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Motivation

Why discrete rigid transformation graph search ?

Background

Problem of rigid image registration is usually formulated in
the continuous domain, in the context of optimization.

This often requires re-digitizing results after transformation,
and sometimes causes unwanted artifacts.

Motivation and clues

Is it possible to avoid this re-digitization ?

Yes, use a fully discrete approach
which allows to transform images pixel by pixel.

How to explore explicitely such a discrete parameter space ?
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Rigid transformation in Z2

Rigid transformation on R2

Definition (Rigid transformation T : R2 → R2)

A rigid transformation is a bijection defined for any
x = (x , y) ∈ R2, as

T (x) =
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a
b

)

with a, b ∈ R and θ ∈ [0, 2π[.

T (x)

x
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Rigid transformation in Z2

Rigid transformation on Z2

Definition (Digital rigid transformation T : Z2 → Z2)

A digital rigid transformation on Z2 is defined for any
p = (p, q) ∈ Z2 as

T (p) = D ◦ T (p) =
(

[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)

where D : R2 → Z2 is digitization (a rounding function).

p T(p)

GCCV workshop 4/25



Rigid transformation in Z2

Discontinuities of rigid transformations in Z2

Discontinuities of rigid transformations on Z2

T (p) = D ◦ T (p) =
(

[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)
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Rigid transformation in Z2

Discrete rigid transformation

Definition
A discrete rigid transformation (DRT) is a set of all the rigid
transformations that generate the same image.

The parameter space (a, b, θ) is partitioned in the disjoint set of DRTs.
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Rigid transformation in Z2

Critical rigid transformations

Definition
A critical rigid transformation moves at least one point of Z2 to
a point on the vertical or horizontal half-grid.
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Parameter space subdivision

Tipping surfaces

Definition
The tipping surfaces are the surfaces associated to critical
transformations in the parameter space (a, b, θ) :

a = k +
1
2 + q sin θ − p cos θ, (vertical)

b = l + 1
2 − p sin θ − q cos θ, (horizontal)

for p, q, k, l ∈ Z.

Each tipping surface
is indexed by a triplet of integers (p, q, k) (resp. (p, q, l)),
indicates that the pixel (p, q) in a transformed image changes its
value from the one at (k, ∗) (resp. (∗, l)) in an original image to the
one at (k + 1, ∗) (resp. (∗, l + 1)).
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Parameter space subdivision

Example of tipping surfaces

Vertical surfaces Φpqk and horizontal ones Ψpql for p, q ∈ [0, 2] and k, l ∈ [0, 3].
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Parameter space subdivision

Tipping curves

Definition
The tipping curves are the orthogonal sections of vertical (resp.
horizontal) tipping surfaces with respect to the axis a (resp. the
axis b) on the plane :

a = k +
1
2 + q sin θ − p cos θ, (vertical)

b = l + 1
2 − p sin θ − q cos θ, (horizontal)

for p, q, k, l ∈ Z.
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Parameter space subdivision

Example of tipping curves

0
1

2
3

4
5

6

Vertical tipping curves φpqk for p, q ∈ [0, 2] and k ∈ [0, 3].
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Discrete rigid transformation graph

Graph of discrete rigid transformations

Definition
A graph of discrete rigid transformations (DRT graph) is a
graph G = (V ,E ) such that :

each vertex v ∈ V corresponds to a DRT,
each edge e ∈ E connects two DRTs sharing a tipping surface.

GCCV workshop 12/25



Discrete rigid transformation graph

Properties of discrete rigid transformation graph

Advantages

Discrete rigid transformations are computed in a fully
discrete process,

Their combinatorial structure is represented by a DRT
graph G whose complexity is O(N9) for images of size N ×N.
G models all the discrete rigid transformations with their
topological information such that :

a vertex corresponds to each transformed image,
an edge corresponds to one pixel change, i.e. a tipping surface,
(each edge posesses such pixel transition information).

It enables to generate exhaustively and incrementally all
the transformed images in a linear complexity.
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Discrete rigid transformation graph search

Registration as a combinatorial optimisation problem

Problem formulation
Given two images A and B of size N × N, our image registration consists
of finding a DRT such that

T ∗v = arg min
Tv∈T

d(A,Tv (B))

where T = {Tv | v ∈ V } of all the DRTs, and d is a given distance
between two images.

We have a choice for d ; here we use signed distance. (Boykov et al., 2006)

Disadvantage
Exhaustive search on DRT graph costs O(N9) in complexity.

Advantage
A local search on DRT graph can determine a local optimum.
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Discrete rigid transformation graph search

Local search on discrete rigid transformation graph

Algorithm (Local search)

Input : An initial DRT v0 ∈ V .

Output : A local optimum v̂ ∈ V .

Approach : Gradient descent in a DRT graph G = (V ,E ).

DRT graph provides
neighbourhood relation N(v),
efficient computation of d .
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Discrete rigid transformation graph search

Neighbourhood construction in a DRT graph

Algorithm (Obtain neighbourhood from a parameter set)

Input : A DRT v and its representative parameter triplet
P(v) = (av , bv , θv )

Output : Its neighbourhood N(v).

Approach : In the (dual) parameter space, find the closest tipping
surfaces (edges in the primal) around P(v) by using the properties
of dual DRTs, i.e. 3D cells (a- and b-convexity (Ngo et al., 2013)).
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Discrete rigid transformation graph search

Neighbourhood construction in a DRT graph (cont.)

Algorithm (Find a representative parameter set associated to a DRT)

Input : A DRT v.

Output : its representative parameter triplet P(v) = (av , bv , θv ).

Approach : In the (dual) parameter space, find P(v) from 4N2

tipping surfaces associated to v by using the properties of dual
DRTs, i.e. 3D cells ( a- and b-convexity (Ngo et al., 2013). )

Complexity : O(N2)
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Discrete rigid transformation graph search

DRT graph neighbourhood size

Theoretically, DRT graph neighbourhood size m = O(N2).

In practice, m is bounded by a small constant (observed
from 960 experiments for images of size from 5× 5 to 80× 80).
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Discrete rigid transformation graph search

k-Neighbourhood and its construction

Definition

Nk(v) = Nk−1(v) ∪
⋃

u∈Nk−1(v)
N(u)

where N1(v) = N(v).
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Experiments

Experiment 1

(a) Reference image (b) Target image (c) Initial solution

(d) 1-neighbourhood (e) 3-neighbourhood (f) (d) \ (e)
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Experiments

Experiment 1 (cont.)
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Experiments

Experiment 1 (cont.)
Transformed image sequence by using 3-neighbours.
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Experiments

Experiment 2

(a) Reference image (b) Target image

(c) 1-neighbourhood (d) 3-neighbourhood
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Experiments

Experiment 2 (cont.)
Sequences of distances and transformation parameters (only for
3-neighbofhoord) during iteration.
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Conclusion

Conclusion and perspectives

Conclusion

Purely discrete framework for 2D image registration under rigid
transformation was proposed, based on DRT graph.

A gradient descent procedure constructs the exact k-neighbourhood
at each step with a O(mkN2) time complexity.

In practice, m has a constant behavior with respect to N × N.

An efficient algorithm for computing the neighbours for the local
search was proposed with almost linear time complexity.

Perspectives

Improve the theoretical upper bound for m, which is so far O(N2).

Combine our proposed method with other combinatorial approaches.

Extend to higher dimensions, and gray-level or labeled images.
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