Discrete rigid transformation graph search for 2D image registration

Phuc Ngo Akihiro Sugimoto Yukiko Kenmochi Nicolas Passat Hugues Talbot

October 29, 2013

∃ ► < ∃ ►</p>

Background

 Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Motivation and clues

Is it possible to avoid this re-digitization?

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Motivation and clues

 Is it possible to avoid this re-digitization? Yes, use a fully discrete approach which allows to transform images pixel by pixel.

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Motivation and clues

- Is it possible to avoid this re-digitization? Yes, use a fully discrete approach which allows to transform images pixel by pixel.
- How to explore explicitly such a discrete parameter space?

Rigid transformation on \mathbb{R}^2

Definition (Rigid transformation $\mathcal{T}: \mathbb{R}^2 \to \mathbb{R}^2$)

A rigid transformation is a bijection defined for any $\mathbf{x} = (x, y) \in \mathbb{R}^2$, as

$$\mathcal{T}(\mathbf{x}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

with $a, b \in \mathbb{R}$ and $\theta \in [0, 2\pi[.$

Rigid transformation on \mathbb{Z}^2

Definition (Digital rigid transformation $T: \mathbb{Z}^2 \to \mathbb{Z}^2$)

A digital rigid transformation on \mathbb{Z}^2 is defined for any $oldsymbol{p}=(p,q)\in\mathbb{Z}^2$ as

$$T(\boldsymbol{p}) = D \circ \mathcal{T}(\boldsymbol{p}) = \begin{pmatrix} [p \cos \theta - q \sin \theta + a] \\ [p \sin \theta + q \cos \theta + b] \end{pmatrix}$$

where $D : \mathbb{R}^2 \to \mathbb{Z}^2$ is digitization (a rounding function).

$$T(\boldsymbol{p}) = D \circ \mathcal{T}(\boldsymbol{p}) = \left(\begin{array}{c} [p\cos\theta - q\sin\theta + a]\\ [p\sin\theta + q\cos\theta + b] \end{array}\right)$$

$$T(\boldsymbol{p}) = D \circ \mathcal{T}(\boldsymbol{p}) = \left(\begin{array}{c} [p\cos\theta - q\sin\theta + a]\\ [p\sin\theta + q\cos\theta + b] \end{array}\right)$$

$$T(\boldsymbol{p}) = D \circ \mathcal{T}(\boldsymbol{p}) = \left(\begin{array}{c} [p\cos\theta - q\sin\theta + a]\\ [p\sin\theta + q\cos\theta + b] \end{array}\right)$$

$$T(\boldsymbol{p}) = D \circ \mathcal{T}(\boldsymbol{p}) = \left(\begin{array}{c} [p\cos\theta - q\sin\theta + a]\\ [p\sin\theta + q\cos\theta + b] \end{array}\right)$$

Definition

Definition

Definition

Definition

Definition

A **discrete rigid transformation** (DRT) is a set of all the rigid transformations that generate the same image.

The parameter space (a, b, θ) is partitioned in the disjoint set of DRTs.

Critical rigid transformations

Definition

A critical rigid transformation moves at least one point of \mathbb{Z}^2 to a point on the vertical or horizontal half-grid.

Tipping surfaces

Definition

The **tipping surfaces** are the surfaces associated to critical transformations in the parameter space (a, b, θ) :

$$a = k + \frac{1}{2} + q \sin \theta - p \cos \theta, \qquad (vertical)$$
$$b = l + \frac{1}{2} - p \sin \theta - q \cos \theta, \qquad (horizontal)$$

for $p, q, k, l \in \mathbb{Z}$.

2

Tipping surfaces

Definition

The **tipping surfaces** are the surfaces associated to critical transformations in the parameter space (a, b, θ) :

$$a = k + \frac{1}{2} + q \sin \theta - p \cos \theta,$$
 (vertical)

$$b = l + \frac{1}{2} - p \sin \theta - q \cos \theta,$$
 (horizontal)

for $p, q, k, l \in \mathbb{Z}$.

Each tipping surface

- is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),
- indicates that the pixel (p, q) in a transformed image changes its value from the one at (k, *) (resp. (*, l)) in an original image to the one at (k + 1, *) (resp. (*, l + 1)).

Example of tipping surfaces

Vertical surfaces Φ_{pqk} and horizontal ones Ψ_{pql} for $p, q \in [0, 2]$ and $k, l \in [0, 3]$. Soc

Tipping curves

Definition

The **tipping curves** are the orthogonal sections of vertical (resp. horizontal) tipping surfaces with respect to the axis a (resp. the axis b) on the plane :

$$a = k + \frac{1}{2} + q \sin \theta - p \cos \theta, \qquad (vertical)$$
$$b = l + \frac{1}{2} - p \sin \theta - q \cos \theta, \qquad (horizontal)$$
for p, q, k, l $\in \mathbb{Z}$.

→ Ξ →

Example of tipping curves

Graph of discrete rigid transformations

Definition

A graph of discrete rigid transformations (DRT graph) is a graph G = (V, E) such that :

- each vertex $v \in V$ corresponds to a DRT,
- each edge $e \in E$ connects two DRTs sharing a tipping surface.

Advantages

Discrete rigid transformations are computed in a fully discrete process,

Advantages

- Discrete rigid transformations are computed in a fully discrete process,
- Their combinatorial structure is represented by a **DRT** graph *G* whose complexity is $O(N^9)$ for images of size $N \times N$.

Advantages

- Discrete rigid transformations are computed in a fully discrete process,
- Their combinatorial structure is represented by a **DRT** graph G whose complexity is $O(N^9)$ for images of size $N \times N$.
- G models all the discrete rigid transformations with their topological information such that :
 - a vertex corresponds to each transformed image,
 - an edge corresponds to one pixel change, *i.e. a tipping surface*, (each edge posesses such pixel transition information).

Advantages

- Discrete rigid transformations are computed in a fully discrete process,
- Their combinatorial structure is represented by a DRT graph G whose complexity is $O(N^9)$ for images of size $N \times N$.
- G models all the discrete rigid transformations with their topological information such that :
 - a vertex corresponds to each transformed image,
 - an edge corresponds to one pixel change, *i.e. a tipping surface*, (each edge posesses such pixel transition information).
- It enables to generate exhaustively and incrementally all the transformed images in a linear complexity.

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$T^*_{v} = rg\min_{T_{v} \in \mathbb{T}} d(A, T_{v}(B))$$

where $\mathbb{T} = \{T_v \mid v \in V\}$ of all the DRTs, and *d* is a given distance between two images.

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$T^*_{v} = rg\min_{T_{v} \in \mathbb{T}} d(A, T_{v}(B))$$

where $\mathbb{T} = \{T_v \mid v \in V\}$ of all the DRTs, and *d* is a given distance between two images.

We have a choice for d; here we use signed distance. (Boykov *et al.*, 2006)

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$T^*_{
u} = rg\min_{T_{
u} \in \mathbb{T}} d(A, T_{
u}(B))$$

where $\mathbb{T} = \{T_v \mid v \in V\}$ of all the DRTs, and *d* is a given distance between two images.

We have a choice for d; here we use signed distance. (Boykov *et al.*, 2006)

Disadvantage

Exhaustive search on DRT graph costs $O(N^9)$ in complexity.

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$T^*_{
u} = rg\min_{T_{
u} \in \mathbb{T}} d(A, T_{
u}(B))$$

where $\mathbb{T} = \{T_v \mid v \in V\}$ of all the DRTs, and *d* is a given distance between two images.

We have a choice for d; here we use signed distance. (Boykov *et al.*, 2006)

Disadvantage

Exhaustive search on DRT graph costs $O(N^9)$ in complexity.

Advantage

A local search on DRT graph can determine a local optimum.

Э

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Local search on discrete rigid transformation graph

Algorithm (Local search)

- Input : An initial DRT $v_0 \in V$.
- **Output** : A local optimum $\hat{\mathbf{v}} \in V$.
- **Approach** : Gradient descent in a DRT graph G = (V, E).

Local search on discrete rigid transformation graph

Algorithm (Local search)

- Input : An initial DRT $v_0 \in V$.
- **Output** : A local optimum $\hat{v} \in V$.
- **Approach** : Gradient descent in a DRT graph G = (V, E).

DRT graph provides

- **neighbourhood relation** N(v),
- efficient computation of *d*.

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

- **Input** : A DRT v and its representative parameter triplet $P(v) = (a_v, b_v, \theta_v)$
- **Output** : Its neighbourhood N(v).

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

- **Input** : A DRT v and its representative parameter triplet $P(v) = (a_v, b_v, \theta_v)$
- **Output** : Its neighbourhood N(v).
- Approach : In the (dual) parameter space, find the closest tipping surfaces (edges in the primal) around P(v) by using the properties of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al., 2013)).

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

- **Input** : A DRT v and its representative parameter triplet $P(v) = (a_v, b_v, \theta_v)$
- **Output** : Its neighbourhood N(v).
- Approach : In the (dual) parameter space, find the closest tipping surfaces (edges in the primal) around P(v) by using the properties of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al., 2013)).

Complexity : $O(mN^2)$ where *m* is the size of N(v).

→ Ξ → < Ξ</p>

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

- Input : A DRT v.
- **Output** : its representative parameter triplet $P(v) = (a_v, b_v, \theta_v)$.

(▲ 문) ▲ 문)

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

- Input : A DRT v.
- **Output** : its representative parameter triplet $P(v) = (a_v, b_v, \theta_v)$.
- Approach : In the (dual) parameter space, find P(v) from 4N² tipping surfaces associated to v by using the properties of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al., 2013).)

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

- Input : A DRT v.
- **Output** : its representative parameter triplet $P(v) = (a_v, b_v, \theta_v)$.
- Approach : In the (dual) parameter space, find P(v) from 4N² tipping surfaces associated to v by using the properties of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al., 2013).)

DRT graph neighbourhood size

• Theoretically, DRT graph neighbourhood size $m = O(N^2)$.

GCCV workshop

★ E ► < E ►</p>

DRT graph neighbourhood size

- Theoretically, DRT graph neighbourhood size $m = O(N^2)$.
- In practice, *m* is **bounded by a small constant** (observed from 960 experiments for images of size from 5 × 5 to 80 × 80).

k-Neighbourhood and its construction

Definition

$$N^k(v) = N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)$$

where $N^{1}(v) = N(v)$.

k-Neighbourhood and its construction

Definition

$$N^k(v) = N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)$$

where $N^{1}(v) = N(v)$.

Experiment 1

(a) Reference image

(b) Target image

(c) Initial solution

(d) 1-neighbourhood

(e) 3-neighbourhood

GCCV workshop

20/25

Experiment 1 (cont.)

GCCV workshop

```
21/25
```

Experiments

Ð.

(本部) (* 注) (* 注)

22/25

Experiment 1 (cont.)

Transformed image sequence by using 3-neighbours.

GCCV workshop

Experiment 2

(c) 1-neighbourhood

GCCV workshop

æ

Experiment 2

(d) 3-neighbourhood \rightarrow $\leftarrow \equiv \rightarrow$ $\leftarrow \equiv \rightarrow$ \rightarrow

Experiments

Experiment 2 (cont.)

Sequences of distances and transformation parameters (only for 3-neighbofhoord) during iteration.

GCCV workshop

Conclusion

 Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact *k*-neighbourhood at each step with a $O(m^k N^2)$ time complexity.

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O(m^k N^2)$ time complexity.
- In practice, *m* has a constant behavior with respect to $N \times N$.

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O(m^k N^2)$ time complexity.
- In practice, *m* has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O(m^k N^2)$ time complexity.
- In practice, *m* has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Perspectives

Improve the theoretical upper bound for m, which is so far $O(N^2)$.

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O(m^k N^2)$ time complexity.
- In practice, *m* has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Perspectives

- Improve the theoretical upper bound for m, which is so far $O(N^2)$.
- Combine our proposed method with other combinatorial approaches.

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O(m^k N^2)$ time complexity.
- In practice, *m* has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Perspectives

- Improve the theoretical upper bound for m, which is so far $O(N^2)$.
- Combine our proposed method with other combinatorial approaches.
- Extend to higher dimensions, and gray-level or labeled images.