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Attacker model

Under what hypotheses?

Timing attacks

24

Exploit timing variations, and not the  
absolute execution time

Differential measurements

A long-term secret, and queries to an oracle 
O : public input  ↦ execution time of a program

Remote measurements

The secret is recovered chunk by chunk 

Compositionality
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Contributions

24

A model of timing attacks
capturing the essence of compositional attacks

Core hypotheses giving rise to efficient attacks
under the form of independence properties

Generic attack descriptions + cost analyses



A model for timing leakage
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Programk 
Long-term secret

m
Public input

o
Observation

constant across all invocations  
of the program

chosen by the attacker

e.g. timing as a real number
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A simple example

24

for i = 0 to n — 1 do
if k[i] ≠ m[i] then g()

done

1

2

3
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A simple example

24

t(k,m) = Σi=1  k[i] ⊕ m[i]
Hamming distance

execution time proportional to:

= nb of bits where k and m differn

for i = 0 to n — 1 do
if k[i] ≠ m[i] then g()

done

1

2

3
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Hamming distance

potential values of 
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Aggregation of information

24

Compute this equivalence relation 
over the set of secrets

static approach   
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Aggregation of information

24

Compute this equivalence relation 
over the set of secrets

static approach   
(security bounds)

Given an oracle to t(k, . ),  
retrieve the class enclosing k

dynamic approach 
(attacks)

potential values of 
the long-term secret



A  more practical  model for timing leakage
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Programk
Long-term secret

m1,m2
Two public inputs

o1-o2
Difference of timings
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Differential measurements

24

Programk

m1,m2

o1-o2

Less powerful attacker, but…

Compositionality

Closer to the models used
in actual attack research



Compositionality for differential measurements
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Compositional attacks
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recovering k? 
with oracle to execution time m ↦ t(k,m)

for i = 0 to n — 1 do
if k[i] ≠ m[i] then g()

done
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2
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Compositional attacks

24

recovering k? 
with oracle to execution time m ↦ t(k,m)

if t(k,0) < t(k,2i)

for i = 0 to n — 1 do
if k[i] ≠ m[i] then g()

done

1

2

3

-



�15

Compositional attacks

24

recovering k? 
with oracle to execution time m ↦ t(k,m)

if t(k,0) < t(k,2i)
then K := K ∩ { k | k[i] = 1 }
else  K := K ∩ { k | k[i] = 0 }

Exploiting the ith iteration

for i = 0 to n — 1 do
if k[i] ≠ m[i] then g()

done

1

2

3
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Sequential composition

24

for i = 0 to n — 1 do

if Testi(k,x) = 1 then g()
done

x = m

x = fi(k,x)

1

2

3

4

5
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Sequential composition
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for i = 0 to n — 1 do

if Testi(k,x) = 1 then g()
done

x = m

x = fi(k,x)

1

2

3

4

5

p = p0; p2 ; … ; pn-1

Goal: writing this code under the form
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Sequential composition

24

for i = 0 to n — 1 do

if Testi(k,x) = 1 then g()
done

x = m

x = fi(k,x)

1

2

3

4

5

p = p0; p2 ; … ; pn-1

Goal: writing this code under the form

pi computes fi : K x M →M with
execution time Testi : K x M → {0,1}
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Sequential composition
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pcomp  =  p1 ; p2
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Sequential composition

24

pcomp  =  p1 ; p2

fcomp  =  f2 ◦ f1

States are composed
tcomp  =  t1 + (t2 ◦ f1)

Timings are summed

pℓ computes fℓ : K x M →M with
execution time tℓ : K x M →O

composition of public values, 
i.e. (f ◦ g)(k,m) = f(k, g(k,m))
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Key hypothesis: independence

24

Theorem

Hypotheses

Leak(t+t’) = Leak(t) ⋂ Leak(t’)

t,t’ timing functions•

X distribution of public inputs•

for all secrets k,k’, the distributions
t(k, X) and t’(k’, X) are independent

•

Leak(t) = the equivalence relation on  
secrets characterising timing leakage



�19

Randomised compositional attack

24



�19

Randomised compositional attack

24

Inputs

oracle to t(k*, .)  execution time of (p1;…;pn)

independent blocks p1 = (f1,t1) ,…,pn = (fn,tn)

for some k*
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Inputs

oracle to t(k*, .)  execution time of (p1;…;pn)

independent blocks p1 = (f1,t1) ,…,pn = (fn,tn)

for some k*

Output
equivalence class of k* in Leak(t)



K := set of all secrets
M := sample of r random messages
for i=1 to n do

K := K ∩ Attack (t̄i | K x M)
done
return K
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Randomised compositional attack

24

Inputs

oracle to t(k*, .)  execution time of (p1;…;pn)

independent blocks p1 = (f1,t1) ,…,pn = (fn,tn)

for some k*

Output
equivalence class of k* in Leak(t)

Algorithm

timing attack on  
t̄i  = ti  ◦ fi-1 ◦ … ◦ f1 

with oracle to t(k*, . )



Applications
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for simple bit-serial operations, n bits

Bruteforce O(2n) measurements

Random. attack O(n log(n/ε)) random measurements 
(to guarantee proba of success 1 – ε)

Cost analysis

24
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for simple bit-serial operations, n bits

Bruteforce O(2n) measurements

Random. attack O(n log(n/ε)) random measurements 
(to guarantee proba of success 1 – ε)

Cost analysis

24

complexity gain by  
exploiting the  

program structure
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Explaining documented attacks

24

as instances of the randomised attack VS independent blocks

on RSA  (Dhem et al.)1998

Targets:

Extracts:

Exploits:

implem. of modular exponentiation 
with Montgomery multiplications

all bits of the secret exponent but one
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Explaining documented attacks

24

as instances of the randomised attack VS independent blocks

Targets:

Extracts:

Exploits:

on AES  (Acıiçmez et al.)2007

implem. of AES with precomputed tables 

all bits of the encryption key

timing variations due to cache

1 block = 1 table lookup
Decomposition:
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Conclusion

24

A formal model for reasoning about timing attacks

Compositionality results

Captures several documented attacks

Generic description of attacks / cost analysis

Future: use as a basis for automating attack synthesis


