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Rigid transformations

Rigid transformation is a function Tabθ : R
2 → R

2, such that

(

p′

q′

)

=

(

p cos θ − q sin θ + a

p sin θ + q cos θ + b

)

where a, b, θ ∈ R and (p,q), (p′, q′) ∈ R
2.
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Applications of rigid transformations: Pattern matching

(D. G. Lowe ’04)
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Applications of rigid transformations: Image registration

(J.B.Antoine Maintz and Max A. Viergever ’98)
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Motivation

Our questions

Rigid transformations can be performed in a discrete space?
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Motivation

Our questions

Rigid transformations can be performed in a discrete space?

How many transformed images are there?
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Motivation

Our questions

Rigid transformations can be performed in a discrete space?

How many transformed images are there?

How to generate all of them?
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Previous works: Combinatorial image matching

For a 2D image of size of N × N, the complexity of the generated
images under different classes of transformations are:

Transformations Complexity

Rotation (A. Amir ’06) O(N3)
Scaling (A. Amir ’03) O(N3)
Rotation and scaling (C. Hundt ’09) O(N6)
Linear transformations (C. Hundt ’08) O(N12)
Affine transformations (C. Hundt ’07) O(N18)
Projective transformations (C. Hundt ’08) O(N24)
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Previous works: Combinatorial image matching

For a 2D image of size of N × N, the complexity of the generated
images under different classes of transformations are:

Transformations Complexity

Rotation (A. Amir ’06) O(N3)
Scaling (A. Amir ’03) O(N3)
Rotation and scaling (C. Hundt ’09) O(N6)
Rigid transformations ?
Linear transformations (C. Hundt ’08) O(N12)
Affine transformations (C. Hundt ’07) O(N18)
Projective transformations (C. Hundt ’08) O(N24)
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Contributions

We propose a discrete version of rigid transformations for 2D
digital image of size N × N,
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Contributions

We propose a discrete version of rigid transformations for 2D
digital image of size N × N,

define a graph for representing the combinatorial structure of
discrete rigid transformations,

show that the complexity of the graph is O(N9),
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Contributions

We propose a discrete version of rigid transformations for 2D
digital image of size N × N,

define a graph for representing the combinatorial structure of
discrete rigid transformations,

show that the complexity of the graph is O(N9),

give an (exact computation) algorithm in linear time for
construction this graph.
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Rigid transformations for 2D digital images

Digital rigid transformation is the function Tabθ : Z
2 → Z

2 such
that

(

p′

q′

)

=

(

⌊p cos θ − q sin θ + a + 1
2⌋

⌊p sin θ + q cos θ + b + 1
2⌋

)

where a, b, θ ∈ R and (p,q), (p′, q′) ∈ Z
2.
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Half-grid

Definition

The half grid H is the set of points (x , y) on either of the lines
x = k + 1

2 or y = l + 1
2 for any k , l ∈ Z.

H divides the space R
2 into unit squares, called pixels.
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Critical transformations

Definition

A critical rigid transformation moves at least one integer point
into a half-grid point.

The set of the critical transformations corresponds to the discontinuities of

digital rigid transformations.
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DRT

Definition

A discrete rigid transformation (DRT) is a set of all rigid
transformations given the same digital transformed image.

The parameter space is partitioned into the disjoint sets of DRT.
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Tipping surfaces

Definition

Tipping surfaces are the surfaces associated to the critical
transformations in the parameter space (a, b, θ).

∣

∣

∣

∣

Φpqk : R
2

−→ R

(b, θ) 7−→ a = k + 1
2
+ q sin θ − p cos θ,

∣

∣

∣

∣

Ψpql : R
2

−→ R

(a, θ) 7−→ b = l + 1
2
− p sin θ − q cos θ,

for p, q, k , l ∈ Z.
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Example of tipping surfaces
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Tipping curves

Definition

Tipping curves are the orthogonal a-axis (resp. b-axis)
cross-sections of Φpqk (resp. ψpql ) on the plane.

∣

∣

∣

∣

φpqk : R −→ R

θ 7−→ a = k + 1
2
+ q sin θ − p cos θ,

∣

∣

∣

∣

ψpql : R −→ R

θ 7−→ b = l + 1
2
− p sin θ − q cos θ,

for p, q, k , l ∈ Z.
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Critical transformations
DRT
Tipping surfaces and tipping curves

Example of tipping curves
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DRT graph

Definition

A discrete rigid transformation graph (DRT graph) is a graph
G = (V ,E ) such that

each vertex in V corresponds to a DRT,

each edge in E connects two vertices sharing a tipping surface.

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT Combinatorial structure for digital rigid transformations



Background
Notions

Combinatorial structure
Conclusion

DRT graph
Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT Combinatorial structure for digital rigid transformations



Background
Notions

Combinatorial structure
Conclusion

DRT graph
Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT Combinatorial structure for digital rigid transformations



Background
Notions

Combinatorial structure
Conclusion

DRT graph
Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT Combinatorial structure for digital rigid transformations



Background
Notions

Combinatorial structure
Conclusion

DRT graph
Construction
Complexity
Experiments

Example of DRT

P. NGO, Y. KENMOCHI, N. PASSAT and H. TALBOT Combinatorial structure for digital rigid transformations



Background
Notions

Combinatorial structure
Conclusion

DRT graph
Construction
Complexity
Experiments

Example of 2D DRT graph for the tipping curves
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Construction of 2D DRT graph for the tipping curves

Problem

Input: A collection of tipping curves C .

Output: The 2D DRT graph GC for C .

Approach: Sweeping method.
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Sweeping approach

The sweeping method uses a vertical cut to sweep throughout C
for constructing GC .
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Incremental graph construction

Proposition

Let GC be the 2D DRT graph of C . Then we have

GC = ∪
m
∑

i=0

δGCi

where δGCi
is the partial graph at the i -th step and m is the total

number of intersections.
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Degeneracies

Remark: Intersection of two tipping curves can be expressed by a quadratic irrational.

Exact comparison

We can compare the intersections with an exact computation using
the continued fractions.
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Complexity

Given a digital image of size N × N

Properties of tipping curves

There are N2(N + 1) tipping curves.

Two tipping curves can intersect at two points maximum.

Complexity of 2D DRT graph (vertices)

O(N3) + O(N6) = O(N6)
Initial graph Number of intersections
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Complexity

Given a digital image of size N × N

Properties of tipping curves

There are N2(N + 1) tipping curves.

Two tipping curves can intersect at two points maximum.

Complexity of DRT graph (vertices)

O(N3)× O(N3) + O(N6)× O(N3) = O(N9)
Initial graph Number of intersections
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Experiments

Image size # Vertices
1×1 1
2×2 1033
3×3 29631
4×4 357421
5×5 2487053
6×6 12550225
7×7 48604267
8×8 160554101
9×9 457270393

log(|V|)

log(N)
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Conclusion

We proposed a discrete version of rigid transformations for 2D
digital image of size N × N,

defined a graph for representing the combinatorial structure of
discrete rigid transformations,

showed that the complexity of the graph is O(N9),

gave an (exact computation) algorithm in linear time for
construction this graph.
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Perspectives

Extending the method for 3D digital image.

Integrating topology information.

Application of DRT graph for denoising problem, patch
approach.
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