Deciding equivalence properties in security protocols

Vincent Cheval, Steve Kremer, <u>Itsaka Rakotonirina</u>

INRIA Nancy Grand-Est, LORIA

Google SSO

Helios (e-voting)

TLS 1.3 (prior ver.)

BAC (e-passport)

WPA2 (wifi)

Google SSO

Armando et al. (2008)

TLS 1.3 (prior ver.)

Chothia and Smirnov (2010)

Helios (e-voting)

Cortier and Smyth (2011)

WPA2 (wifi)

Vanhoef and Piessens (2017)

The attacker can...

Intercept

But they do not...

Use side channels

The attacker can...

Read / Write

Intercept

Concurrent systems where dishonest parties have complete control over inter-process communication but cryptography is idealised

But they do not...

Dolev-Yao models

17

Security properties

Reachability

Bad event in one system

Authentication

(weak) secrecy

Equivalence

Privacy as indistinguishability

Anonymity

Vote privacy

Unlinkability

Security properties

Reachability V

Bad event in one system

Authentication

(weak) secrecy

Equivalence **?**

Privacy as indistinguishability

Anonymity

Vote privacy

Unlinkability

Tool support

Equivalence Privacy as indistinguishability

Tamarin

Maude-NPA

ProVerif

Equivalence

Privacy as indistinguishability

erif	Akiss	SAT-equiv	SPEC

Equivalence

Privacy as indistinguishability

		bounded number of protocol sessions				
erif	Akiss	SAT-equiv	SPEC			
се		crypto limited to a few				

(common) primitives

Contributions

DEEPSEC prover

may not terminate

approximation of equivalence (false attacks)

crypto limited to a few (common) primitives

bounded number of protocol sessions

Contributions

DEEPSEC prover

exact procedure for trace equivalence

crypto limited to a few (common) primitives

bounded number of protocol sessions

any subterm convergent constructors/destructors

Contributions

DEEPSEC prover

exact procedure for trace equivalence

+ running implementation

+ tight complexity analysis of the problem

crypto limited to a few (common) primitives

bounded number of protocol sessions

any subterm convergent constructors/destructors

ANALYSING FINITE PROCESSES

Public outputs

increases attacker's knowledge

Public inputs

crafted by the attacker

Public outputs

increases attacker's knowledge

infinite or **Public inputs** crafted by the attacker

Public outputs

increases attacker's knowledge

source of infiniteness

Public inputs crafted by the attacker

Public outputs

increases attacker's knowledge

Symbolic knowledge base

source of infiniteness

Public inputs crafted by the attacker

Symbolic inputs

finite

Handling the symbolic setting

Symbolic knowledge base

Symbolic inputs

+

Handling the symbolic setting

Symbolic knowledge base

to characterize symbolic traces

Symbolic inputs

Symbolic constraints

+

Handling the symbolic setting

Symbolic knowledge base

Symbolic constraints

+

to characterize symbolic traces

 $X \vdash^? x$

Deducibility constraints

ability for the attacker to craft x (modulo crypto primitives)

Symbolic inputs

Equations

equality of two terms

Decidability

Deducibility constraints

ability for the attacker to craft x (modulo crypto primitives)

Equations equality of two terms

Decidability

Deducibility constraints

ability for the attacker to craft x (modulo crypto primitives)

Equations equality of two terms

Ingredients

Most general solutions

of a symbolic trace

+

Tree of sets of symbolic traces

built by constraint solving equivalence = reachability of a **BAD** node

Comparison to other tools

	#Agents	AKISS	Satequiv	DEEPSEC
	6 🗸	<1s	<1s	<1s
Wide-Mouth Frog (strong secrecy)	12 🗸	22min	<1s	<1s
(strong secrecy)	23 🗸	OOM	<1s	3 s
Helios Vanilla (vote privacy)	6 🗲	47s		<1s
Helios Weeding	6 🗸	OOM		1 s
Helios Zero-KP	6 🗸	OOM		2s
Helios W revote	11 4	OOM		2s
Helios ZKP revote	11 🗸	OOM		2h 42min

cannot be specified out of memory OOM

Comparison to other tools

	#Agents	AKISS	Satequiv	DEEPSEC
	6 🗸	<1s	<1s	<1s
Wide-Mouth Frog (strong secrecy)	12 🗸	22min	<1s	<1s
(strong secrecy)	23 🗸	OOM	<1s	3s
Helios Vanilla (vote privacy)	6 4	47s		<1s
Helios Weeding	6 🗸	OOM		1s
Helios Zero-KP	6 🗸	OOM		2s
Helios W revote	11 🗲	OOM		2s
Helios ZKP revote	11 🗸	OOM		2h 42min

cannot be specified out of memory OOM

COULDN'T IT BE MORE EFFICIENT?

For subterm convergent crypto

PTIME

with fixed cryptographic primitives

coNP-complete

if no **else** branches + each honest agent uses a different channel

For subterm convergent crypto

PTIME

with fixed cryptographic primitives

in general

coNP-complete

if no **else** branches + each honest agent uses a different channel

But in practice?

Unlinkability

Vote privacy

But in practice?

Unlinkability

In practice, we check equivalence of processes with similar structure

Vote privacy

Observation

But in practice?

Unlinkability

Observation

In practice, we check equivalence of processes with similar structure

Vote privacy

Future work

Speed-up of the procedure in practical cases by using symmetry reductions

CONCLUSION

logical flaws of security protocols

logical flaws of security protocols

Exact Analysis

without approximations + full finite fragment

logical flaws of security protocols

Exact Analysis

without approximations + full finite fragment

"Optimal" Complexity

coNEXP-hardness of the problem

Implementation available at https://deepsec-prover.github.io

> logical flaws of security protocols

Exact Analysis

without approximations + full finite fragment

"Optimal" Complexity

coNEXP-hardness of the problem

