

Adaptive Tangential Cover

Adaptive Tangential Cover

Adaptive Tangential Cover

Adaptive Tangential Cover

Application to dominant point detection

Adaptive Tangential Cover

Adaptive Tangential Cover

Application to dominant point detection

Level 1: $\nu_k = 1$

Adaptive Tangential Cover

Background	Adaptive
000000	00000

Tangential Cover

Adaptive Tangential Cover

Step1:

 $\gamma = (\gamma)_{0 \le i \le n-1}$ vector of labels

Step2:

 ATC_{MT} is composed of the MBS with widths being the label associated to points constituting the MBS

Step2:

 ATC_{MT} is composed of the MBS with widths being the label associated to points constituting the MBS

Examples of Adaptive Tangential Cover

Examples of Adaptive Tangential Cover

Examples of Adaptive Tangential Cover

Content

BACKGROUND NOTIONS

ADAPTIVE TANGENTIAL COVER

APPLICATION TO DOMINANT POINT DETECTION

CONCLUSION

Definition

A **dominant point** (corner point) on a curve is a point of local maximum curvature.

Dominant points of the curve are located in the **common zones** of successive maximal blurred segments[4].

[4] Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognition 44(1), 32-44(2011)

Strategy

Dominant point is detected as the point in the common zone with **minimum angle measure**[5].

[5] Ngo, P., Nasser, H., Debled-Rennesson, I.: Efficient dominant point detection based on discrete curve structure. In: International Workshop on Combinatorial Image Analysis (IWCIA), Kolkata, India, November. LNCS, vol. 9448 (2015)

Background	Adaptive Tangential Cover	Application to dominant point detection	Conclusion
000000	00000	0●00	0000
	 Dominant point detec mono value tangentia 	tion algorithm was based on t l cover	the

▶ Now, we use it with the Adaptive Tangential Cover

[6] Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Computer Vision and Graphics - International Conference, ICCVG 2010, Warsaw, Poland, September. LNCS, vol. 6374 (2010)

[6] Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Computer Vision and Graphics - International Conference, ICCVG 2010, Warsaw, Poland, September. LNCS, vol. 6374 (2010)

[6] Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Computer Vision and Graphics - International Conference, ICCVG 2010, Warsaw, Poland, September. LNCS, vol. 6374 (2010)

[6] Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.: Unsupervised, fast and precise recognition of digital arcs in noisy images. In: Computer Vision and Graphics - International Conference, ICCVG 2010, Warsaw, Poland, September. LNCS, vol. 6374 (2010)

Online Demonstration

An online demonstration based on the DGtal and ImaGene library, is available at the following website:

http://ipol-geometry.loria.fr/~kerautre/ipol_demo/ ATC_IPOLDemo/

Adaptive Tangential Cover for Noisy Digital Contours: Online Demonstration

article demo archive

Please cite the reference article if you publish results obtained with this online demo.

This demonstration applies the Adaptive Tangential Cover algorithm with the application to curve simplication.

Select Data

Click on an image to use it as the algorithm input.

image credits

Upload Data

Upload your own image files to use as the algorithm input.

input image Choisissez un fichier Aucun fichier choisi 💿 upload

Images larger than 10777218 pixels will be resized. Upload size is limited to 10MB per image file and 10MB for the whole upload set . TIFF, UFEG, PKG, GIF, PKM (and other standard formats) are supported. The uploaded will be publicly archived unless you switch to private mode on the result page. Only upload subsite images. See the copyright and legal conditions for details.

Content

BACKGROUND NOTIONS

ADAPTIVE TANGENTIAL COVER

APPLICATION TO DOMINANT POINT DETECTION

CONCLUSION

Contributions

- Adaptive Tangential Cover deduced from the Meaningful Thickness
- Method to compute the ATC is parameter free
- ATC is used in a dominant point detection algorithm
 - very good results on the polygonal shapes
 - the algorithm simplifies the shapes in a polygonal way for the shapes with convex and/or concave parts

- Generalization of ATC using other width estimations
- Use of ATC in geometric estimators:
 - curvature
 - decomposition of a curve into arcs and segments
- Modify the method to compute the Meaningful Thicknesses (Input)
 - take a step less than 1 (for example 0.2)
 - obtain best results for polygonization

Thank you for your attention!

References

- B. Kerautret and J.-O. Lachaud, "Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 34, pp. 2379–2392, Dec. 2012.
- B. Kerautret and J.-O. Lachaud, "Meaningful Scales Detection: an Unsupervised Noise Detection Algorithm for Digital Contours," *Image Processing On Line*, vol. 4, pp. 98–115, 2014.
- B. Kerautret, J.-O. Lachaud, and M. Said, "Meaningful Thickness Detection on Polygonal Curve," in *Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods*, pp. 372–379, SciTePress, 2012.
- T. P. Nguyen and I. Debled-Rennesson, "A discrete geometry approach for dominant point detection," *Pattern Recognition*, vol. 44, no. 1, pp. 32–44, 2011.