Combinatorial structure for rigid transformations in 2D digital images

Phuc NGO
Yukiko KENMOCHI
Nicolas PASSAT
Hugues TALBOT

November 15th 2011

Rigid transformations

Rigid transformation is a function $\mathcal{T}_{\text {ab } \theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, such that

$$
\binom{p^{\prime}}{q^{\prime}}=\binom{p \cos \theta-q \sin \theta+a}{p \sin \theta+q \cos \theta+b}
$$

where $a, b, \theta \in \mathbb{R}$ and $(p, q),\left(p^{\prime}, q^{\prime}\right) \in \mathbb{R}^{2}$.

Background

Applications

Motivation
Previous works
Contributions

Applications of rigid transformations: Pattern matching

(D. G. Lowe '04)

Applications

Motivation
Previous works
Contributions

Applications of rigid transformations: Image registration

MRI
(J.B.Antoine Maintz and Max A. Viergever '98)

Motivation

Our questions

- Rigid transformations can be performed in a discrete space?

Motivation

Our questions

- Rigid transformations can be performed in a discrete space?
- How many transformed images are there?

Motivation

Our questions

- Rigid transformations can be performed in a discrete space?
- How many transformed images are there?
- How to generate all of them?

Previous works: Combinatorial image matching

For a 2D image of size of $N \times N$, the complexity of the generated images under different classes of transformations are:

Transformations	Complexity
Rotation (A. Amir '06)	$O\left(N^{3}\right)$
Scaling (A. Amir '03)	$O\left(N^{3}\right)$
Rotation and scaling (C. Hundt '09)	$O\left(N^{6}\right)$
Linear transformations (C. Hundt '08)	$O\left(N^{12}\right)$
Affine transformations (C. Hundt '07)	$O\left(N^{18}\right)$
Projective transformations (C. Hundt '08)	$O\left(N^{24}\right)$

Previous works: Combinatorial image matching

For a 2D image of size of $N \times N$, the complexity of the generated images under different classes of transformations are:

Transformations	Complexity
Rotation (A. Amir '06)	$O\left(N^{3}\right)$
Scaling (A. Amir '03)	$O\left(N^{3}\right)$
Rotation and scaling (C. Hundt '09)	$O\left(N^{6}\right)$
Rigid transformations	$?$
Linear transformations (C. Hundt '08)	$O\left(N^{12}\right)$
Affine transformations (C. Hundt '07)	$O\left(N^{18}\right)$
Projective transformations (C. Hundt '08)	$O\left(N^{24}\right)$

Contributions

- We propose a discrete version of rigid transformations for 2D digital image of size $N \times N$,

Contributions

- We propose a discrete version of rigid transformations for 2D digital image of size $N \times N$,
- define a graph for representing the combinatorial structure of discrete rigid transformations,
- show that the complexity of the graph is $O\left(N^{9}\right)$,

Contributions

- We propose a discrete version of rigid transformations for 2D digital image of size $N \times N$,
- define a graph for representing the combinatorial structure of discrete rigid transformations,
- show that the complexity of the graph is $O\left(N^{9}\right)$,
- give an (exact computation) algorithm in linear time for construction this graph.

Digital rigid transformations

Rigid transformations for 2D digital images

Digital rigid transformation is the function $T_{a b \theta}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ such that

$$
\binom{p^{\prime}}{q^{\prime}}=\binom{\left\lfloor p \cos \theta-q \sin \theta+a+\frac{1}{2}\right\rfloor}{\left\lfloor p \sin \theta+q \cos \theta+b+\frac{1}{2}\right\rfloor}
$$

where $a, b, \theta \in \mathbb{R}$ and $(p, q),\left(p^{\prime}, q^{\prime}\right) \in \mathbb{Z}^{2}$.

Half-grid

Definition

The half grid \mathcal{H} is the set of points (x, y) on either of the lines $x=k+\frac{1}{2}$ or $y=I+\frac{1}{2}$ for any $k, I \in \mathbb{Z}$.

\mathcal{H} divides the space \mathbb{R}^{2} into unit squares, called pixels.

Critical transformations

Definition

A critical rigid transformation moves at least one integer point into a half-grid point.

The set of the critical transformations corresponds to the discontinuities of digital rigid transformations.

DRT

Definition

A discrete rigid transformation (DRT) is a set of all rigid transformations given the same digital transformed image.

The parameter space is partitioned into the disjoint sets of DRT.

Tipping surfaces

Definition

Tipping surfaces are the surfaces associated to the critical transformations in the parameter space (a, b, θ).

$$
\begin{array}{rcl}
\Phi_{p q k}: & \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
& (b, \theta) & \longmapsto a=k+\frac{1}{2}+q \sin \theta-p \cos \theta \\
\psi_{p q \prime}: & \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
& (a, \theta) & \longmapsto b=I+\frac{1}{2}-p \sin \theta-q \cos \theta
\end{array}
$$

for $p, q, k, I \in \mathbb{Z}$.

Background
Notions
Combinatorial structure
Conclusion

Digital rigid transformations
Half-grid
Critical transformations
DRT
Tipping surfaces and tipping curves

Example of tipping surfaces

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

Combinatorial structure for digital rigid transformations

Digital rigid transformations

Tipping surfaces and tipping curves

Tipping curves

Definition

Tipping curves are the orthogonal a-axis (resp. b-axis) cross-sections of $\Phi_{p q k}\left(r e s p . \psi_{p q l}\right)$ on the plane.

$$
\begin{aligned}
\phi_{p q k}: & \mathbb{R} \\
\theta & \longmapsto \mathbb{R} \\
& \longmapsto a=k+\frac{1}{2}+q \sin \theta-p \cos \theta \\
\psi_{p q l}: & \mathbb{R} \\
& \longrightarrow \mathbb{R} \\
\theta & \longmapsto b=1+\frac{1}{2}-p \sin \theta-q \cos \theta
\end{aligned}
$$

for $p, q, k, l \in \mathbb{Z}$.

Digital rigid transformations
Critical transformations
DRT
Tipping surfaces and tipping curves

Example of tipping curves

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

Combinatorial structure for digital rigid transformations

DRT graph

Definition

A discrete rigid transformation graph (DRT graph) is a graph $G=(V, E)$ such that

- each vertex in V corresponds to a DRT,
- each edge in E connects two vertices sharing a tipping surface.

DRT graph

Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

DRT graph

Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

Combinatorial structure for digital rigid transformations

DRT graph

Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

Combinatorial structure for digital rigid transformations

DRT graph

Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

Combinatorial structure for digital rigid transformations

Background

Conclusion

DRT graph

Example of 2D DRT graph for the tipping curves

Construction of 2D DRT graph for the tipping curves

Problem

- Input: A collection of tipping curves C.
- Output: The 2D DRT graph G_{C} for C.
- Approach: Sweeping method.

Conclusion

Sweeping approach

The sweeping method uses a vertical cut to sweep throughout C for constructing G_{C}.

Conclusion

Incremental graph construction

Proposition

Let G_{C} be the 2D DRT graph of C. Then we have

$$
G_{C}=\cup \sum_{i=0}^{m} \delta G_{C_{i}}
$$

where $\delta G_{C_{i}}$ is the partial graph at the i-th step and m is the total number of intersections.

Conclusion

Illustration for graph construction

Conclusion

Illustration for graph construction

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT

Combinatorial structure for digital rigid transformations

Conclusion

Illustration for graph construction

Conclusion

Illustration for graph construction

Conclusion

Illustration for graph construction

Degeneracies

Remark: Intersection of two tipping curves can be expressed by a quadratic irrational.

Exact comparison

We can compare the intersections with an exact computation using the continued fractions.

Complexity

Given a digital image of size $N \times N$

Properties of tipping curves

- There are $N^{2}(N+1)$ tipping curves.
- Two tipping curves can intersect at two points maximum.

Complexity of 2D DRT graph (vertices)

$$
\underset{\text { Initial graph }}{O\left(N^{3}\right)}+\underset{\text { Number of intersections }}{O\left(N^{6}\right)}=O\left(N^{6}\right)
$$

Complexity

Given a digital image of size $N \times N$

Properties of tipping curves

- There are $N^{2}(N+1)$ tipping curves.
- Two tipping curves can intersect at two points maximum.

Complexity of DRT graph (vertices)

$$
\begin{aligned}
& O\left(N^{3}\right) \times O\left(N^{3}\right) \\
& \text { Initial graph }
\end{aligned}+\underset{\text { Number of intersections }}{O\left(N^{6}\right) \times O\left(N^{3}\right)}=O\left(N^{9}\right)
$$

Conclusion

Experiments

Image size	\# Vertices
1×1	1
2×2	1033
3×3	29631
4×4	357421
5×5	2487053
6×6	12550225
7×7	48604267
8×8	160554101
9×9	457270393

Conclusion

- We proposed a discrete version of rigid transformations for 2D digital image of size $N \times N$,
- defined a graph for representing the combinatorial structure of discrete rigid transformations,
- showed that the complexity of the graph is $O\left(N^{9}\right)$,
- gave an (exact computation) algorithm in linear time for construction this graph.

Perspectives

- Extending the method for 3D digital image.
- Integrating topology information.
- Application of DRT graph for denoising problem, patch approach.

Bibliography

[1] Amir Amihood, Kapah Oren and Tsur Dekel, 2006.
[2] Amihood Amir, Ayelet Butman, Moshe Lewenstein, and Ely Porat, 2003.
[3] Hundt Christian, Liśkiewicz Maciej, and Nevries Ragnar, 2008.
[4] Hundt Christian, and Liśkiewicz Maciej, 2007.
[5] Hundt Christian, and Liśkiewicz Maciej, 2008.
[6] David G. Lowe, 2004.
[7] J.B.Antoine Maintz and Max A. Viergever, 1998.

