Discrete rigid transformation graph search for 2D image registration

Phuc Ngo Akihiro Sugimoto Yukiko Kenmochi Nicolas Passat Hugues Talbot

Notionol Institute of Informotics

October 29, 2013

Why discrete rigid transformation graph search?

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.

Why discrete rigid transformation graph search?

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Why discrete rigid transformation graph search?

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Motivation and clues

- Is it possible to avoid this re-digitization?

Why discrete rigid transformation graph search?

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Motivation and clues

■ Is it possible to avoid this re-digitization?
Yes, use a fully discrete approach which allows to transform images pixel by pixel.

Why discrete rigid transformation graph search?

Background

- Problem of rigid image registration is usually formulated in the continuous domain, in the context of optimization.
- This often requires re-digitizing results after transformation, and sometimes causes unwanted artifacts.

Motivation and clues

■ Is it possible to avoid this re-digitization?
Yes, use a fully discrete approach which allows to transform images pixel by pixel.
■ How to explore explicitely such a discrete parameter space?

Rigid transformation on \mathbb{R}^{2}

Definition (Rigid transformation $\mathcal{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$)

A rigid transformation is a bijection defined for any $\boldsymbol{x}=(x, y) \in \mathbb{R}^{2}$, as

$$
\mathcal{T}(\boldsymbol{x})=\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}+\binom{a}{b}
$$

with $a, b \in \mathbb{R}$ and $\theta \in[0,2 \pi[$.

Rigid transformation on \mathbb{Z}^{2}

Definition (Digital rigid transformation $T: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$)
A digital rigid transformation on \mathbb{Z}^{2} is defined for any $\boldsymbol{p}=(p, q) \in \mathbb{Z}^{2}$ as

$$
T(\boldsymbol{p})=D \circ \mathcal{T}(\boldsymbol{p})=\binom{[p \cos \theta-q \sin \theta+a]}{[p \sin \theta+q \cos \theta+b]}
$$

where $D: \mathbb{R}^{2} \rightarrow \mathbb{Z}^{2}$ is digitization (a rounding function).

Discontinuities of rigid transformations in \mathbb{Z}^{2}

Discontinuities of rigid transformations on \mathbb{Z}^{2}

$$
T(\boldsymbol{p})=D \circ \mathcal{T}(\boldsymbol{p})=\binom{[p \cos \theta-q \sin \theta+a]}{[p \sin \theta+q \cos \theta+b]}
$$

Discontinuities of rigid transformations in \mathbb{Z}^{2}

Discontinuities of rigid transformations on \mathbb{Z}^{2}

$$
T(\boldsymbol{p})=D \circ \mathcal{T}(\boldsymbol{p})=\binom{[p \cos \theta-q \sin \theta+a]}{[p \sin \theta+q \cos \theta+b]}
$$

Discontinuities of rigid transformations in \mathbb{Z}^{2}

Discontinuities of rigid transformations on \mathbb{Z}^{2}

$$
T(\boldsymbol{p})=D \circ \mathcal{T}(\boldsymbol{p})=\binom{[p \cos \theta-q \sin \theta+a]}{[p \sin \theta+q \cos \theta+b]}
$$

Discontinuities of rigid transformations in \mathbb{Z}^{2}

Discontinuities of rigid transformations on \mathbb{Z}^{2}

$$
T(\boldsymbol{p})=D \circ \mathcal{T}(\boldsymbol{p})=\binom{[p \cos \theta-q \sin \theta+a]}{[p \sin \theta+q \cos \theta+b]}
$$

Discrete rigid transformation

Definition

A discrete rigid transformation (DRT) is a set of all the rigid transformations that generate the same image.

Discrete rigid transformation

Definition

A discrete rigid transformation (DRT) is a set of all the rigid transformations that generate the same image.

Discrete rigid transformation

Definition

A discrete rigid transformation (DRT) is a set of all the rigid transformations that generate the same image.

Discrete rigid transformation

Definition

A discrete rigid transformation (DRT) is a set of all the rigid transformations that generate the same image.

Discrete rigid transformation

Definition

A discrete rigid transformation (DRT) is a set of all the rigid transformations that generate the same image.

The parameter space (a, b, θ) is partitioned in the disjoint set of $D R T$ s.

Critical rigid transformations

Definition

A critical rigid transformation moves at least one point of \mathbb{Z}^{2} to a point on the vertical or horizontal half-grid.

Tipping surfaces

Definition

The tipping surfaces are the surfaces associated to critical transformations in the parameter space (a, b, θ) :

$$
\begin{aligned}
& a=k+\frac{1}{2}+q \sin \theta-p \cos \theta, \\
& b=I+\frac{1}{2}-p \sin \theta-q \cos \theta, \quad \text { (vertical) }
\end{aligned}
$$

for $p, q, k, l \in \mathbb{Z}$.

Tipping surfaces

Definition

The tipping surfaces are the surfaces associated to critical transformations in the parameter space (a, b, θ) :

$$
\begin{aligned}
& a=k+\frac{1}{2}+q \sin \theta-p \cos \theta \\
& b=I+\frac{1}{2}-p \sin \theta-q \cos \theta
\end{aligned}
$$

(horizontal)
for $p, q, k, l \in \mathbb{Z}$.

Each tipping surface

- is indexed by a triplet of integers $(p, q, k)(r e s p .(p, q, /))$,
- indicates that the pixel (p, q) in a transformed image changes its value from the one at $(k, *)(r e s p .(*, /))$ in an original image to the one at $(k+1, *)($ resp. $(*, l+1))$.

Example of tipping surfaces

Vertical surfaces $\Phi_{p q k}$ and horizontal ones $\psi_{p q \prime}$ for $p, q \in[0,2]$ and $k, I \in[0,3]$.

Tipping curves

Definition

The tipping curves are the orthogonal sections of vertical (resp. horizontal) tipping surfaces with respect to the axis a (resp. the axis b) on the plane :

$$
\begin{aligned}
& a=k+\frac{1}{2}+q \sin \theta-p \cos \theta, \\
& b=I+\frac{1}{2}-p \sin \theta-q \cos \theta, \quad \text { (hertical) }
\end{aligned}
$$

for $p, q, k, l \in \mathbb{Z}$.

Example of tipping curves

Vertical tipping curves $\phi_{p q k}$ for $p, q \in[0,2]$ and $k \in[0,3]$.

Graph of discrete rigid transformations

Definition

A graph of discrete rigid transformations (DRT graph) is a graph $G=(V, E)$ such that :

- each vertex $v \in V$ corresponds to a DRT,

■ each edge $e \in E$ connects two DRTs sharing a tipping surface.

Properties of discrete rigid transformation graph

Advantages

- Discrete rigid transformations are computed in a fully discrete process,

Properties of discrete rigid transformation graph

Advantages

- Discrete rigid transformations are computed in a fully discrete process,
- Their combinatorial structure is represented by a DRT graph G whose complexity is $O\left(N^{9}\right)$ for images of size $N \times N$.

Properties of discrete rigid transformation graph

Advantages

- Discrete rigid transformations are computed in a fully discrete process,
- Their combinatorial structure is represented by a DRT graph G whose complexity is $O\left(N^{9}\right)$ for images of size $N \times N$.
- G models all the discrete rigid transformations with their topological information such that :
- a vertex corresponds to each transformed image,
- an edge corresponds to one pixel change, i.e. a tipping surface, (each edge posesses such pixel transition information).

Properties of discrete rigid transformation graph

Advantages

- Discrete rigid transformations are computed in a fully discrete process,
- Their combinatorial structure is represented by a DRT graph G whose complexity is $O\left(N^{9}\right)$ for images of size $N \times N$.
- G models all the discrete rigid transformations with their topological information such that :
- a vertex corresponds to each transformed image,
- an edge corresponds to one pixel change, i.e. a tipping surface, (each edge posesses such pixel transition information).
- It enables to generate exhaustively and incrementally all the transformed images in a linear complexity.

Registration as a combinatorial optimisation problem

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$
T_{v}^{*}=\arg \min _{T_{v} \in \mathbb{T}} d\left(A, T_{v}(B)\right)
$$

where $\mathbb{T}=\left\{T_{v} \mid v \in V\right\}$ of all the DRTs, and d is a given distance between two images.

Registration as a combinatorial optimisation problem

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$
T_{v}^{*}=\arg \min _{T_{v} \in \mathbb{T}} d\left(A, T_{v}(B)\right)
$$

where $\mathbb{T}=\left\{T_{v} \mid v \in V\right\}$ of all the DRTs, and d is a given distance between two images.

We have a choice for d; here we use signed distance. (Boykov et al., 2006)

Registration as a combinatorial optimisation problem

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$
T_{v}^{*}=\arg \min _{T_{v} \in \mathbb{T}} d\left(A, T_{v}(B)\right)
$$

where $\mathbb{T}=\left\{T_{v} \mid v \in V\right\}$ of all the DRTs, and d is a given distance between two images.

We have a choice for d; here we use signed distance. (Boykov et al., 2006)

Disadvantage

Exhaustive search on DRT graph costs $O\left(N^{9}\right)$ in complexity.

Registration as a combinatorial optimisation problem

Problem formulation

Given two images A and B of size $N \times N$, our image registration consists of finding a DRT such that

$$
T_{v}^{*}=\arg \min _{T_{v} \in \mathbb{T}} d\left(A, T_{v}(B)\right)
$$

where $\mathbb{T}=\left\{T_{v} \mid v \in V\right\}$ of all the DRTs, and d is a given distance between two images.

We have a choice for d; here we use signed distance. (Boykov et al., 2006)

Disadvantage

Exhaustive search on DRT graph costs $O\left(N^{9}\right)$ in complexity.

Advantage

A local search on DRT graph can determine a local optimum.

Local search on discrete rigid transformation graph

Algorithm (Local search)

- Input : An initial $D R T v_{0} \in V$.
- Output : A local optimum $\widehat{v} \in V$.
- Approach : Gradient descent in a DRT graph $G=(V, E)$.

Local search on discrete rigid transformation graph

Algorithm (Local search)

- Input : An initial DRT $v_{0} \in V$.
- Output : A local optimum $\widehat{v} \in V$.
- Approach : Gradient descent in a DRT graph $G=(V, E)$.

DRT graph provides

- neighbourhood relation $N(v)$,
- efficient computation of d.

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

- Input : A DRT v and its representative parameter triplet $P(v)=\left(a_{v}, b_{v}, \theta_{v}\right)$
- Output : Its neighbourhood $N(v)$.

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

- Input : A DRT v and its representative parameter triplet $P(v)=\left(a_{v}, b_{v}, \theta_{v}\right)$
- Output: Its neighbourhood $N(v)$.

■ Approach : In the (dual) parameter space, find the closest tipping surfaces (edges in the primal) around $P(v)$ by using the properties of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al., 2013)).

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

- Input : A DRT v and its representative parameter triplet $P(v)=\left(a_{v}, b_{v}, \theta_{v}\right)$
- Output : Its neighbourhood $N(v)$.
- Approach : In the (dual) parameter space, find the closest tipping surfaces (edges in the primal) around $P(v)$ by using the properties of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al, 2013)).

Complexity: $O\left(m N^{2}\right)$ where m is the size of $N(v)$.

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

- Input : A DRT v.
- Output : its representative parameter triplet $P(v)=\left(a_{v}, b_{v}, \theta_{v}\right)$.

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

- Input : A DRT v.
- Output : its representative parameter triplet $P(v)=\left(a_{v}, b_{v}, \theta_{v}\right)$.
- Approach : In the (dual) parameter space, find $P(v)$ from $4 N^{2}$ tipping surfaces associated to v by using the properties of dual DRTs, i.e. 3D cells (a - and b-convexity (Ngo et al., 2013).)

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

- Input : A DRT v.
- Output : its representative parameter triplet $P(v)=\left(a_{v}, b_{v}, \theta_{v}\right)$.
- Approach : In the (dual) parameter space, find $P(v)$ from $4 N^{2}$ tipping surfaces associated to v by using the properties of dual DRTs, i.e. 3D cells (a - and b-convexity (Ngo et al., 2013).)

Complexity: $O\left(N^{2}\right)$

DRT graph neighbourhood size

- Theoretically, DRT graph neighbourhood size $m=\mathbf{O}\left(\mathbf{N}^{2}\right)$.

DRT graph neighbourhood size

■ Theoretically, DRT graph neighbourhood size $m=\mathbf{O}\left(\mathbf{N}^{2}\right)$.
■ In practice, m is bounded by a small constant (observed from 960 experiments for images of size from 5×5 to 80×80).

k-Neighbourhood and its construction

Definition

$$
N^{k}(v)=N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)
$$

where $N^{1}(v)=N(v)$.

k-Neighbourhood and its construction

Definition

$$
N^{k}(v)=N^{k-1}(v) \cup \bigcup_{u \in N^{k-1}(v)} N(u)
$$

where $N^{1}(v)=N(v)$.

Complexity : $O\left(m^{k} N^{2}\right)$ where m is the neighbourhood size.

Experiment 1

(a) Reference image

(d) 1-neighbourhood

(b) Target image

(e) 3-neighbourhood

(c) Initial solution

(f) (d) $\backslash(\mathrm{e})$

Experiment 1 (cont.)

(a) Seed $(0,0,0.1)$

(c) Seed $(0.12,0.05,0.1314)$

(b) Seed ($0.49,0.35,0.15$)

(d) Seed $(0.52,0.79,0.3107)$

Experiment 1 (cont.)

Transformed image sequence by using 3 -neighbours.

Experiment 2

(a) Reference image

(c) 1-neighbourhood

(b) Target image

(d) 3-neighbourhood

Experiment 2

(a) Reference image

(c) 1-neighbourhood

(b) Target image

(d) 3-neighbourhood

Experiment 2 (cont.)

Sequences of distances and transformation parameters (only for 3 -neighbofhoord) during iteration.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O\left(m^{k} N^{2}\right)$ time complexity.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O\left(m^{k} N^{2}\right)$ time complexity.

■ In practice, m has a constant behavior with respect to $N \times N$.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O\left(m^{k} N^{2}\right)$ time complexity.
- In practice, m has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O\left(m^{k} N^{2}\right)$ time complexity.
- In practice, m has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Perspectives

- Improve the theoretical upper bound for m, which is so far $O\left(N^{2}\right)$.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O\left(m^{k} N^{2}\right)$ time complexity.
- In practice, m has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Perspectives

- Improve the theoretical upper bound for m, which is so far $O\left(N^{2}\right)$.
- Combine our proposed method with other combinatorial approaches.

Conclusion and perspectives

Conclusion

- Purely discrete framework for 2D image registration under rigid transformation was proposed, based on DRT graph.
- A gradient descent procedure constructs the exact k-neighbourhood at each step with a $O\left(m^{k} N^{2}\right)$ time complexity.
- In practice, m has a constant behavior with respect to $N \times N$.
- An efficient algorithm for computing the neighbours for the local search was proposed with almost linear time complexity.

Perspectives

- Improve the theoretical upper bound for m, which is so far $O\left(N^{2}\right)$.
- Combine our proposed method with other combinatorial approaches.
- Extend to higher dimensions, and gray-level or labeled images.

