Efficient dominant point detection based on discrete curve structure

Phuc Ngo Hayat Nasser Isabelle Debled-Rennesson

Université de Lorraine LORIA, UMR CNRS 7503, France

IWCIA 2015 - Kolkata, India

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
•0	0000	00000	0000	000

Motivation

- Shape analysis
- Pattern recognition
- Polygonal approximation

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
00	0000	00000	0000	000

Contents

MOTIVATION

BACKGROUND NOTIONS

DOMINANT POINT DETECTION

POLYGONAL SIMPLIFICATION

CONCLUSION

Discrete line and segment

Definition

A **discrete line** $\mathcal{D}(a, b, \mu, \omega)$ is the set of integer points (x, y) verifying $\mu \le ax - by < \mu + \omega$ where $a, b, \mu, \omega \in \mathsf{Z}$ and gcd(a, b) = 1.

Discrete line and segment

Definition

A **bounding discrete segment** of a set S_f of integer points is the discrete line $\mathcal{D}(a, b, \mu, \omega)$ containing all points of S_f .

Discrete line and segment

Definition

A bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ of S_f is **optimal** if its vertical (or horizontal) distance $\frac{\omega-1}{max(|a|,|b|)}$ is equal to the vertical (or horizontal) thickness of the convex hull of S_f .

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
00	000	00000	0000	000

Blurred segment

Definition

A sequence integer points S_f is a **blurred segment of width** ν if its optimal bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ has the vertical or horizontal distance less than or equal to ν .

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
00	000Ö	00000	0000	000

Blurred segment

Definition

A sequence integer points S_f is a **blurred segment of width** ν if its optimal bounding discrete segment $\mathcal{D}(a, b, \mu, \omega)$ has the vertical or horizontal distance less than or equal to ν .

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
	0000			

Blurred segment

Definition

A blurred segment $\nu BS(i, j, \nu)$ is **maximal**, and noted $MBS(i, j, \nu)$, iff $\neg BS(i, j + 1, \nu)$ and $\neg BS(i - 1, j, \nu)$.

- ▶ Input: A discrete curve *C* and a width *v*
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
	0000			

- ▶ Input: A discrete curve *C* and a width *v*
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
	0000			

- ▶ Input: A discrete curve *C* and a width *v*
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
	0000			

- ▶ Input: A discrete curve *C* and a width *v*
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
	0000			

- ▶ Input: A discrete curve *C* and a width *v*
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
	0000			

- ▶ Input: A discrete curve *C* and a width *v*
- ▶ Output: The decomposition $MBS_{\nu}(C)$ of *C*
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

- Input: A discrete curve C and a width ν
- Output: The decomposition $MBS_{\nu}(C)$ of C
- Algorithm: Computation the sequence of maximal blurred segments by incrementally adding (resp. removing) a pixel to (resp. from) the considering blurred segment

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
00	0000	00000	0000	000

Property

Let $MBS_{\nu}(C)$ be the maximal blurred segment decomposition of witdth ν of *C*: $MBS_{\nu}(C) = \{MBS(B_0, E_0, \nu), \dots, MBS(B_{m-1}, E_{m-1}, \nu)\}.$ Then, $B_0 < B_1 < \dots < B_{m-1}$ and $E_0 < E_1 < \dots < E_{m-1}.$

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
		00000		

Dominant point

Definition

A **dominant point** (corner point) on a curve is a point of local maximum curvature.

Dominant point detection [2]

Proposition

Dominant points of the curve is located in the **common zones** of successive maximal blurred segments.

Dominant point detection [2]

Heuristic strategy

Dominant point is detected as the **middle point** of each common zone of successive maximal blurred segments.

Dominant point detection [2]

Heuristic strategy

Dominant point is detected as the **middle point** of each common zone of successive maximal blurred segments.

 \implies This heuristic is effective, but not always optimal!

Pseudo curvature

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
		00000		

New strategy

Dominant point is detected as the point in the common zone with **minimum angle measure**.

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
		00000		

Input: *C* discrete curve of *n* points and a width ν **Output**: *D* set of dominant points

```
Begin
Build MBS_{\nu} = \{MBS(B_i, E_i, \nu)\}_{i=0}^{m-1}
n = |C|; m = |MBS_{\nu}|
q = 0; p = 1; D = \emptyset
while p < m do
   while E_a > B_v do
     p + +
   end while
   D = D \cup \min\{Angle(C_{B_a}, C_i, C_{E_{n-1}}) \mid i \in [\![B_{p-1}, E_a]\!]\}
   q = p - 1
end while
End
```

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
		00000		

Evaluation criteria of experimental results

- 1. Number of dominant points (nDP)
- 2. Compression ratio (CR)

$$CR = \frac{n}{nDP}$$

3. Integral sum of square errors (ISSE)

$$ISSE = \sum_{i=1}^{n} d_i^2$$

4. Maximum error (L_{∞})

$$L_{\infty} = max\{d_i\}_{i=1}^n$$

5. Figure of merit (FOM)

$$FOM = \frac{CR}{ISSE}$$

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
		00000		

Comparing results to Nguyen's method [2]

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
		00000		

Comparing results to Nguyen's method [2]

Curve	Method	nDP	CR	ISSE	L_{∞}	FOM
(Left)	Nguyen	20	20.2	236.806	3.536	0.0853
<i>n</i> = 404	Ours	20	20.2	150.314	1.539	0.1344
(Right)	Nguyen	43	5.86	68.896	1	0.0851
<i>n</i> = 252	Ours	43	5.86	57.582	1	0.1018

Polygonal simplification

Issue

Overmuch of dominant points detected due to the nature of the maximal blurred segment sequence defined on a discrete curve.

Solution

Elimination of dominant points which are less **important** with respect to the approximating polygon of the discrete curve using the ratio of the two folowing criteria :

- ► ISSE
- angle criterion

Polygonal simplification

Issue

Overmuch of dominant points detected due to the nature of the maximal blurred segment sequence defined on a discrete curve.

MotivationBackgroundDominant point detectionPolygonal simplificationConclusion0000000000000000000000

Algorithm of polygonal simplification

Input: *D* set of dominant points and *n* number of points on the simplifying polygon **Output**: New set of *n* dominant points

Begin for $i = 1 \to |D| - 1$ do $w(p_i) = ISSE(p_{i-1}, p_{i+1}) / Angle(p_{i-1}, p_i, p_{i+1})$ end for while |D| > n do $p_i = \min\{w(p_i) \mid p_i \in D\}$ $w(p_{i-1}) = ISSE(p_{i-2}, p_{i+1}) / Angle(p_{i-2}, p_{i-1}, p_{i+1})$ $w(p_{i+1}) = ISSE(p_{i-1}, p_{i+2} / Angle(p_{i-1}, p_{i+1}, p_{i+2}))$ $D = D \setminus \{p_i\}$ end while End

MotivationBackgroundDominant point detectionPolygonal simplificationConclusion000000000000000000

Comparing results to other methods

Curve	Method	nDP	CR	ISSE	L_{∞}	FOM
Chro-	Ours	14	4.286	5.116	0.8	0.838
mosome	Masood	12	5	7.76	0.88	0.65
<i>n</i> =60	Marji	12	5	8.03	0.895	0.623
	Teh	15	4	7.2	0.74	0.556

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
			0000	

Comparing results to other methods

Curve	Method	nDP	CR	ISSE	L_{∞}	FOM
	Ours	23	4.435	7.639	0.724	0.581
Semicircle	Masood	22	4.64	8.61	0.72	0.54
<i>n</i> =102	Marji	26	3.92	9.01	0.74	0.435
	Teh	22	4.64	20.61	1	0.225

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
			0000	

Experimental results

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
00	0000		0000	●00

Conclusion

Contributions

- Algorithm based on discrete structure of the curve
- Algorithm without heuristic but a simple measure of angle

Perspectives

- Parameter free method
- Adaptive-thickness

Motivation	Background	Dominant point detection	Polygonal simplification	Conclusion
				000

Thank your for your attention!

00 0000	00000	000	00 00•	

References

- A. Faure, L. Buzer, and F. Feschet, "Tangential cover for thick digital curves," *Pattern Recognition*, vol. 42, no. 10, pp. 2279–2287, 2009.
- T. P. Nguyen and I. Debled-Rennesson, "A discrete geometry approach for dominant point detection," *Pattern Recognition*, vol. 44, no. 1, pp. 32–44, 2011.
- A. Masood, "Dominant point detection by reverse polygonization of digital curves," *Image Vision Comput.*, vol. 26, no. 5, pp. 702–715, 2008.
- M. Marji and P. Siy, "Polygonal representation of digital planar curves through dominant point detection a nonparametric algorithm," *Pattern Recognition*, vol. 37, no. 11, pp. 2113–2130, 2004.
- C. Teh and R. Chin, "On the detection of dominant points on the digital curves," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 2, pp. 859–872, 1989.