Combinatorial Properties of Rigid Transformations in 2D Digital Images <u>Phuc NGO</u>, Yukiko KENMOCHI, Nicolas PASSAT and Hugues TALBOT Université Paris-Est, Laboratoire d'Informatique Gaspard-Monge, France

Motivations

Rigid transformations are frequently involved in image processing tasks. We study combinatorial aspects of rigid transformations in 2D digital images, in particular considering the following questions:

- Can rigid transformations be performed in a discrete space?
 - Yes! We propose a discrete version of rigid transformations for 2D digital images.
- What is the combinatorial structures of those transformations?
 - It is represented by a graph, which can be built by an (exact computation) algorithm.
- How many transformed images are there for a given image of size $N \times N$? – It is in the order of N^9 which is the complexity of the graph as well.

- Is it possible to generate all the transformed images?
 - Yes, by using the proposed graph.

Definitions

A rigid transformation is a function $\mathcal{T}_{ab\theta} : \mathbb{R}^2 \to \mathbb{R}^2$, such that

 $\left(\begin{array}{c}p'\\q'\end{array}\right) = \left(\begin{array}{c}p\cos\theta - q\sin\theta + a\\p\sin\theta + q\cos\theta + b\end{array}\right)$

where $a, b \in \mathbb{R}, \theta \in [0, 2\pi[$ and $(p, q), (p', q') \in \mathbb{R}^2$.

A digital rigid transformation is the function $T_{ab\theta} : \mathbb{Z}^2 \to \mathbb{Z}^2$ such that

 $\begin{pmatrix} p' \\ q' \end{pmatrix} = \begin{pmatrix} \left[p\cos\theta - q\sin\theta + a + \frac{1}{2} \right] \\ \left[p\sin\theta + q\cos\theta + b + \frac{1}{2} \right] \end{pmatrix}$

where $a, b \in \mathbb{R}, \theta \in [0, 2\pi[$ and $(p, q), (p', q') \in \mathbb{Z}^2$.

A **discrete rigid transformation** (DRT) is the set of all rigid transformations providing a same digitization of transformed grid of a given image.

Properties

Let (p, q, k) (resp. (p, q, l)) be the integer triplet modelling the tipping surface Φ_{pqk} (resp. Ψ_{pqk}) in Equation 1 (resp. 2).

Property 1. There exists a unique integer quadruple $(p, q, k, i) \in \mathbb{Z}^4$ for each tipping surface, where $i = \{0, 1\}$ indicates whether it is either a vertical or a horizontal tipping surface.

Let $F_{\phi}(\theta)$ and $F_{\psi}(\theta)$ denote two families of vertical and horizontal tipping surfaces respectively, such that for $\theta \in \mathbb{R}$

 $F_{\phi}(\theta) = \{ \Phi_{pqk}(\theta) \mid p, q, k \in \mathbb{Z} \}, \text{ and } F_{\psi}(\theta) = \{ \Psi_{pql}(\theta) \mid p, q, l \in \mathbb{Z} \}.$

Property 2. *The families of tipping surfaces* F_{ϕ} *and* $F_{\psi}(\theta)$ *are symmetric:*

$$F_{\phi}(\theta) = -F_{\phi}(\theta), \text{ and } F_{\phi}(\theta) = F_{\phi}(-\theta + m_1\frac{\pi}{4}), \quad \forall m_1 \in \mathbb{Z},$$

Tipping surfaces are the surfaces associated to the discontinuities of digital rigid transformations in the parameter space (a, b, θ) .

$$\begin{aligned}
\Phi_{pqk} : & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\
& (b,\theta) & \longmapsto & a = k + \frac{1}{2} + q \sin \theta - p \cos \theta,
\end{aligned} \tag{1}$$

$$\begin{vmatrix}
\Psi_{pql} : & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\
& & (a,\theta) & \longmapsto & b = l + \frac{1}{2} - p \sin \theta - q \cos \theta,
\end{vmatrix} (2)$$

for $p, q, k, l \in \mathbb{Z}$.

A discrete rigid transformation graph (DRT graph) is defined as a graph

$$F_{\psi}(\theta) = -F_{\psi}(\theta), \text{ and } F_{\psi}(\theta) = F_{\psi}(-\theta + m_2\frac{\pi}{4}), \quad \forall m_2 \in \mathbb{Z}.$$

Property 3. The families of tipping surfaces
$$F_{\phi}$$
 and $F_{\psi}(\theta)$ are periodic:
 $F_{\phi}(\theta) = F_{\phi}(\theta + m_1\frac{\pi}{2})$, and $F_{\phi}(\theta) = F_{\phi}(\theta) + m_2$, $\forall m_1, m_2 \in \mathbb{Z}$,
 $F_{\psi}(\theta) = F_{\psi}(\theta + m_3\frac{\pi}{2})$, and $F_{\psi}(\theta) = F_{\psi}(\theta) + m_4$, $\forall m_3, m_4 \in \mathbb{Z}$.

Property 4. *Given a image of size* $N \times N$ *, the family* F_{ϕ} *(resp.* F_{ψ} *) has:*

- $N^2(N+1)$ tipping surfaces,
- N^2 sets of vertical offset tipping surfaces,
- N + 1 vertically offset tipping surfaces in each set.

Property 5. The DRT graph G associated to an image of size $N \times N$ has a space complexity of $\mathcal{O}(N^9)$.

Property 6. Any two transformed images associated to two connected vertices of DRT graph differ by only one pixel.

G = (V, E), such that

- each vertex in *V* corresponds to a DRT,
- each edge in *E* connects two vertices sharing a tipping surface.

Property 7. *The smallest cycle of a DRT graph is of length 4.*

Property 8. Let $P(v_1, v_2)$ be the set of all the paths between two vertices v_1 and v_2 of DRT graph. For any path $p \in P(v_1, v_2)$, let |p| be the number of vertices in p, we have $|p| = min_{p' \in P(v_1, v_2)} \{|p'|\} + 2n$, for $n \in \mathbb{N}$.

Property 9. The minimum (resp. maximum) degree of vertices in a DRT graph is 6 (resp. $O(N^2)$).

Perspectives

- Extending the method for 3D digital images.
- Using DRT graph for image matching, registration problems.
- Topology preservation of images under rigid transformations.