AN ALGORITHM TO DECOMPOSE
 NOISY DIGITAL CONTOURS

UNIVERSITÉ
Phuc Ngo - Hayat Nasser - Isabelle Debled-Rennesson - Bertrand Kerautret

1. MOTIVATIONS

Arcs and segments are the most appearing primitives in images

- Detection of shapes
- medical imaging
- technical images
- manual drawings
- Character recognition
- manual sketches

- scanned documents Fig 1: Arc and segment detection of an image This decomposition allows a simple descriptor of object contours and facilitates their manipulation in image processing applications.

2. CONCEPTS \& METHOD

The proposed method consists in decomposing the contours extracted from images, called discrete curves into arcs and segments In particular, the decomposing algorithm aggregates mainly three following concepts:

1. Adaptive tangent cover (ATC) [1]: a discrete geometry tool allowing to study the geometrical characteristics of a curve
2. Dominant points (DP) [2]: the characteristic points of a curve allowing an approximation of the curve by a polygon
3. Tangent space (TS) [3]: a representation of the polygon issued by the dominant points of the curve allowing to detect the points on arcs and segments of the polygon

References

[1] P. Ngo, H. Nasser, I. Rennesson-Debled, and B. Kerautret. Adaptive tangential cover for noisy digital contours. In Proceeding of DGCI, volume LNCS 9647, 2016
[2] P. Ngo, H. Nasser, and I. Rennesson-Debled. Efficient dominant point detection based on discrete curve structure. In Proceeding of IWCIA, volume LNCS 9448, pages 143-156, 2015.
[3] T. P. Nguyen and I. Rennesson-Debled. Arc segmentation in linear time. In Proceeding of CAIP, volume LNCS 6854, pages 84-92, 2011.

3. PROPOSED ALGORITHM

4. SOURCE CODE

Download and installation:

Online demonstration:
http://ipol-geometry.1oria.fr//phuc/ipol_demo/RRPR_demo
Input: A file in sdp format containing several contours

x0 y0 x1 y1 ... xn yn \# Points of contour 1

xn+1 yn+1 xn+2 yn+2 ... xm ym \# Points of contour 2
Output: Several files in svg (or eps) format

_OutPts.svg	File of input points
_ATC.svg	Result of ATC computation
_DP.svg	Result of dominant point simplification
_OnlyArcSeg.svg	Arc and segment decomposition result

Code: Execution is named testContourDecom, to run the program on contour.sdp with samplingStep=1.0, maxScale $=10$, alphaMax $=0.78$, thickness $=0.2$, nbPointCircle $=3$ and isseTol=4.0
/ testContourDecom -i contour.sdp -d IMAGENEDIRECTORY
-samplingStep 1.0 --maxScale 10 -a 0.78 -t 0.2 -n 3 -s 4.0

Fig 6: Experiments on different types of noise and images

Fig 7: Experiments on the parameter sensibility

Fig 8: Borderline cases using default parameters

5. CONCLUSION \& PERSPECTIVES

- Algorithm to decompose a noisy curve into arcs and segments
- A better descriptor of the curve comparing to dominant points
- Extension to other types of primitive: ellipse, parabola, ect.
- Extension to 3D curves
- Integration of topological information into the decomposition
- Application to image processing tasks: shape reconstruction, character recognition, ect.

