Reasoning about Aggregation of Information in Timing Attacks

Itsaka Rakotonirina

INRIA Nancy Grand-Est

Boris Köpf

Microsoft Research

Does it occur more than 10 times in TARATATATARATATATARATATA

Does it occur more than 10 times in TARATATATARATATATATA?

•

Does it occur more than 10 times in TARATATATARATATATATA?

Does it occur more than 10 times in TARATATATARATATATA?

• •

Q : Which letter was chosen?

- 1996 on RSA (Kocher)
- **1998** on RSA (Dhem *et al*.)
- 2005 on AES (Bernstein)
- 2007 on AES (Aciiçmez et al.)
- **2013** Lucky Thirteen (AlFardan, Paterson)
- 2014 Flush+Reload (Yarom, Falkner)
- **2016** on ECDH (Kaufmann *et al*.)
- **2018** Spectre (Kocher *et al*.)
- **2018** Meltdown (Lipp *et al.*)
- **2019** RIDL (van Schaik *et al.*)
- 2019 ZombieLoad (Schwarz et al.)

- **1996** on RSA (Kocher)
- 1998 on RSA (Dhem et al.)
- **2005** on AES (Bernstein)
- 2007 on AES (Acuiçmez et al.)
- **2013** Lucky Thirteen (AlFardan, Paterson)
- 2014 Flush+Reload (Yarom, Falkner)
- **2016** on ECDH (Kaufmann *et al.*)
- 2018 Spectre (Kocher et al.)
- 2018 Meltdown (Lipp et al.)
- **2019** RIDL (van Schaik *et al.*)

•

2019 ZombieLoad (Schwarz et al.)

A long-term secret, and queries to an oracle O : public input \mapsto execution time of a program Remote measurements

- 1996 on RSA (Kocher)
- 1998 on RSA (Dhem et al.)
- 2005 on AES (Bernstein)
- 2007 on AES (Aciiçmez et al.)
- **2013** Lucky Thirteen (AlFardan, Paterson)
- 2014 Flush+Reload (Yarom, Falkner)
- **2016** on ECDH (Kaufmann *et al*.)
- 2018 Spectre (Kocher et al.)
- 2018 Meltdown (Lipp et al.)
- **2019** RIDL (van Schaik *et al.*)

•

2019 ZombieLoad (Schwarz et al.)

A long-term secret, and queries to an oracle O : public input → execution time of a program Remote measurements

Exploit timing variations, and not the absolute execution time

Differential measurements

- 1996 on RSA (Kocher)
- **1998** on RSA (Dhem *et al.*)
- 2005 on AES (Bernstein)
- 2007 on AES (Aciiçmez et al.)
- **2013** Lucky Thirteen (AlFardan, Paterson)
- 2014 Flush+Reload (Yarom, Falkner)
- **2016** on ECDH (Kaufmann *et al*.)
- 2018 Spectre (Kocher et al.)
- 2018 Meltdown (Lipp et al.)
- **2019** RIDL (van Schaik *et al.*)
- 2019 ZombieLoad (Schwarz et al.)

A long-term secret, and queries to an oracle O : public input → execution time of a program Remote measurements

Exploit timing variations, and not the absolute execution time

Differential measurements

The secret is recovered chunk by chunk

Compositionality

Attacker model

Under what hypotheses?

Timing attacks

A long-term secret, and queries to an oracle O: public input \mapsto execution time of a program Remote measurements

> Exploit timing variations, and not the absolute execution time

Differential measurements

The secret is recovered chunk by chunk

Compositionality

capturing the essence of compositional attacks

Contributions

- A model of timing attacks
- Core hypotheses giving rise to efficient attacks under the form of independence properties
- Generic attack descriptions + cost analyses

A model for timing leakage

Long-term secret

constant across all invocations of the program

• Program

Public input chosen by the attacker

Observation e.g. timing as a real number

A simple example

1 for i = 0 to n - 1 do **if** k[i] ≠ m[i] **then** g() 2 3 done

A simple example

1 2 3 done

execution time proportional to:

for i = 0 **to** n - 1 **do if** k[i] ≠ m[i] **then** g()

 $t(k,m) = \sum_{i=1}^{n} k[i] \oplus m[i] = nb of bits where k and m differ$ Hamming distance

potential values of the long-term secret

$t(k,m) = \sum_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

potential values of the long-term secret

 $t(k,m) = \Sigma_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3}

potential values of the long-term secret

 $t(k,m) = \sum_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3} $\Rightarrow k \in \{ k' \mid t(k',000) = o \}$

potential values of the long-term secret

 $t(k,m) = \Sigma_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3} $\Rightarrow k \in \{ k' \mid t(k',000) = o \}$

potential values of the long-term secret

 $t(k,m) = \sum_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3}

 $\Rightarrow k \in \{ k' \mid t(k',000) = o \}$

 $001 \longrightarrow o' = t(k,001)$

potential values of the long-term secret

 $t(k,m) = \sum_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3}

 $\Rightarrow k \in \{ k' \mid t(k',000) = o \}$

001 \mapsto o' = t(k,001)

potential values of the long-term secret

 $t(k,m) = \sum_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3}

 \Rightarrow k \in { k' | t(k',000) = o }

 $001 \quad \longmapsto \quad o' = t(k,001)$

 $010 \quad \longmapsto \quad o'' = t(k,010)$

potential values of the long-term secret

 $t(k,m) = \sum_{i=1}^{3} k[i] \oplus m[i]$ Hamming distance

000 \mapsto o = t(k,000) \in {0,1,2,3}

 \Rightarrow k \in { k' | t(k',000) = o }

 $001 \quad \longmapsto \quad o' = t(k,001)$

 $010 \quad \longmapsto \quad o'' = t(k,010)$

k

potential values of the long-term secret

potential values of the long-term secret

Compute this equivalence relation over the set of secrets

static approach (security bounds)

Aggregation of information

potential values of the long-term secret

Compute this equivalence relation over the set of secrets

static approach (security bounds)

Aggregation of information

Given an oracle to t(k, .), retrieve the class enclosing k

dynamic approach (attacks)

A more practical model for timing leakage

Long-term secret

01-02 Difference of timings

m_1, m_2

Two public inputs

Differential measurements

• •

01-02

Less powerful attacker, but...

Closer to the models used in actual attack research

Compositionality for differential measurements

Compositional attacks

1 2 done 3

recovering k? with oracle to execution time $\mathbf{m} \mapsto \mathbf{t}(\mathbf{k},\mathbf{m})$

for i = 0 to n - 1 do**if** k[i] ≠ m[i] **then** g()

Compositional attacks

1 2 3 done

recovering k? with oracle to execution time **m** → **t(k,m)**

for i = 0 **to** n - 1 **do if** k[i] ≠ m[i] **then** g()

 $t(k,0) - t(k,2^{i})$

Compositional attacks

1 2 done 3

with oracle to execution time $\mathbf{m} \mapsto \mathbf{t}(\mathbf{k},\mathbf{m})$

if $t(k,0) < t(k,2^{i})$ **else** $K := K \cap \{ k | k[i] = 0 \}$

Exploiting the ith iteration

for i = 0 to n - 1 do**if** k[i] ≠ m[i] **then** g()

recovering k?

then $K := K \cap \{ k \mid k[i] = 1 \}$

1	$\mathbf{x} = \mathbf{m}$
2	for i = 0
3	$\mathbf{x} = \mathbf{f}_{i}(\mathbf{k})$
4	if Test _i
5	done

Sequential composition

- **to** n 1 **do**
- (,x)
- $_{i}(k,x) = 1$ then g()

	$\mathbf{x} = \mathbf{m}$
2	for i = 0
3	$\mathbf{x} = \mathbf{f}_{i}(\mathbf{k})$
4	if Test _i
5	done

to n – 1 do (,x) $_{i}(k,x) = 1$ then g()

- Goal: writing this code under the form
 - $p = p_0; p_2; ...; p_{n-1}$

	x = m
2	for i = 0
3	$x = f_i(k$
4	if Testi
5	done

 $\mathbf{p} = \mathbf{p}_0$

Sequential composition

to n – 1 do (,X) (k,x) = 1 then g()

Goal: writing this code under the form

 p_i computes $f_i : K \times M \rightarrow M$ with execution time $Test_i : K \times M \rightarrow \{0, 1\}$

 $p_{comp} = p_1; p_2$

Sequential composition

$p_{comp} = p_1; p_2$

 p_{ℓ} computes $f_{\ell}: K \times M \rightarrow M$ with execution time $t_{\ell}: K \times M \rightarrow O$

$f_{comp} = f_2 \circ f_1$ States are composed

$p_{comp} = p_1; p_2$

 p_{ℓ} computes $f_{\ell}: K \times M \rightarrow M$ with execution time $t_{\ell}: K \times M \rightarrow O$

$p_{comp} = p_1; p_2$

 p_{ℓ} computes $f_{\ell}: K \times M \rightarrow M$ with execution time $t_{\ell}: K \times M \rightarrow O$

$p_{comp} = p_1; p_2$

 p_{ℓ} computes $f_{\ell}: K \times M \rightarrow M$ with execution time $t_{\ell}: K \times M \rightarrow O$

$t_{comp} = t_1 + (t_2 \circ f_1)$ Timings are summed

——— Hypotheses —

t,t' timing functions

– Theorem -

$Leak(t+t') = Leak(t) \cap Leak(t')$

— Hypotheses —

• t,t' timing functions

Theorem

$Leak(t+t') = Leak(t) \cap Leak(t')$

Leak(t) = the equivalence relation on secrets characterising timing leakage

——— Hypotheses —

- t,t' timing functions
- X distribution of public inputs

Theorem $Leak(t+t') = Leak(t) \cap Leak(t')$ **Leak(t)** = the equivalence relation on secrets characterising timing leakage

 for all secrets k,k', the distributions t(k, X) and t'(k', X) are **independent**

—— Inputs

independent blocks $p_1 = (f_1, t_1), \dots, p_n = (f_n, t_n)$

oracle to t(k*, .) execution time of (p₁;...;p_n) for some k*

—— Inputs

independent blocks $p_1 = (f_1, t_1), \dots, p_n = (f_n, t_n)$

oracle to $t(k^*, .)$ execution time of $(p_1; ...; p_n)$ for some k*

Output

equivalence class of k* in Leak(t)

Inputs

independent blocks $p_1 = (f_1, t_1), \dots, p_n = (f_n, t_n)$

oracle to $t(k^*, .)$ execution time of $(p_1; ...; p_n)$ for some k*

Output

equivalence class of k* in Leak(t)

Algorithm K := set of all secrets M := sample of r random messages for i=1 to n do $K := K \cap Attack(\bar{t}_{i \mid K \times M})$ done return K

Inputs

independent blocks $p_1 = (f_1, t_1), \dots, p_n = (f_n, t_n)$

oracle to $t(k^*, .)$ execution time of $(p_1; ...; p_n)$ for some k*

Output

equivalence class of k* in Leak(t)

Algorithm K := set of all secrets M := sample of r random messages for i=1 to n do $\mathsf{K} := \mathsf{K} \cap \mathsf{Attack}(\overline{\mathsf{t}}_{\mathsf{i} \mid \mathsf{K} \times \mathsf{M}})$ done timing attack on $\overline{\mathbf{t}}_{\mathbf{i}} = \mathbf{t}_{\mathbf{i}} \circ \mathbf{f}_{\mathbf{i}-1} \circ \dots \circ \mathbf{f}_{\mathbf{1}}$ return K with oracle to **t(k*, .)**

Applications

Bruteforce

Random. attack

Cost analysis

for simple bit-serial operations, n bits

O(2^{*n*}) measurements

$O(n \log(n/\epsilon))$ random measurements (to guarantee proba of success $1 - \varepsilon$)

24

Bruteforce

Random. attack

 $O(n \log(n/\epsilon))$ random measurements (to guarantee proba of success $1 - \varepsilon$)

Cost analysis

for simple bit-serial operations, n bits

O(2ⁿ) measurements

complexity gain by exploiting the program structure

Explaining documented attacks as instances of the randomised attack VS independent blocks

Explaining documented attacks

as instances of the randomised attack VS independent blocks

1998 on RSA (Dhem et al.) -

- **Targets**: implem. of modular exponentiation with Montgomery multiplications
- **Exploits**: timing variations of squaring operations
- **Extracts**: all bits of the secret exponent but one

Explaining documented attacks

as instances of the randomised attack VS independent blocks

1998 on RSA (Dhem et al.) -

- **Targets**: implem. of modular exponentiation with Montgomery multiplications
- **Exploits**: timing variations of squaring operations
- **Extracts**: all bits of the secret exponent but one

- **Decomposition:**
- 1 block = 1 multiplication

Explaining documented attacks as instances of the randomised attack VS independent blocks

2007 on AES (Aciiçmez et al.)

Targets: implem. of AES with precomputed tables

Exploits: timing variations due to cache

Extracts: all bits of the encryption key

Decomposition:

1 block = 1 table lookup

A formal model for reasoning about timing attacks

A formal model for reasoning about timing attacks

A formal model for reasoning about timing attacks

- Compositionality results

Generic description of attacks / cost analysis

- **Compositionality results**
- Generic description of attacks / cost analysis
- Captures several documented attacks

A formal model for reasoning about timing attacks

- **Compositionality results**
- Generic description of attacks / cost analysis
- Captures several documented attacks
- Future: use as a basis for automating attack synthesis \rightarrow

A formal model for reasoning about timing attacks

