Combinatorial Properties of Rigid Transformations in 2D Digital Images

Phuc NGO, Yukiko KENMOCHI, Nicolas PASSAT and Hugues TALBOT Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, France

UNIVERSITÉ
— PAPIS-EST

Motivations

Rigid transformations are frequently involved in image processing tasks. We study combinatorial aspects of rigid transformations in 2D digital images, in particular considering the following questions:

- Can rigid transformations be performed in a discrete space?
- Yes! We propose a discrete version of rigid transformations for 2D digital images.
-What is the combinatorial structures of those transformations?
- It is represented by a graph, which can be built by an (exact computation) algorithm.
- How many transformed images are there for a given image of size $N \times N$?
- It is in the order of N^{9} which is the complexity of the graph as well.
- Is it possible to generate all the transformed images?
- Yes, by using the proposed graph.

Definitions

A rigid transformation is a function $\mathcal{T}_{a b \theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, such that

$$
\binom{p^{\prime}}{q^{\prime}}=\binom{p \cos \theta-q \sin \theta+a}{p \sin \theta+q \cos \theta+b}
$$

where $a, b \in \mathbb{R}, \theta \in\left[0,2 \pi\left[\right.\right.$ and $(p, q),\left(p^{\prime}, q^{\prime}\right) \in \mathbb{R}^{2}$.

A digital rigid transformation is the function $T_{a b \theta}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ such that

$$
\left.\binom{p^{\prime}}{q^{\prime}}=\left(\begin{array}{c}
p \cos \theta-q \sin \theta+a+\frac{1}{2} \\
{\left[p \sin \theta+q \cos \theta+b+\frac{1}{2}\right.}
\end{array}\right]\right)
$$

where $a, b \in \mathbb{R}, \theta \in\left[0,2 \pi\left[\right.\right.$ and $(p, q),\left(p^{\prime}, q^{\prime}\right) \in \mathbb{Z}^{2}$.
A discrete rigid transformation (DRT) is the set of all rigid transformations providing a same digitization of transformed grid of a given image.

Tipping surfaces are the surfaces associated to the discontinuities of digital rigid transformations in the parameter space (a, b, θ).

$$
\begin{align*}
& \begin{aligned}
\Phi_{p q k}: & \mathbb{R}^{2} \\
(b, \theta) & \longmapsto \mathbb{R} \\
& \longmapsto a=k+\frac{1}{2}+q \sin \theta-p \cos \theta,
\end{aligned} \tag{1}\\
& \begin{array}{rlll}
\Psi_{p q l}: & \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
& (a, \theta) & \longmapsto & b=l+\frac{1}{2}-p \sin \theta-q \cos \theta,
\end{array} \tag{2}
\end{align*}
$$

for $p, q, k, l \in \mathbb{Z}$.

A discrete rigid transformation graph (DRT graph) is defined as a graph $G=(V, E)$, such that

- each vertex in V corresponds to a DRT,
- each edge in E connects two vertices sharing a tipping surface.

