
Monotonicity Inference for
Higher-Order Formulas

Jasmin Christian Blanchette? and Alexander Krauss

Institut für Informatik, Technische Universität München, Germany
{blanchette,krauss}@in.tum.de

Abstract. Formulas are often monotonic in the sense that if the formula is satis-
fiable for given domains of discourse, it is also satisfiable for all larger domains.
Monotonicity is undecidable in general, but we devised two calculi that infer it in
many cases for higher-order logic. The stronger calculus has been implemented in
Isabelle’s model finder Nitpick, where it is used to prune the search space, leading
to dramatic speed improvements for formulas involving many atomic types.

1 Introduction

Formulas occurring in logical specifications often exhibit monotonicity in the sense that
if the formula is satisfiable when the types are interpreted with sets of given (positive)
cardinalities, it is still satisfiable when these sets become larger. Consider the following
formulas, in which superscripts indicate types:

1. ∃xα y. x 6= y
2. f xα = x ∧ f y 6= y
3. (∀xα. f x = x) ∧ f y 6= y

4. {yα}= {z}
5. ∃xα y. x 6= y ∧ ∀z. z = x ∨ z = y
6. ∀xα y. x = y

Formulas 1 and 2 are satisfiable iff |α| > 1, formula 3 is unsatisfiable, formula 4 is
satisfiable for any cardinality of α, formula 5 is satisfiable iff |α|= 2, and formula 6 is
satisfiable iff |α|= 1. Formulas 1 to 4 are monotonic, whereas 5 and 6 are not.

Monotonicity can be exploited in model finders to prune the search space. Model
finders are automatic tools that generate finite set-theoretic models of formulas. They
are useful for exploring a specification (e.g., to check if a set of axioms is satisfiable)
and for producing counterexamples. Notable model finders include Paradox [5], MACE
[11], and SEM [19] for first-order logic (FOL), Alloy [9] and Kodkod [17] for first-order
relational logic, and Nitpick [3] and Refute [18] for higher-order logic (HOL).

Model finders for many-sorted or typed logics typically work by systematically enu-
merating the domain cardinalities for the atomic types (type variables and other uninter-
preted types) occurring in the formula. To exhaust all models up to a given cardinality
bound k for a formula involving n atomic types, a model finder iterates through kn com-
binations of cardinalities and must consider all models for each of these combinations.
In general, this exponential behavior is necessary for completeness, since the formula
may require a model with specific cardinalities. However, if the formula is monotonic,
it is sufficient to consider only the models in which all types have cardinality k.
? Research supported by the DFG grant Ni 491/11-1.

Monotonicity occurs surprisingly often in practice. As a real-world example, con-
sider the specification of a hotel key card system with recordable locks [8, pp. 299–306;
13]. Such a specification involves rooms, guests, and keys, modeled as distinct atomic
types. A desirable property of the system is that only the occupant of a room may un-
lock it. Clearly, a counterexample requiring one room, two guests, and four keys will
still be a counterexample if more rooms, guests, or keys are available.

In this paper, we present two calculi for detecting monotonicity of HOL formu-
las. The first calculus (Sect. 5) is based on the idea of tracking the use of equality
and quantifiers. Although useful on its own, it mainly serves as a stepping stone for a
second, refined calculus (Sect. 6), which uses a type system to detect the ubiquitous
“sets as predicates” idiom and treats it specially. The soundness proof of the refined
calculus explicitly relates models of different sizes. Both calculi are readily adapted to
handle inductive datatypes (Sect. 7), which are pervasive in HOL formalizations. Our
evaluation is done in the context of Nitpick (Sect. 8), a counterexample generator for Is-
abelle/HOL [14]. Although the focus is on HOL, the approach could be adapted to any
logic that provides unbounded quantification, such as many-sorted FOL with equality.

2 Related Work

In plain first-order logic without equality, every formula is monotonic, since it is impos-
sible to express an upper bound on the cardinality of the models and hence any model
can be extended to a model of arbitrarily larger cardinality. This monotonicity property
is essentially a weak form of the upward Löwenheim–Skolem theorem.

When equality is added, nonmonotonic formulas follow suit. For example, the for-
mula ∀x y. x = y is satisfied only by singleton models. Nonetheless, ∀x y. x = y −→
P(x,y) is monotonic, because equality occurs only negatively. Distinguishing between
positive and negative occurrences of equality is a natural syntactic criterion for detect-
ing monotonicity, and our approach is based on this idea.

Moving to higher-order logic introduces new complications. Since HOL is typed,
we are interested in monotonicity with respect to a given type variable or some other
uninterpreted type α. Moreover, our calculi must cope with occurrences of α in nested
function types such as (α→β)→β and in datatypes such as α list. We are not aware of
any previous work on detecting monotonicity for HOL.

In the first-order world, Alloy constitutes an interesting case in point. Although Al-
loy’s logic is unsorted, models must give a semantics to “primitive types,” which are sets
of uninterpreted atoms. Early versions of the Alloy language ensured monotonicity with
respect to the primitive types by providing only bounded quantification and disallowing
explicit references to the sets that denote the types [9]. Monotonicity has been lost in
more recent versions of the language, which allow such references [8, p.165]. Nonethe-
less, many Alloy formulas are monotonic, notably the existential–bounded-universal
class of formulas studied by Kuncak and Jackson [10].

For some logics, small model theorems give an upper bound on the cardinality of
a sort [4], primitive type [12], or variable’s domain [15]. If no model exists below that
bound, no larger models exist. Paradox and Alloy exploit such theorems to speed up the
search. Our approach is complementary and could be called a “large model” theorem.

3 Higher-Order Logic

Our presentation of HOL is very similar to that of Andrews [1], but instead of a single
type ι of individuals, we use type variables α, β, γ to denote uninterpreted types.

Definition 3.1 (Syntax). The types and terms of HOL are that of the simply-typed
λ-calculus, augmented with constants and a special type o of Booleans:

Types: Terms:
σ ::= o (Boolean type) t ::= xσ (variable)

| α (type variable) | cσ (constant)
| σ→σ (function type) | t t (application)

| λxσ. t (abstraction)

The function arrow associates to the right, reflecting the left-associativity of application.
We assume throughout that terms are well-typed using the standard typing rules and
often omit the type superscripts. A formula is a term of type o.

Unlike in Gordon’s version of HOL [6], on which several popular proof assistants
are based [7, 14, 16], we treat polymorphism in the metalanguage: Polymorphic con-
stants such as equality are expressed as collections of constants, one for each type.

Types and terms are interpreted in the standard set-theoretic way, relative to a type
environment that fixes the interpretation of type variables.

Definition 3.2 (Scope). A scope S is a function from type variables to nonempty sets
(domains). We write S ≤α S ′ to mean that S(α)⊆ S ′(α) and S(β) = S ′(β) for all β 6= α.

The set S(α) can be finite or infinite, although for model finding we usually have finite
domains in mind. In contexts where S is clear, the cardinality of S(α) is written |α| and
the elements of S(α) are denoted by 0, 1, 2, etc. Often, scopes are also called “type
environments”; our terminology here is consistent with Jackson [9].

Definition 3.3 (Interpretation of Types). The interpretation JσKS of type σ in scope
S is defined recursively by the equations

JoKS = {⊥,>} JαKS = S(α) Jσ→τKS = JσKS → JτKS

where A→B denotes the set of (total) functions from A to B.

Definition 3.4 (Models). A constant model is a scope-indexed family of functions MS
that map each constant cσ to a value MS (c) ∈ JσKS . A variable assignment A for
scope S is a function that maps each variable xσ to a value A(x) ∈ JσKS . A model
for S is a triple M = (S ,A,M), where A is a variable assignment for S and M is a
constant model.

Definition 3.5 (Interpretation of Terms). Let M = (S ,A,M) be a model. The inter-
pretation JtKM of a term t is defined recursively by the equations

JxK(S ,A,M) = A(x) Jt uK(S ,A,M) = JtK(S ,A,M)
(
JuK(S ,A,M)

)
JcK(S ,A,M) = MS (c) Jλxσ. tK(S ,A,M) = a∈ JσKS 7→ JtK(S ,A[x 7→a],M).

If t is a formula and JtKM =>, we say that M is a model of t, written M � t. A formula
is satisfiable for scope S if it has a model for S.

We use constants to express the logical primitives, whose interpretation is fixed a priori
for each scope. Our definition of HOL is fairly minimalistic, with equality (=σ�σ�o

for any σ) and implication (−→o�o�o) as primitive constants. In the sequel, we always
use the standard constant model M̂, which interprets implication and equality in the
standard way, and we omit the last component of (S ,A, M̂).

The remaining connectives and quantifiers are defined as abbreviations in terms of
implication and equality. Abbreviations also cater for set-theoretic notations.

Notation 3.1 (Logical Abbreviations).

True ≡ (λxo. x) = (λx. x) p ∧ q ≡ ¬(p−→¬q)
False ≡ (λxo. x) = (λx. True) p ∨ q ≡ ¬ p−→ q

¬ p ≡ p−→ False ∀xσ. p ≡ (λx. p) = (λx. True)
p 6= q ≡ ¬ p = q ∃xσ. p ≡ ¬∀x. ¬ p.

Notation 3.2 (Set Abbreviations).

/0 ≡ λx. False s ∩ t ≡ λx. s x ∧ t x x ∈ s ≡ s x

U ≡ λx. True s ∪ t ≡ λx. s x ∨ t x insert x s ≡ (λy. y = x) ∪ s.

s− t ≡ λx. s x ∧ ¬ t x

The constants /0 and insert can be seen as constructors for finite sets. Following tradition,
we write {x1, . . . , xn} rather than insert x1 (. . .(insert xn /0) . . .).

4 Monotonicity

The introduction gave an informal definition of monotonicity. A more rigorous defini-
tion follows.

Definition 4.1 (Monotonicity). A formula t is monotonic w.r.t. a type variable α if for
all scopes S, S ′ such that S ≤α S ′, if t is satisfiable for S, it is also satisfiable for S ′. It
is antimonotonic w.r.t. α if its negation is monotonic w.r.t. α.

Example 4.1. If you have five Swedish friends and all five are blond, the existential
statement “at least one of your Swedish friends is dark-haired” is monotonic—it will
either stay false or become true as you expand your circle of Nordic friends. Inversely,
the universal statement “all your Swedish friends are blond” is antimonotonic—it will
either stay true or become false as you make new friends. �

Theorem 4.1 (Undecidability). Monotonicity w.r.t. α is undecidable.

Proof (reduction). For any closed HOL formula t, let t? ≡ t ∨ ∀xα y. x = y, where α
does not occur in t. Clearly, t? must be monotonic if t is valid, since the second disjunct
becomes irrelevant in this case. If t is not valid, then t? cannot be monotonic, since it
is true for |α| = 1 due to the second disjunct but false for some larger scopes. Thus,
validity in HOL (which is undecidable) can be reduced to monotonicity. ut
The best we can do is approximate monotonicity.

Convention. In the rest of this paper, we denote by α̃ the type variable w.r.t. which we
consider monotonicity.

5 A Simple Calculus

This section presents the simple calculus MF for inferring monotonicity. This simple
calculus serves as a stepping stone toward the more general calculus MFS of Sect. 6.
(The ‘F’ in MF and MFS stands for “function,” whereas ‘S’ stands for “set.”) Since the
results in this section are subsumed by those of the next section, we omit the proofs.

5.1 Extension Relation and Constancy

We first introduce a concept that is similar to monotonicity but that applies to terms of
any type—the notion of constancy. Informally, a term is constant if it denotes essen-
tially the same value before and after we enlarge the scope. What it means to denote
“essentially the same value” can be formalized using an extension relation v, which
relates elements of the smaller scope to elements of the larger scope.

For types such as o and α̃, this is easy: Any element of the smaller scope is also
present in the larger scope and can serve as an extension. In the case of functions, we
expect that the extended function coincides with the original one where applicable;
elements not present in the smaller scope may be mapped to any value. For example,
when going from |α̃| = 1 to |α̃| = 2, the function f α̃�o = [0 7→ >] can be extended to
either g = [0 7→ >, 1 7→ ⊥] or g′ = [0 7→ >, 1 7→ >]. For now, we take the liberal view
that both g and g′ are “essentially the same value” as f , which we write f vα̃→o g and
f vα̃→o g′. We will reconsider this decision in Sect. 6.

Definition 5.1 (Extension Relation). Let σ be a type, and let S, S ′ be scopes such
that S ≤α̃ S ′. The extension relation vσ ⊆ JσKS × JσKS ′ for S and S ′ is defined by the
following equivalences:

avσ b iff a = b if σ is o or a type variable

f vσ→τ g iff ∀a b. avσ b−→ f (a)vτ g(b).

Definition 5.2 (Model Extension). Let M = (S ,A) and M ′ = (S ′,A′) be models. The
model M ′ extends M , written M v M ′, if S ≤α̃ S ′ and A(x)vσ A′(x) for all xσ.

The symbol vσ is read “is extended by.” Fig. 5.1 illustrates vσ for various types. We
represent a function from σ to τ by a |σ|-tuple such that the nth element for σ (accord-
ing to the lexicographic order, with ⊥ < > and n < n + 1) is mapped to the nth tuple
component. Observe that vσ is always left-total (∀a.∃b. a vσ b) and left-unique (i.e.,
injective: ∀a a′ b. a vσ b ∧ a′ vσ b −→ a = a′). It is also right-total (i.e., surjective:
∀b.∃a. avσ b) if α̃ does not occur positively in σ (e.g., σ= α̃→o), and right-unique
(i.e., functional: ∀a b b′. a vσ b ∧ a vσ b′ −→ b = b′) if α̃ does not occur negatively
(e.g., σ= o→ α̃). These properties are crucial to the correctness of our calculus.

Definition 5.3 (Constancy). A term tσ is constant if JtKM vσ JtKM ′ for all models M ,
M ′ such that M v M ′.

Example 5.1. f α̃�α̃ x is constant. Proof: Let A(x) = a1 and A(f)(a1) = a2. For any
M ′ = (S ′,A′) that extends M = (S ,A), we have A(x)vα̃ A′(x) and A(f)vα̃→α̃ A′(f).
By definition of vσ, A′(x) = a1 and A′(f)(a1) = a2. Thus, J f xKM = J f xKM ′ = a2. �

(a) α̃ (right-unique) (b) o→ α̃ (right-unique)

(c) α̃→o (right-total) (d) α̃→ α̃ (neither)

Figure 5.1. vσ for various types σ, with |S(α̃)|= 2 and |S ′(α̃)|= 3

Example 5.2. xo�α̃ = y is constant. Proof: For any M ′ = (S ′,A′) that extends M =
(S ,A), we have A(x) vo→α̃ A′(x) and A(y) vo→α̃ A′(y). By definition of vσ, A′(x) =
A(x) and A′(y) = A(y). Hence, Jx = yKM = Jx = yKM ′ . �

Example 5.3. f α̃�o = g is not constant. Counterexample: |S(α̃)| = 1, A(f) = A(g) =
(>), |S ′(α̃)| = 2, A′(f) = (>,⊥), A′(g) = (>,>). Then J f = gK(S ,A) = > but J f =
gK(S ′,A′) =⊥. �

More generally, we note that variables are always constant, and constancy is preserved
by application and λ-abstraction. On the other hand, the equality symbol =σ�σ�o is
constant only if α̃ does not occur negatively in σ. Moreover, since vo is the identity
relation, constant formulas are both monotonic and antimonotonic.

5.2 Syntactic Criteria

We syntactically approximate constancy, monotonicity, and antimonotonicity with the
predicates K(t), M+(t), and M–(t), respectively. The goal is to derive M+(t) for the
formula t we wish to prove monotonic. The predicates depend on TV+(σ) and TV–(σ),
which collect the positive and negative type variables of σ.

Definition 5.4 (Positive and Negative Type Variables). The sets of positive type vari-
ables TV+(σ) and of negative type variables TV–(σ) of a type σ are defined as follows:

TV+(α) = {α} TVs(o) = /0
TV–(α) = /0 TVs(σ→τ) = TVs(σ) ∪ TVs(τ).

If s = +, then s denotes –; otherwise, s denotes +.

Definition 5.5 (Constancy and Monotonicity Rules). The predicates K(t), M+(t),
and M–(t) are inductively defined by the rules

K(x) K(−→)

α̃ /∈ TV–(σ)

K(=σ�σ�o)

K(tσ�τ) K(uσ)

K(t u)

K(t)

K(λx. t)

K(t)

Ms(t)

Ms(t) Ms(u)

Ms(t −→ u)

K(tσ) K(uσ)

M–(t = u)

M–(t)

M–(∀x. t)

M+(t) α̃ /∈ TV+(σ)

M+(∀xσ. t)
.

The rules for K simply traverse the term structure and ensure that equality is not used
on types in which α̃ occurs positively. The first two rules for M+ and M– are easy to
justify semantically. The other three are more subtle:

– The M–(t = u) rule is sound because the extensions of distinct elements are always
distinct (since vσ is left-unique).

– The M–(∀x. t) rule is sound because if enlarging the scope makes x range over new
elements, these cannot make ∀x. t become true if it was false in the smaller scope.

– The M+(∀x. t) rule is the most difficult one. If α̃ does not occur at all in σ, then
monotonicity is preserved. Otherwise, there is the danger that the formula t is true
for all values a ∈ JσKS but not for some b ∈ JσKS ′ . However, in Sect. 6 we will
show that this can only happen for b’s that do not extend any a, which can only
exist if α ∈ TV+(σ).

Example 5.4. The following derivation shows that ∀xα�o. P x is monotonic w.r.t. α:

K(P) K(x)

K(P x)

M+(P x) α /∈ TV+(α→o)

M+(∀xα�o. P x) �

Example 5.5. Formula 4 from Sect. 1 is monotonic, but M+ fails on it:

α /∈ TV–(α→o)

K(=(α�o)�(α�o)�o)

...

K({y})
K((=) {y})

...

K({z})
K({y}= {z})

M+({y}= {z})

The assumption α /∈ TV–(α→o) cannot be discharged, since TV–(α→o) = {α}. �

The last example exhibits a significant weakness of the calculus MF. HOL identi-
fies sets with predicates, yet M+ prevents us from comparing terms of type α̃→ o for
equality. This happens because the extension of a function of this type is not unique
(cf. Fig. 5.1(c)), and thus equality is generally not preserved as we enlarge the scope.

This behavior of vα̃→o is imprecise for sets, as it puts distinct sets in relation; for
example, {0} vα̃→o {0,2} if S(α̃) = 2 and S ′(α̃) = 3. We would normally prefer each
set to admit a unique extension, namely the set itself. This would make set equality
constant. The next section introduces a refined calculus that formalizes this idea.

6 A Refined Calculus

To solve the problem sketched above, we introduce an alternative version of vσ such
that the extension of a set is always the set itself. Rephrased in terms of functions, this
means that the extended function must return ⊥ for all elements that are “new” in the
larger scope. Fig. 6.1 compares this more conservative “set” approach to the liberal
“functional” approach of Sect. 5; in subfigure (b), it may help to think of (⊥,⊥) and
(⊥,⊥,⊥) as /0, (>,⊥) and (>,⊥,⊥) as {0}, and so on.

(a) functional view (right-total) (b) set view (right-unique)

Figure 6.1. vα̃→o with S(α̃) = 2 and S ′(α̃) = 3

With this approach, we could easily infer that {y} = {z} is constant. However, the
wholesale application of this principle would have pernicious consequences on con-
stancy: Semantically, the universal set U α̃�o, among others, would no longer be con-
stant; syntactically, the introduction rule for K(λx. t) would no longer be sound.

What we propose instead is a hybrid approach that supports both forms of exten-
sions in various combinations. The required bookkeeping is conveniently expressed as a
type system, in which each function arrow is annotated with F (“function”) or S (“set”):

Definition 6.1 (Annotated Types). An annotated type is a HOL type in which each
function arrow carries an annotation X ∈ {F,S}.

The annotations have no influence on the interpretation of types as sets of values, which
is unchanged. Instead, they specify how v should extend functional values to larger
scopes. While F-functions are extended as in the previous section, the extension of an
S-function must map all new values to ⊥.

6.1 Refined Extension Relation

The extension relation vσ distinguishes between the two kinds of arrows. The F case
coincides with Def. 5.1.

Definition 6.2 (Extension Relation). Let σ be an annotated type, and let S, S ′ be
scopes such that S ≤α̃ S ′. The extension relation vσ ⊆ JσKS × JσKS ′ for S and S ′ is
defined by the following equivalences:

avσ b iff a = b if σ is o or a type variable

f vσ→Fτ g iff ∀a b. avσ b−→ f (a)vτ g(b)
f vσ→Sτ g iff ∀a b. avσ b−→ f (a)vτ g(b) and ∀b. (∃a. avσ b) ∨ g(b) = (|τ|)S ′

where (|o|)S =⊥, (|σ→τ|)S = a ∈ JσKS 7→ (|τ|)S , and (|α|)S is any element of S(α).

Although the S annotation is tailored to predicates, the annotated type σ→S τ is legal
for any type τ. The value (|τ|)S then takes the place of ⊥ as the default extension.

We now prove the crucial properties of vσ, to which we alluded in Sect. 5. The
unusual definitions of TV+ and TV– in the S case ensure that Lem. 6.2 holds uniformly.

Lemma 6.1. The relation vσ is left-total and left-unique (injective).

Proof (structural induction onσ). For o and α, both properties are obvious. Forσ→Xτ,
we assume by induction that vσ and vτ are left-unique and left-total. Since vσ→Sτ ⊆
vσ→Fτ, it suffices to show that vσ→Fτ is left-unique and vσ→Sτ is left-total.

LEFT-UNIQUENESS: We assume f , f ′ vσ→Fτ g and show that f = f ′. For every
a ∈ JσKS , left-totality of vσ yields an extension b with avσ b. Then f (a)vτ g(b) and
f ′(a)vτ g(b), and since vτ is left-unique, f (a) = f ′(a).

LEFT-TOTALITY: For f ∈ Jσ→ τKS , we find an extension g as follows: Let b ∈
JσKS ′ . If b extends an a, that a is unique by left-uniqueness of vσ. Since vτ is left-
total, there exists a y such that f (a)vτ y, and we let g(b) = y. If b does not extend any
a, then we set g(b) = (|τ|)S ′ . By construction, f vσ→Sτ g. ut

Definition 6.3 (Positive and Negative Type Variables). The sets of positive type vari-
ables TV+(σ) and of negative type variables TV–(σ) of an annotated typeσ are defined
as follows:

TV+(o) = /0 TV–(o) = /0
TV+(α) = {α} TV–(α) = /0

TV+(σ→F τ) = TV–(σ) ∪ TV+(τ) TV–(σ→F τ) = TV+(σ) ∪ TV–(τ)
TV+(σ→S τ) = TV+(σ) ∪ TV–(σ) ∪ TV+(τ) TV–(σ→S τ) = TV–(τ).

Lemma 6.2. If α̃ /∈ TV+(σ), then vσ is right-total (surjective). If α̃ /∈ TV–(σ), then
vσ is right-unique (functional).

Proof (structural induction onσ). For o and α, both properties are obvious. Forσ→Xτ,
we assume by induction that the implications hold for vσ and vτ.

RIGHT-UNIQUENESS OF vσ→Fτ: If α̃ /∈ TV–(σ→F τ) = TV+(σ) ∪ TV–(τ), then
by induction hypothesisvσ is right-total andvτ is right-unique. We consider g, g′ such
that f vσ→Fτ g and f vσ→Fτ g′, and show that g = g′. For every b∈ JσKS ′ , right-totality
of vσ yields a restriction a vσ b. Then f (a) vτ g(b) and f (a) vτ g′(b), and since vτ
is right-unique, g(b) = g′(b).

RIGHT-UNIQUENESS OFvσ→Sτ AND RIGHT-TOTALITY OFvσ→Xτ: Omitted. ut

Notice how the new definition of TV+ and TV– solves the problem exhibited by the
formula {y} = {z} (Ex. 5.5), since the α̃ in α̃→S o counts as a positive occurrence.
However, we must now ensure that types are consistently annotated.

6.2 Type Checking

Checking constancy can be seen as a type checking problem involving annotated types.
The basic idea is to derive typing judgments Γ` t :σ, whose intuitive meaning is that the
denotations of t in a smaller and a larger scope are related by vσ (i.e., that t is constant
in a sense given by σ). Despite this new interpretation, the typing rules are similar to
those of the simply-typed λ-calculus, extended with a particular form of subtyping.

Regrettably, our rules cannot derive the desired types for the basic set operations ∪,
∩, and− when they are defined as abbreviations (cf. Notat. 3.2). This problem is solved
by treating set constants as primitive along with implication and equality.

Definition 6.4 (Context). A context is a pair of mappings Γ = (Γc,Γv), where Γc maps
constant symbols to sets of annotated types, and Γv maps variables to annotated types.
A constant context Γc is compatible with a constant model M if σ ∈ Γc(c) implies
MS (c)vσ MS ′(c) for all scopes S, S ′ with S ≤α̃ S ′ and for all constants c and types σ.

Definition 6.5 (Standard Constant Context). The standard constant context Γ̂c is the
following mapping:

−→ 7→ {o→F o→F o}
= 7→ {σ→Fσ→X o | X ∈ {F,S}, α̃ /∈ TV–(σ)}
/0 7→ {σ→X o | X ∈ {F,S}}

U 7→ {σ→F o}
∪ 7→ {(σ→X o)→F (σ→X o)→Fσ→X o | X ∈ {F,S}}
∩ 7→ {(σ→X o)→F (σ→X o)→Fσ→X o | X ∈ {F,S}}
− 7→ {(σ→X o)→F (σ→F o)→Fσ→X o | X ∈ {F,S}}
∈ 7→ {σ→F (σ→X o)→F o | X ∈ {F,S}}

insert 7→ {σ→F (σ→X o)→Fσ→X o | X ∈ {F,S}, α̃ /∈ TV–(σ)}.

Allowing constants to have multiple annotated types gives us a form of polymorphism
on the annotations. We treat Γ̂c as a global table of annotated types for constants.

Lemma 6.3. The standard constant context is compatible with the standard constant
model.

Proof. CASE =: Since α̃ /∈TV–(σ),vσ is right-unique (Lem. 6.2). Unfolding the def-
inition of v, we assume a vσ b and show that if a′ vσ b′, then (a = a′) = (b = b′),
and that if there exists no restriction a′ such that a′ vσ b′, then (b = b′) = ⊥. The first
part follows from the left-uniqueness and right-uniqueness of vσ. For the second part,
b 6= b′ because a restricts b but b′ admits no restriction.

OTHER CASES: Omitted. ut

Defs. 5.2 and 5.3 and the K part of Def. 5.5 from Sect. 5 are generalized as follows.

Definition 6.6 (Model Extension). Let M = (S ,A) and M ′ = (S ′,A′) be models. The
model M ′ extends M in a context Γ, written M vΓ M ′, if S ≤α̃ S ′ and Γv(x) = σ
implies A(x)vσ A′(x) for all x.

Definition 6.7 (Constancy). Let σ be an annotated type. A term t is σ-constant in a
context Γ if JtKM vσ JtKM ′ for all models M , M ′ such that M vΓ M ′.

Definition 6.8 (Typing Rules). The typing relation Γ ` t : σ is given by the rules

Γv(x) = σ
VAR

Γ ` x : σ

σ ∈ Γc(c)
CONST

Γ ` c : σ

Γ ` t : σ′→X τ Γ ` u : σ σ≤ σ′
APP

Γ ` t u : τ

Γ[x 7→ σ] ` t : τ
LAM

Γ ` λx. t : σ→F τ

where X ∈ {F,S} and the subtype relation σ≤ τ is defined by the rules

o≤ o α≤ α
σ′ ≤ σ τ≤ τ′

σ→X τ≤ σ′→F τ
′

τ≤ τ′

σ→S τ≤ σ→S τ
′ .

In the above definition, Γ[x 7→ σ] abbreviates (Γc,Γv[x 7→ σ]).

Lemma 6.4. If σ≤ σ′, then vσ ⊆vσ′ .

Proof. By straightforward induction on the derivation of σ≤ σ′. ut

Theorem 6.1 (Soundness of Typing). If Γ ` t : σ, then t is σ-constant in Γ.

Proof (induction on the derivation of Γ ` t : σ).
VAR: Obvious, since A(x)vσ A′(x) by assumption for σ= Γv(x).
CONST: Obvious, since M̂S (c)vσ M̂S ′(c) by assumption for all σ ∈ Γc(c).
APP: By induction hypothesis, and since vσ′→Sτ ⊆vσ′→Fτ, we have JtKM vσ

′→Fτ

JtKM ′ and JuKM vσ JuKM ′ . Lem. 6.4 and the condition σ ≤ σ′ imply that JuKM vσ
′

JuKM ′ . Then by Def. 6.2, we know that Jt uKM = JtKM (JuKM)vτ JtKM ′ (JuKM ′)= Jt uKM ′ ,
which shows that t u is τ-constant in Γ.

LAM: Let a ∈ JσKS and b ∈ JσKS ′ such that a vσ b. Then we have the extended
models Ma = (S ,A[x 7→ a]) and M ′

b = (S ′,A′[x 7→ b]). Thus, Ma vΓ[x 7→σ] M ′
b, and

by induction hypothesis Jλx. tKM (a) = JtKMa vτ JtKM ′b
= Jλx. tKM ′(b). This implies

Jλx. tKM vσ→Fτ Jλx. tKM ′ . ut

6.3 Monotonicity Checking

The rules for monotonicity and antimonotonicity are almost the same as in the previous
section, except that they now extend the context when moving under a quantifier.

Definition 6.9 (Monotonicity Rules). The predicates Γ `M+(t) and Γ `M–(t) are
given by the rules

Γ ` t : o
TERM

Γ `Ms(t)

Γ `Ms(t) Γ `Ms(u)
IMP

Γ `Ms(t −→ u)

Γ ` t : σ Γ ` u : σ
EQ–

M–(t = u)

Γ[x 7→ σ] `M–(t)
ALL–

Γ `M–(∀x. t)

Γ[x 7→ σ] `M+(t) α̃ /∈ TV+(σ)
ALL+.

Γ `M+(∀x. t)

Theorem 6.2 (Soundness of Ms). Let M and M ′ be models such that M vΓ M ′. If
Γ `M+(t), then M � t implies M ′ � t. If Γ `M–(t), then M 6� t implies M ′ 6� t.

Proof (induction on the derivation of Γ `M(t)). Let M = (S ,A) and M ′ = (S ′,A′).
TERM: Because constancy implies (anti)monotonicity for type o.
IMP: Obvious.
EQ–: Assume that Γ ` s : σ, Γ ` t : σ, and M 6� s = t. Since M is a standard model,

we know that JsKM 6= JtKM . By Thm. 6.1, we have JsKM vσ JsKM ′ and JtKM vσ JtKM ′ .
By the left-uniqueness of vσ, the extensions cannot be equal, and thus M ′ 6� s = t.

ALL–: Assume that Γ[x 7→ σ] `M–(t) and M 6� ∀xσ. t. Then there exists a ∈ JσKS
such that (S ,A[x 7→ a]) 6� t. Since vσ is left-total, there exists an extension b ∈ JσKS ′

with avσ b. Since (S ,A[x 7→ a])vΓ (S ′,A′[x 7→ b]), we can conclude (S ′,A′[x 7→ b]) 6� t
by induction hypothesis. Thus M ′ 6� ∀xσ. t.

ALL+: Assume that Γ[x 7→ σ] `M+(t), α̃ /∈ TV+(σ), and M � ∀xσ. t. We show
that M ′ � ∀xσ. t. Let b∈ JσKS ′ . Sincevσ is right-total (Lem. 6.2), there exists a restric-
tion a ∈ JσKS with a vσ b. By assumption, (S ,A[x 7→ a]) � t. Since (S ,A[x 7→ a]) vΓ

(S ′,A′[x 7→ b]), we can conclude (S ′,A′[x 7→ b]) � t by induction hypothesis. ut
Corollary 6.1 (Soundness of MFS). If Γ `M+(t) can be derived in some arbitrary
context Γ, then t is monotonic. If Γ `M–(t) can be derived in some arbitrary context Γ,
then t is antimonotonic.

Example 6.1. Let {α} stand for α→S o, and let Γv = [x 7→ {α}, y 7→ {α}]. The following
derivation shows that xα�o = y is monotonic w.r.t. α:

Γ(=) = {α}→F {α}→F o

Γ ` (=) : {α}→F {α}→F o

Γ(x) = {α}
Γ ` x : {α} {α} ≤ {α}

Γ ` (=) x : {α}→F o

Γ(y) = {α}
Γ ` y : {α} {α} ≤ {α}

Γ ` x = y : o

Γ `M+(x = y) �

Example 6.2. The following table lists some example formulas, including those from
Sect. 1. For each formula, we indicate whether it is monotonic or antimononic w.r.t. α
according to the calculi MF and MFS and to the semantic definitions.

MONOTONIC ANTIMONOTONIC
FORMULA MF MFS SEM. MF MFS SEM.

∃xα y. x 6= y 3 3 3 · · ·
f xα = x ∧ f y 6= y 3 3 3 3 3 3
xo�α = y 3 3 3 3 3 3
sα�o = t · 3 3 3 3 3
{yα}= {z} · 3 3 3 3 3
(λxα. x = y) = (λx. x = z) · · 3 3 3 3
(∀xα. f x = x) ∧ f y 6= y · · 3 3 3 3
∀xα y. x = y · · · 3 3 3
∃xα y. x 6= y ∧ ∀z. z = x ∨ z = y · · · · · ·

�

6.4 Type Inference

Expecting all types to be fully annotated with F and S is unrealistic, so we now face
the problem of computing annotations such that a given term is typable—a type infer-
ence problem. We follow a standard approach to type inference: We start by annotating
all types with annotation variables ranging over {F,S}. Then we construct a typing
derivation, collecting a set of constraints over the annotations. Finally, we look for an
instantiation for the annotation variables that satisfies all the constraints.

Definition 6.10 (Annotation Constraints). An annotation constraint over a set of an-
notation variables V is an expression of the form σ≤ τ, α̃ /∈ TV+(σ), or α̃ /∈ TV–(σ),
where the types σ and τ may contain annotation variables in V . Given a valuation
ρ : V→{F,S}, the meaning of a constraint is defined as in Defs. 6.3 and 6.8.

A straightforward way of solving such constraints is to encode them in propositional
logic, following Defs. 6.3 and 6.8, and give them to a SAT solver. Annotation vari-
ables, which may take two values, are mapped directly to propositional variables. This
approach proved very efficient on the problems that we encountered in our experiments.

So far, we have been unable to prove that the satisfiability problem for this constraint
language is NP-complete. We suspect that it is not, but we have not found a polynomial-
time algorithm. Thus, it is unclear if our use of a SAT solver is fully appropriate from a
theoretical point of view, even though it works perfectly well in practice.

7 Inductive Datatypes

To make monotonicity checking useful in practice, we must support user-defined types,
which we have ignored so far. The most important way of introducing new types in
Isabelle/HOL is to declare an inductive datatype using the command

datatype ᾱ κ = C1 σ11 . . . σ1k1 | · · · | Cn σn1 . . . σnkn

Inductive datatypes are a derived concept in HOL [2]. However, our analysis benefits
from treating them specially as opposed to unfolding the underlying construction.

The datatype declaration introduces the type constructor κ, together with the term
constructors Ci of type σi1→F · · ·→Fσiki→F ᾱ κ. The type ᾱ κ may occur recursively
in the σij’s, but only in positive positions. For simplicity, we assume that any arrows
in the σij’s are annotated with F or S. (In the implementation, annotation variables are
used to infer the annotations.) The interpretation Jᾱ κKS of the new type is given by the
corresponding free term algebra.

We must now extend the basic definitions of v, ≤, and TVs to this new construct.
For Def. 6.2, we add the following case:

Ci(a1, . . . ,aki)v
τ̄ κ Ci(b1, . . . ,bki) iff ∀ j ∈ {1, . . . ,ki}. a j vσij[ᾱ 7→τ̄] b j.

Similarly, Def. 6.3 is extended with

TVs(τ̄ κ) =
⋃

1≤i≤n
1≤ j≤ki

TVs(σij[ᾱ 7→ τ̄])

and Def. 6.8 with

σij[ᾱ 7→ τ̄]≤ σij[ᾱ 7→ τ̄′] for all 1≤ i≤ n, 1≤ j≤ ki

τ̄ κ ≤ τ̄′ κ
.

To extend our soundness result, we must show that Lems. 6.1 to 6.4 still hold. The
proofs are straightforward and omitted from this paper. Constancy of the datatype con-
structors also follows directly from the above definitions.

8 Evaluation

What proportion of monotonic formulas are detected as such by our calculi? We applied
Nitpick’s implementations of MF and (a large fragment of) MFS on the user-supplied
theorems from six highly polymorphic Isabelle theories. In the spirit of counterexample
generation, we conjoined the negated theorems with the relevant axioms. The results
are given below.

FORMULAS SUCCESS RATE
THEORY MF MFS MF MFS

AVL2 18/24 22/24 75.0% 91.7%
Fun 49/87 71/87 56.3% 81.6%
Huffman 41/94 86/94 43.6% 91.5%
List 266/524 402/524 50.8% 76.7%
Map 94/97 97/97 96.9% 100.0%
Relation 59/144 94/144 41.0% 65.3%

The table indicates how many formulas were found to involve at least one mono-
tonic type variable using MF and MFS, respectively, over the total number of formulas
involving type variables in the six theories. Since the formulas are all negated theorems,
they are all semantically monotonic (no models exist for any scope).

An ideal way to assess the calculi would have been to try them on a representative
database including non-theorems, but we lack such a database. Nonetheless, our experi-
ence suggests that the calculi perform as well on non-theorems as on theorems, because
realistic non-theorems tend to use equality and quantifiers in essentially the same way
as theorems. Interestingly, non-theorems that are derived from theorems by omitting an
assumption or mistyping a variable name are even more likely to pass the monotonicity
check than the corresponding theorems.

Although the study of monotonicity is interesting in its own right and leads to an
elegant theory, our main motivation—speeding up model finders—is resolutely prag-
matic. For Nitpick, which uses a default upper bound of 8 on the cardinality of the
atomic types, we observed a speed increase factor of about 5 per inferred monotonic
type. Since each monotonic type reduces the number of scopes to consider by a factor
of 8, we could perhaps expect an 8-fold speed increase; however, the scopes that can be
omitted by exploiting monotonicity are smaller and faster to check than those that are
actually checked. The time spent performing the monotonicity analysis (i.e., generating
the annotation constraints and solving the resulting SAT problem) is negligible.

9 Discussion

Fully covariant arrow. In Def. 6.3, both the positive and the negative type variables
in σ count as positive occurrences in σ→S τ. This raises the question of whether a
fully covariant behavior, with TVs(σ→S τ) = TVs(σ) ∪ TVs(τ), can also be achieved,
possibly with a different definition of vσ→Sτ. Although such a behavior looks more
regular, it would make the calculus unsound, as the following counterexample shows.

Consider the formula t ≡ ∀F (α�o)�o f α�o gh. f ∈ F∧g∈ F∧ f a 6= g a−→ h∈ F.
The formula is not monotonic w.r.t. α: Regardless of the value of the free variable a, it
is true for |α| = 1, since the assumptions imply that f 6= g, and as there are only two
functions of type α→ o, h can only be one of them, so it must be in F. This argument
breaks down for larger scopes, so the formula is not monotonic. However, with a fully
covariant S-arrow, we could type F as F (α�Fo)�So and the rule ALL+ would apply,
since there is no positive occurrence of α in the types of F, f , g, and h.

Principal types. Similar to the simply-typed λ-calculus, our type system admits prin-
cipal types if we promote annotation variables to first-class citizens. When performing
type inference, we would then keep the constraints as part of the type, instead of com-
puting an arbitrary solution for the collected constraints. More precisely, a type schema
has the form ∀X. ∀α. σ 〈C〉, where σ is an annotated type containing annotation vari-
ables X and type variables α, and C is a list of constraints of the form given in Def. 6.10.
As an example, equality has the principal type schema ∀α. α→Fα→X o 〈α̃ /∈TV–(α)〉.
This approach nicely extends ML-style polymorphism.

Set comprehensions. An obvious weakness of our type system is that the rule LAM
always types λ-abstractions with F-arrows. The only way to construct terms whose
type contains S annotations is by building them from a set of primitives whose types
are justified semantically. This solution is far from optimal. To take just one example,
consider the term λx z. ∃y. R x y ∧ S y z, which composes two binary relations R and S.
Semantically, composition is constant for type (α→S β→S o)→F (β→S γ→S o)→F

α→S γ→S o, but our analysis cannot infer this. As a consequence, our analysis cannot
infer the monotonicity of any of the four type variables occurring in the associativity
law for composition, unless composition is added to the constant context Γc.

10 Conclusion

In model finders that work by enumerating scopes (domain cardinalities specifications),
the choice of the scopes and their order is critical to obtain good performance. Yet, little
work has been done on this problem beyond the discovery of small model theorems.

We presented a solution for HOL that prunes the search space by inferring mono-
tonicity with respect to atomic types. Monotonicity is in general undecidable, so we
approximate it with syntactic criteria. The main difficulty occurs in conjunction with
common set idioms, which we detect using a suitable type system. Our approach also
handles datatypes defined in terms of the atomic types. A direction for future research
would be to extend the type system to handle more syntactic idioms (e.g., set compre-
hensions and “almost full” sets such as U−{x}), thereby strengthening the analysis.

Our measurements show that monotonic formulas are pervasive in HOL formaliza-
tions and that syntactic criteria can detect them more often than not. Our more powerful
calculus MFS has been implemented as part of Isabelle’s SAT-based counterexample
generator Nitpick, with dramatic speed gains. It will be interesting to see whether this
success can be repeated in the context of other model finders.

Acknowledgment. We would like to thank Lukas Bulwahn, Tobias Nipkow, Mark Sum-
merfield, and the anonymous reviewers for suggesting several textual improvements.

References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof (2nd Ed.), volume 27 of Applied Logic. Springer, 2002.

2. S. Berghofer and M. Wenzel. Inductive datatypes in HOL—lessons learned in formal-logic
engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors,
TPHOLs ’99, volume 1690 of LNCS, pages 19–36, 1999.

3. J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In M. Kaufmann and L. Paulson, editors, ITP-10, LNCS.
Springer, 2010. To appear.

4. K. Claessen. Private communication, 2009.
5. K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In

MODEL, 2003.
6. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Envi-

ronment for Higher Order Logic. Cambridge University Press, 1993.
7. J. Harrison. HOL Light: A tutorial introduction. In FMCAD ’96, volume 1166 of LNCS,

pages 265–269. Springer, 1996.
8. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.
9. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In FSE/ESEC

2001, pages 62–73, 2001.
10. V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes. In H. C. Gall, editor,

ESEC/FSE 2005, 2005.
11. W. McCune. A Davis–Putnam program and its application to finite first-order model search:

Quasigroup existence problems. Technical report, ANL, 1994.
12. L. Momtahan. Towards a small model theorem for data independent systems in Alloy.

ENTCS, 128(6):37–52, 2005.
13. T. Nipkow. Verifying a hotel key card system. In K. Barkaoui, A. Cavalcanti, and A. Cerone,

editors, ICTAC 2006, volume 4281 of LNCS. Springer, 2006.
14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.
15. A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property: How small

can it be? Inf. Comput., 178(1):279–293, 2002.
16. K. Slind and M. Norrish. A brief overview of HOL4. In O. A. Mohamed, C. M. noz, and

S. Tahar, editors, TPHOLs 2008, volume 5170 of LNCS, pages 28–32, 2008.
17. E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg and M. Huth,

editors, TACAS 2007, volume 4424 of LNCS, pages 632–647. Springer, 2007.
18. T. Weber. SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept.

of Informatics, T.U. München, 2008.
19. J. Zhang and H. Zhang. SEM: A system for enumerating models. In M. Kaufmann, editor,

IJCAI 95, volume 1, pages 298–303, 1995.

