
Noname
Vol. 43

Monotonicity Inference for Higher-Order Formulas

Jasmin Christian Blanchette · Alexander Krauss

the date of receipt and acceptance should be inserted later

Abstract Formulas are often monotonic in the sense that satisfiability for a given domain of
discourse entails satisfiability for all larger domains. Monotonicity is undecidable in general,
but we devised three calculi that infer it in many cases for higher-order logic. The third
calculus has been implemented in Isabelle’s model finder Nitpick, where it is used both to
prune the search space and to soundly interpret infinite types with finite sets, leading to
dramatic speed and precision improvements.

1 Introduction

Formulas occurring in logical specifications often exhibit monotonicity in the sense that if
the formula is satisfiable when the types are interpreted with sets of given (positive) cardi-
nalities, it is still satisfiable when these sets become larger. Consider the following formulas,
in which superscripts indicate types and ' denotes equality:

1. ∃xα y. x 6' y
2. f xα ' x ∧ f y 6' y
3. (∀xα. f x' x) ∧ f y 6' y

4. {yα} ' {z}
5. ∃xα y. x 6' y ∧ ∀z. z' x ∨ z' y
6. ∀xα y. x' y

It is easy to see that formulas 1 and 2 are satisfiable iff |α| > 1, formula 3 is unsatisfiable,
formula 4 is satisfiable for any cardinality of α, formula 5 is satisfiable iff |α| = 2, and
formula 6 is satisfiable iff |α|= 1. Formulas 1 to 4 are monotonic, whereas 5 and 6 are not.

In plain first-order logic without equality, every formula is monotonic, since it is impos-
sible to express an upper bound on the cardinality of the models and hence any model can
be extended to a model of arbitrarily larger cardinality. This monotonicity property is es-
sentially a weak form of the upward Löwenheim–Skolem theorem. When equality is added,
nonmonotonicity follows suit.

Our interest in monotonicity arose in the context of model finding, where it can help
prune the search space. Model finders are automatic tools that generate finite set-theoretic

Research partially supported by the Deutsche Forschungsgemeinschaft (grants Ni 491/11-1 and Ni 491/11-2).

Institut für Informatik, Technische Universität München, Germany
E-mail: {blanchette,krauss}@in.tum.de



models of formulas. They are useful for exploring specifications and producing counter-
examples. Notable model finders include Paradox [7], MACE [13], and SEM [25] for first-
order logic, Alloy [11] and Kodkod [22] for first-order relational logic, and Nitpick [4] and
Refute [24] for higher-order logic. Model finders for many-sorted or typed logics typically
work by systematically enumerating the domain cardinalities for the atomic types (type vari-
ables and other uninterpreted types) occurring in the formula. To exhaust all models up to
a given cardinality bound k for a formula involving n atomic types, a model finder iterates
through kn combinations of cardinalities and must consider all models for each of these
combinations. In general, this exponential behavior is necessary for completeness, since the
formula may dictate a model with specific cardinalities. However, if the formula is mono-
tonic, it is sufficient to consider only the models in which all types have cardinality k.

Another related use of monotonicity is to find finite substructures of infinite models. A
formal specification of a programming language might represent variables by strings, natural
numbers, or values of some other infinite type. Typically, the exact nature of these types is
irrelevant; they are merely seen as inexhaustible name stores and used monotonically. If
we weaken the specification to allow finite models, we can apply model finders with the
guarantee that any finite models found are substructures of infinite models.

Monotonicity occurs surprisingly often in practice. Consider the specification of a hotel
key card system with recordable locks [10, pp. 299–306; 17]. Such a specification involves
rooms, guests, and keys, modeled as distinct atomic types. A desirable property of the sys-
tem is that only the occupant of a room may unlock it. Unsurprisingly, a counterexample
requiring one room, two guests, and four keys will still be a counterexample if more rooms,
guests, or keys are available. Indeed, it should remain a counterexample if infinitely many
keys are available, as would be the case if keys are modeled by integers or strings.

In this article, we present three calculi for detecting monotonicity of higher-order logic
(HOL) formulas. The first calculus (Section 4) simply tracks the use of equality and quanti-
fiers. Although useful on its own, it mainly serves as a stepping stone for a second, refined
calculus (Section 5), which employs a type system to detect the ubiquitous “sets as predi-
cates” idiom. The third calculus (Section 6) develops this idea further.

Since HOL is typed, we are interested in monotonicity with respect to a given type vari-
able or some other uninterpreted type α. Moreover, our calculi must cope with occurrences
of α in nested function types such as (α→ β)→ β and in datatypes such as α list. We are
not aware of any previous work on inferring or proving monotonicity for HOL. While many
of the difficulties we face are specific to HOL, the calculi can be adapted to any logic that
provides unbounded quantification, such as many-sorted first-order logic with equality.

The calculi are constructive: Whenever they infer monotonicity, they also yield a recipe
for transforming smaller models into larger (possibly infinite) models. They are also readily
extended to handle constant definitions (Section 7.1) and inductive datatypes (Section 7.2),
which pervade HOL formalizations. Our evaluation (Section 7.3) is done in the context of
Nitpick, a counterexample generator for Isabelle/HOL [18]. On a corpus of 1183 monotonic
formulas from six theories, the strongest calculus infers monotonicity for 85% of them.

2 Higher-Order Logic

Our presentation of HOL is very similar to that of Andrews [1], but instead of a single type
ι of individuals, we use type variables α, β, γ to denote uninterpreted types.

Definition 2.1 (Syntax) The types and terms of HOL are that of the simply-typed λ-calcu-
lus, augmented with constants and a special type o of Booleans:

2



Types: Terms:
σ ::= o (Boolean type) t ::= xσ (variable)

| α (type variable) | cσ (constant)
| σ→σ (function type) | t t (application)

| λxσ. t (abstraction)

The function arrow associates to the right, reflecting the left-associativity of application. We
assume throughout that terms are well-typed using the standard typing rules and write x and
c rather than xσ and cσ when σ is irrelevant or clear from the context; inversely, we write
tσ to indicate that an arbitrary term t has type σ. A formula is a term of type o. Constants
express the logical primitives, whose interpretation is fixed a priori. We only take equality
('σ�σ�o for any σ) and implication (−→o�o�o) as primitive constants.

Unlike in Gordon’s version of HOL [8], on which several popular proof assistants are
based [9, 18, 20], we treat polymorphism in the metalanguage: Polymorphic constants such
as equality are expressed as collections of constants, one for each type.

Definition 2.2 (Scope) A scope S is a function from type variables to nonempty sets (do-
mains). We write S ≤α S ′ to mean that S(α)⊆ S ′(α) and S(β) = S ′(β) for all β 6= α.

Types and terms are interpreted in the standard set-theoretic way, relative to a scope that
fixes the interpretation of type variables. The set S(α) can be finite or infinite, although for
model finding we usually have finite domains in mind. In contexts where S is clear, the
cardinality of S(α) is written |α| and the elements of S(α) are denoted by 0, 1, 2, etc. Scopes
are also called “type environments”; our terminology here is consistent with Jackson [11].

Definition 2.3 (Interpretation of Types) The interpretation JσKS of a type σ in a scope S
is defined recursively by the equations

JoKS = {⊥,>} JαKS = S(α) Jσ→τKS = JσKS → JτKS

where A→B denotes the set of (total) functions from A to B.

Definition 2.4 (Model) A constant model is a scope-indexed family of functions MS that
map each constant cσ to a value MS(c) ∈ JσKS . A variable assignment V for a scope S is
a function that maps each variable xσ to a value V(x) ∈ JσKS . A model for S is a triple
M = (S,V,M), where V is a variable assignment for S and M is a constant model.

Definition 2.5 (Interpretation of Terms) Let M = (S,V,M) be a model. The interpreta-
tion JtKM of a term t in M is defined recursively by the equations

JxK(S,V,M) = V(x) Jt uK(S,V,M) = JtK(S,V,M)

(
JuK(S,V,M)

)
JcK(S,V,M) = MS(c) Jλxσ. tK(S,V,M) = a∈ JσKS 7→ JtK(S,V[x 7→a],M).

If t is a formula and JtKM = >, we say that M is a model of t, written M � t. A formula is
satisfiable for scope S if it has a model for S.

Convention In the sequel, we always use the standard constant model M̂S , which interprets
−→ and ' in the standard way, allowing us to omit the third component of (S,V, M̂).

Notation 2.6 (Logical Abbreviations)

True ≡ (λxo. x)' (λx. x) p ∧ q ≡ ¬(p−→¬q)

False ≡ (λxo. x)' (λx. True) p ∨ q ≡ ¬ p−→ q

¬ p ≡ p−→ False ∀xσ. p ≡ (λx. p)' (λx. True)

p 6' q ≡ ¬ p' q ∃xσ. p ≡ ¬∀x. ¬ p.

3



Notation 2.7 (Set Abbreviations)

/0 ≡ λx. False s ∩ t ≡ λx. s x ∧ t x x ∈ s ≡ s x

U ≡ λx. True s ∪ t ≡ λx. s x ∨ t x insert x s ≡ (λy. y' x) ∪ s.

s− t ≡ λx. s x ∧ ¬ t x

The remaining connectives and quantifiers are defined as abbreviations in terms of implica-
tion and equality. Abbreviations also cater for set-theoretic notations. Following tradition,
we write {x1, . . . , xm} instead of insert x1 (. . .(insert xm /0) . . .).

3 Monotonicity

Definition 3.1 (Monotonicity) A formula t is monotonic with respect to a type variable α
if for all scopes S, S ′ such that S ≤α S ′, if t is satisfiable for S, it is also satisfiable for S ′. It
is antimonotonic with respect to α if its negation is monotonic with respect to α.

Example 3.2 If you have five Finnish friends and all five are blond, the existential statement
“at least one of your Finnish friends is dark-haired” is monotonic—it will either stay false or
become true as you expand your circle of Nordic friends. Inversely, the universal statement
“all your Finnish friends are blond” is antimonotonic.

Since monotonicity is a semantic property, it is not surprising that it is undecidable, and the
best we can do is approximate it.

Theorem 3.3 (Undecidability) Monotonicity with respect to α is undecidable.

Proof (reduction) For any closed HOL formula t, let t? ≡ t ∨ ∀xα y. x ' y, where α does
not occur in t. Clearly, t? must be monotonic if t is valid, since the second disjunct becomes
irrelevant in this case. If t is not valid, then t? cannot be monotonic, since it is true for |α|= 1
due to the second disjunct but false for some larger scopes. Thus, validity in HOL (which is
undecidable) can be reduced to monotonicity. ut
Convention In the sequel, we denote by α̃ the type variable with respect to which we con-
sider monotonicity when not specified otherwise.

4 First Calculus: Tracking Equality and Quantifiers

This section presents the simple calculus M1 for inferring monotonicity, which serves as a
stepping stone toward the more general calculi M2 and M3 of Sections 5 and 6. Since the
results are fairly intuitive and subsumed by those of the next sections, we omit the proofs.

4.1 Extension Relation and Constancy

We first introduce a concept that is similar to monotonicity but that applies not only to for-
mulas but also to terms of any type—the notion of constancy. Informally, a term is constant
if it denotes essentially the same value before and after we enlarge the scope. What it means
to denote “essentially the same value” can be formalized using an extension relation v,
which relates elements of the smaller scope to elements of the larger scope.

For types such as o and α̃, this is easy: Any element of the smaller scope is also present in
the larger scope and can serve as an extension. For functions, the extended function must co-
incide with the original one where applicable; elements not present in the smaller scope may

4



be mapped to any value. For example, when going from |α̃| = 1 to |α̃| = 2, the function
f α̃�o = [0 7→ >] can be extended to g = [0 7→ >, 1 7→ ⊥] or g′ = [0 7→ >, 1 7→ >]. In other
words, we take the liberal view that both g and g′ are “essentially the same value” as f , and
we write f vα̃→o g and f vα̃→o g′. We reconsider this decision in Section 5.

Definition 4.1 (Extension) Let σ be a type, and let S, S ′ be scopes such that S ≤α̃ S ′. The
extension relation vσ ⊆ JσKS× JσKS ′ for S and S ′ is defined by the following equivalences:

avσ b iff a = b if σ is o or a type variable

f vσ→τ g iff ∀a b. avσ b−→ f (a)vτ g(b).

The expression a vσ b is read “a is extended by b” or “b extends a.” The element a is b’s
restriction to S, and b is a’s extension to S ′. In addition, we will refer to elements b ∈ JσKS ′

as being old if they admit a restriction to S and new if they do not admit any.

(a) α̃ (right-unique) (b) o→ α̃ (right-unique)

(c) α̃→o (right-total) (d) α̃→ α̃ (neither)

Figure 4.1. vσ for various types σ, with |S(α̃)|= 2 and |S ′(α̃)|= 3

Figure 4.1 illustrates vσ for various types. We represent a function from σ to τ by a |σ|-
tuple such that the nth element for σ (according to the lexicographic order, with ⊥ <> and
n < n+1) is mapped to the nth tuple component. Observe that vσ is always left-total (i.e.,
total: ∀a.∃b. a vσ b) and left-unique (i.e., injective: ∀a a′ b. a vσ b ∧ a′ vσ b −→ a = a′).
It is also right-total (i.e., surjective: ∀b.∃a. avσ b) if α̃ does not occur positively in σ (e.g.,
σ= α̃→o), and right-unique (i.e., functional: ∀abb′. avσ b∧ avσ b′ −→ b = b′) if α̃ does
not occur negatively (e.g., σ= o→ α̃). These properties are crucial to the correctness of our
calculus, which restricts where α̃ may occur. They are proved in Section 5.

Definition 4.2 (Model Extension) Let M = (S,V) and M ′ = (S ′,V ′) be models. The
model M ′ extends M , written M v M ′, if S ≤α̃ S ′ and V(x)vσ V ′(x) for all xσ.

5



The relation v on models gives us a recipe to transform a smaller model M into a larger
model M ′. Because vσ is left-total, the recipe always works.

Definition 4.3 (Constancy) A term tσ is constant if JtKM vσ JtKM ′ for all models M , M ′

such that M v M ′.

Example 4.4 f α̃�α̃ x is constant. Proof: Let V(x) = a1 and V( f )(a1) = a2. For any M ′ =
(S ′,V ′) that extends M = (S,V), we have V(x)vα̃ V ′(x) and V( f )vα̃→α̃ V ′( f ). By defini-
tion of vσ, V ′(x) = a1 and V ′( f )(a1) = a2. Thus, J f xKM = J f xKM ′ = a2.

Example 4.5 f o�α̃ ' g is constant. Proof: For any M ′ = (S ′,V ′) that extends M = (S,V),
we have V( f ) vo→α̃ V ′( f ) and V(g) vo→α̃ V ′(g). By definition of vσ, V ′( f ) = V( f ) and
V ′(g) = V(g). Hence, J f ' gKM = J f ' gKM ′ .

Example 4.6 p α̃�o ' q is not constant. Counterexample: |S(α̃)| = 1, V(p) = V(q) = (>),
|S ′(α̃)|= 2, V ′(p) = (>,⊥), V ′(q) = (>,>). Then Jp' qK(S,V) => but Jp' qK(S ′,V ′) =⊥.

More generally, we note that variables are always constant, and constancy is preserved by
λ-abstraction and application. On the other hand, the equality symbol 'σ�σ�o is constant
only if α̃ does not occur negatively in σ. Moreover, sincevo is the identity relation, constant
formulas are both monotonic and antimonotonic.

Remark Relations between models of the λ-calculus that are preserved under abstraction
and application are called logical relations [14] and are widely used in semantics and model
theory. If we had no equality,v would be a logical relation, and constancy of all terms would
follow from the “Basic Lemma,” which states that the interpretations of any term are related
by ∼ if ∼ is a logical relation. This property is spoiled by equality since in general J'KM 6v
J'KM ′ . Our calculus effectively carves out a sublanguage for which v is a logical relation.

4.2 Syntactic Criteria

We syntactically approximate constancy, monotonicity, and antimonotonicity with the pred-
icates K(t), M+(t), and M–(t), respectively. The goal is to derive M+(t) for the formula t we
wish to prove monotonic. If M+(t) and the model M satisfies t, we can apply our recipev to
obtain arbitrarily larger models M ′ that also satisfy t. The predicates depend on the auxiliary
functions TV+(σ) and TV–(σ), which collect the positive and negative type variables of σ.

Definition 4.7 (Positive and Negative Type Variables) The set of positive type variables
TV+(σ) and the set of negative type variables TV–(σ) of a type σ are defined as follows:

TV+(α) = {α} TVs(o) = /0

TV–(α) = /0 TVs(σ→τ) = TV∼s(σ) ∪ TVs(τ)
where ∼s =

{
+ if s = –
– if s = +.

Definition 4.8 (Constancy and Monotonicity Rules) The predicates K(t), M+(t), and
M–(t) are inductively defined by the rules

K(x) K(−→)

α̃ /∈ TV–(σ)

K('σ�σ�o)

K(t)

K(λx. t)

K(tσ�τ) K(uσ)

K(t u)

K(t)

Ms(to)

M∼s(t) Ms(u)

Ms(t −→ u)

K(tσ) K(uσ)

M–(t ' u)

M–(t)

M–(∀x. t)

M+(t) α̃ /∈ TV+(σ)

M+(∀xσ. t)
.

6



The rules for K simply traverse the term structure and ensure that equality is not used on
types in which α̃ occurs negatively. The first two rules for Ms are easy to justify semantically.
The other three are more subtle:

– The M–(t ' u) rule is sound because the extensions of distinct elements are always
distinct (since vσ is left-unique).

– The M–(∀x. t) rule is sound because if enlarging the scope makes x range over new
elements, these cannot make ∀x. t become true if it was false in the smaller scope.

– The M+(∀x. t) rule is the most difficult one. If α̃ does not occur at all in σ, then mono-
tonicity is preserved. Otherwise, there is the danger that the formula t is true for all
values a ∈ JσKS but not for some b ∈ JσKS ′ . However, in Section 5 we show that this can
only happen for b’s that do not extend any a, which can only exist if α̃ ∈ TV+(σ).

Definition 4.9 (Derived Monotonicity Rules) For logical abbreviations, we can derive the
following rules using Notation 2.6 and Definition 4.8:

Ms(False) Ms(True)

M∼s(t)

Ms(¬ t)

Ms(t) Ms(u)

Ms(t ∧ u)

Ms(t) Ms(u)

Ms(t ∨ u)

M+(t)

M+(∃x. t)

M–(t) α̃ /∈ TV+(σ)

M–(∃xσ. t)
.

Example 4.10 Formulas 1 and 2 from the introduction are monotonic with respect to α:

K(x) K(y)

M–(x' y)

M+(x 6' y)

M+(∃y. x 6' y)

M+(∃xα y. x 6' y)

α /∈ TV–(α)

K('α�α�o)

K( f ) K(x)

K( f x)

K((') ( f x)) K(x)

K( f x' x)

M+( f x' x)

K( f ) K(y)

K( f y) K(y)

M–( f y' y)

M+( f y 6' y)

M+( f xα ' x ∧ f y 6' y)

Example 4.11 Formula 4 from the introduction is monotonic, but M+ fails on it:

α /∈ TV–(α→o)

K('(α�o)�(α�o)�o)

...

K({y})
K((') {y})

...

K({z})
K({y} ' {z})
M+({y} ' {z})

The assumption α /∈ TV–(α→o) cannot be discharged, since TV–(α→o) = {α}. The for-
mula fares no better if we rewrite it in extensional form:

...

M+((x' y)' (x' z)) α /∈ TV+(α)

M+(∀x. (x' y)' (x' z))

7



5 Second Calculus: Tracking Sets

Example 4.11 exhibits a significant weakness of the calculus M1. HOL identifies sets with
predicates, yet M+ keeps us from comparing terms of type α̃→o for equality. This happens
because the extension of a function of this type is not unique (cf. Figure 4.1(c)), and thus
equality is generally not preserved as we enlarge the scope.

This behavior of vα̃→o is imprecise for sets, as it puts distinct sets in relation; for ex-
ample, {0} vα̃→o {0,1} if S(α̃) = 1 and S ′(α̃) = 2. We would normally prefer each set to
admit a unique extension, namely the set itself. This would make set equality constant.

(a) general view (right-total) (b) set view (right-unique)

Figure 5.1. vα̃→o with S(α̃) = 2 and S ′(α̃) = 3

To solve the problem sketched above, we could adjust the definition of vσ so that the
extension of a set is always the set itself. Rephrased in terms of functions, this amounts to
requiring that the extended function returns ⊥ for all new elements. Figure 5.1 compares
this more conservative “set” approach to the liberal approach of Section 4; in subfigure (b),
it may help to think of (⊥,⊥) and (⊥,⊥,⊥) as /0, (>,⊥) and (>,⊥,⊥) as {0}, and so on.

With this approach, we could easily infer that {y}'{z} is constant. However, the whole-
sale application of this principle would have pernicious consequences on constancy: Seman-
tically, the universal set U α̃�o, among others, would no longer be constant; syntactically,
the introduction rule for K(λx. t) would no longer be sound. What we propose instead in our
calculus M2 is a hybrid approach that supports both forms of extensions in various com-
binations. The required bookkeeping is conveniently expressed as a type system, in which
each function arrow is annotated with G (“general”) or F (“false-extended set”).

Definition 5.1 (Annotated Type) An annotated type is a HOL type in which each function
arrow carries an annotation A ∈ {G,F}.

The annotations specify how v should extend function values to larger scopes: While G-
functions are extended as in the previous section, the extension of an F-function must map
all new values to ⊥. The annotations have no influence on the interpretation of types and
terms, which is unchanged. For notational convenience, we sometimes use annotated types
in contexts where plain types are expected; in such cases, the annotations are simply ignored.

5.1 Extension Relation

Definition 5.2 (Extension) Let σ be an annotated type, and let S, S ′ be scopes such that
S ≤α̃ S ′. The extension relation vσ ⊆ JσKS× JσKS ′ for S and S ′ is defined by the following
equivalences:

8



avσ b iff a = b if σ is o or a type variable

f vσ→Gτ g iff ∀a b. avσ b−→ f (a)vτ g(b)

f vσ→Fτ g iff ∀a b. avσ b−→ f (a)vτ g(b) and ∀b. (@a. avσ b)−→ g(b) = (|τ|)

where (|o|) =⊥, (|σ→τ|) = a ∈ JσKS ′ 7→ (|τ|), and (|α|) is any element of S(α).

The extension relation vσ distinguishes between the two kinds of arrows. The G case coin-
cides with Definition 4.1. Although F is tailored to predicates, the annotated type σ→F τ is
legal for any type τ. The value (|τ|) then takes the place of ⊥ as the default extension.

We now prove the crucial properties of vσ, which we stated in Section 4 for the G case.

Lemma 5.3 The relation vσ is left-total (total) and left-unique (injective).

Proof (structural induction on σ) For o and α, both properties are obvious. For σ→A τ,
vσ and vτ are left-unique and left-total by induction hypothesis. Since vσ→Fτ ⊆ vσ→Gτ

by definition, it suffices to show that vσ→Fτ is left-total and vσ→Gτ is left-unique.

LEFT-TOTALITY: For f ∈ Jσ→ τKS , we find an extension g as follows: Let b ∈ JσKS ′ . If b
extends an a, that a is unique by left-uniqueness ofvσ. Sincevτ is left-total, there exists a y
such that f (a)vτ y, and we let g(b) = y. If b does not extend any a, then we set g(b) = (|τ|).
By construction, f vσ→Fτ g.

LEFT-UNIQUENESS: We assume f , f ′ vσ→Gτ g and show that f = f ′. For every a ∈ JσKS ,
left-totality of vσ yields an extension b wσ a. Then f (a) vτ g(b) and f ′(a) vτ g(b), and
since vτ is left-unique, f (a) = f ′(a). ut

Definition 5.4 (Positive and Negative Type Variables) The set of positive type variables
TV+(σ) and the set of negative type variables TV–(σ) of an annotated type σ are defined
as follows:

TV+(o) = /0 TV–(o) = /0

TV+(α) = {α} TV–(α) = /0

TV+(σ→G τ) = TV+(τ) ∪ TV–(σ) TV–(σ→G τ) = TV–(τ) ∪ TV+(σ)

TV+(σ→F τ) = TV+(τ) ∪ TV–(σ) ∪ TV+(σ) TV–(σ→F τ) = TV–(τ).

This rather unusual generalization of Definition 4.7 reflects our wish to treat occurrences of
α̃ differently for sets and ensures that the following key lemma holds uniformly.

Lemma 5.5 If α̃ /∈ TV+(σ), then vσ is right-total (surjective). If α̃ /∈ TV–(σ), then vσ is
right-unique (functional).

Proof (structural induction on σ) For o and α, both properties are obvious.

RIGHT-TOTALITY OFvσ→Gτ: If α̃ /∈TV+(σ→G τ) =TV+(τ)∪TV–(σ), then by induction
hypothesis vτ is right-total and vσ is right-unique. For g ∈ Jσ→τKS ′ , we find a restriction
f as follows: Let a ∈ JσKS . Since vσ is both left-total (Lemma 5.3) and right-unique, there
is a unique b such that a vσ b. By right-totality of vτ, we obtain an x vτ g(b), and we set
f (a) = x. By construction, f vσ→Gτ g.

RIGHT-TOTALITY OF vσ→Fτ: If α̃ /∈ TV+(σ→F τ) = TV+(τ) ∪ TV–(σ) ∪ TV+(σ), then
by induction hypothesis vτ is right-total, and vσ is both right-total and right-unique. By
right-totality of vσ, the second condition in the definition of vσ→Fτ becomes vacuous, and
vσ→Fτ =vσ→Gτ, whose right-totality was shown above.

9



RIGHT-UNIQUENESS OF vσ→Gτ: If α̃ /∈ TV–(σ→G τ) = TV–(τ) ∪ TV+(σ), then by in-
duction hypothesis vτ is right-unique and vσ is right-total. We consider g, g′ such that
f vσ→Gτ g and f vσ→Gτ g′, and show that g = g′. For every b ∈ JσKS ′ , right-totality of vσ
yields a restriction a vσ b. Then f (a) vτ g(b) and f (a) vτ g′(b), and since vτ is right-
unique, g(b) = g′(b).

RIGHT-UNIQUENESS OF vσ→Fτ: If α̃ /∈ TV–(σ→F τ) = TV–(τ), then by induction hy-
pothesis vτ is right-unique. We consider g, g′ such that f vσ→Fτ g and f vσ→Fτ g′, and
show that g = g′. For any b ∈ JσKS ′ , if there exists no restriction avσ b, then by definition
g(b) = g′(b) = (|τ|). Otherwise, we assume a vσ b. Then f (a) vτ g(b) and f (a) vτ g′(b),
and since vτ is right-unique, g(b) = g′(b). ut

The new definition of TV+ and TV– solves the problem raised by {y}' {z} (Example 4.11),
since the α̃ in α̃→F o counts as a positive occurrence. However, we must ensure that types are
consistently annotated; otherwise, we could easily overconstrain the free variables and end
up in a situation where there exists no model M ′ such that M v M ′ for two scopes S ≤α̃ S ′.

5.2 Type Checking

Checking constancy can be seen as a type checking problem involving annotated types.
The main idea is to derive typing judgments Γ ` t : σ, whose intuitive meaning is that the
denotations of t in a smaller and a larger scope are related by vσ (i.e., that t is constant in
a sense given by σ). Despite this new interpretation, the typing rules are similar to those of
the simply-typed λ-calculus, extended with a particular form of subtyping.

Definition 5.6 (Context) A context is a pair of mappings Γ = (Γc,Γv), where Γc maps
constant symbols to sets of annotated types, and Γv maps variables to annotated types.

Allowing constants to have multiple annotated types gives us a form of polymorphism on
the annotations, which is sometimes useful.

Definition 5.7 (Compatibility) A constant context Γc is compatible with a constant model
M if σ ∈ Γc(c) implies MS(c) vσ MS ′(c) for all scopes S, S ′ with S ≤α̃ S ′ and for all
constants c and annotated types σ.

Convention In the sequel, we always use a fixed constant context Γc compatible with the
standard constant model M̂, allowing us to omit the first component of Γ = (Γc,Γv).

Definitions 4.2 and 4.3 and the K part of Definition 4.8 are generalized as follows.

Definition 5.8 (Model Extension) Let M = (S,V) and M ′ = (S ′,V ′) be models. The
model M ′ extends M in a context Γ, written M vΓ M ′, if S ≤α̃ S ′ and Γ(x) = σ implies
V(x)vσ V ′(x) for all x.

Definition 5.9 (Constancy) Let σ be an annotated type. A term t is σ-constant in a context
Γ if JtKM vσ JtKM ′ for all models M , M ′ such that M vΓ M ′.

Definition 5.10 (Typing Rules) The typing relation Γ ` t : σ is given by the rules

Γ(x) = σ
VAR

Γ ` x : σ

σ ∈ Γc(c)
CONST

Γ ` c : σ

Γ ` t : σ σ≤ σ′
SUB

Γ ` t : σ′

Γ[x 7→ σ] ` t : τ
LAM

Γ ` λx. t : σ→G τ

Γ ` t : σ→A τ Γ ` u : σ
APP

Γ ` t u : τ

10



where the subtype relation σ≤ τ is defined by the rules

REFL
σ≤ σ

σ′ ≤ σ τ≤ τ′
GEN

σ→A τ≤ σ′→G τ
′

σ′ ≤ σ σ≤ σ′ τ≤ τ′
FALSE.

σ→F τ≤ σ′→F τ
′

Lemma 5.11 If σ≤ σ′, then vσ ⊆vσ′ .

Proof (induction on the derivation of σ≤ σ′) The REFL case is trivial.

GEN: We may assumevσ′ ⊆vσ andvτ⊆vτ′ . Sincevσ→Fτ⊆vσ→Gτ (by Definition 5.2),
it is sufficient to consider the case A = G. If f vσ→Gτ g, we conclude f vσ′→Gτ

′
g because

avσ′ b =⇒ avσ b =⇒ f (a)vτ g(b) =⇒ f (a)vτ′ g(b).
FALSE: We may assume vσ = vσ′ and vτ ⊆ vτ′ . If f vσ→Fτ g, the first condition for
f vσ′→Fτ

′
g follows for the same reason as above, and the second holds sincevσ =vσ′ . ut

Theorem 5.12 (Soundness of Typing) If Γ ` t : σ, then t is σ-constant in Γ.

Proof (induction on the derivation of Γ ` t : σ)

VAR: Because V(x)vσ V ′(x) by assumption for σ= Γ(x).

CONST: By compatibility of Γc, M̂S(c)vσ M̂S ′(c) for all σ ∈ Γc(c).

SUB: By Lemma 5.11 and Definition 5.9.

LAM: Let a ∈ JσKS and b ∈ JσKS ′ such that a vσ b. Then we have the extended models
Ma = (S,V[x 7→ a]) and M ′

b = (S ′,V ′[x 7→ b]). Thus, Ma vΓ[x 7→σ] M ′
b, and by induction

hypothesis Jλx. tKM (a) = JtKMa vτ JtKM ′b
= Jλx. tKM ′(b). Hence Jλx. tKM vσ→Gτ Jλx. tKM ′ .

APP: By induction hypothesis, and sincevσ→Fτ ⊆vσ→Gτ, we have JtKM vσ→Gτ JtKM ′ and
JuKM vσ JuKM ′ . By Definition 5.2, we know that Jt uKM = JtKM (JuKM )vτ JtKM ′ (JuKM ′) =
Jt uKM ′ , which shows that t u is τ-constant in Γ. ut

While our typing rules propagate F-annotations nicely, they cannot derive them, since the
LAM rule annotates all arrows with G. In particular, the basic set operations /0, ∪, ∩, and −
cannot be typed appropriately from their definitions (Notation 2.7). We solve this issue prag-
matically by treating common set operations as primitive constants along with implication
and equality. The typing rules then propagate type information through expressions such as
A∪ (B∩C). We address this limitation more generally in Section 6.

Definition 5.13 (Standard Constant Context) The standard constant context Γ̂c is the
following mapping:

−→ 7→ {o→G o→G o}
' 7→ {σ→Gσ→F o | α̃ /∈ TV–(σ)}
/0 7→ {σ→F o}

U 7→ {σ→G o}
∪, ∩ 7→ {(σ→A o)→G (σ→A o)→Gσ→A o | A ∈ {G,F}}
− 7→ {(σ→A o)→G (σ→G o)→Gσ→A o | A ∈ {G,F}}
∈ 7→ {σ→G (σ→A o)→G o | A ∈ {G,F}}

insert 7→ {σ→G (σ→A o)→Gσ→A o | A ∈ {G,F}, α̃ /∈ TV–(σ)}

Notice how the lack of a specific annotation for “true-extended sets” prevents us from giving
precise typings to the complement of an F-annotated function; for example, /0 is captured
precisely by σ→F o, but U can be typed only as σ→G o. In Section 6, we introduce a
T-annotation similar to F but with > instead of ⊥ as the default extension.

11



Lemma 5.14 The standard constant context Γ̂c is compatible with the standard constant
model M̂.

Proof For space reasons, we only show the proof for equality. Since α̃ /∈ TV–(σ), vσ is
right-unique (Lemma 5.5). Unfolding the definition ofv, we assume avσ b and show that if
a′ vσ b′, then (a = a′) = (b = b′), and that if there exists no restriction a′ such that a′ vσ b′,
then (b = b′) = ⊥. The first part follows from the left-uniqueness and right-uniqueness of
vσ. For the second part, b 6= b′ because b extends a while b′ admits no restriction. ut

Example 5.15 Let σ = α→F o and Γv = [x 7→ σ, y 7→ σ]. The following derivation shows
that xα�o ' y is constant with respect to α:

σ→Gσ→F o ∈ Γc(')
CONST

Γ ` (') : σ→Gσ→F o

Γ(x) = σ
VAR

Γ ` x : σ
APP

Γ ` (') x : σ→G o

Γ(y) = σ
VAR

Γ ` y : σ
APP

Γ ` x' y : o

5.3 Monotonicity Checking

The rules for checking monotonicity and antimonotonicity are almost the same as in Sec-
tion 4, except that they now extend the context when moving under a quantifier.

Definition 5.16 (Monotonicity Rules) The predicates Γ `M+(t) and Γ `M–(t) are given
by the rules

Γ ` t : o
TERM

Γ `Ms(t)

Γ `M∼s(t) Γ `Ms(u)
IMP

Γ `Ms(t −→ u)

Γ ` t : σ Γ ` u : σ
EQ–

Γ `M–(t ' u)

Γ[x 7→ σ] `M–(t)
ALL–

Γ `M–(∀x. t)

Γ[x 7→ σ] `M+(t) α̃ /∈ TV+(σ)
ALL+.

Γ `M+(∀x. t)

Definition 5.17 (Derived Monotonicity Rules) From Notation 2.6 and Definitions 5.10
and 5.16, we derive these rules for logical abbreviations:

FALSE
Γ `Ms(False)

TRUE
Γ `Ms(True)

Γ `M∼s(t)
NOT

Γ `Ms(¬ t)

Γ `Ms(t) Γ `Ms(u)
AND

Γ `Ms(t ∧ u)

Γ `Ms(t) Γ `Ms(u)
OR

Γ `Ms(t ∨ u)

Γ[x 7→ σ] `M+(t)
EX+

Γ `M+(∃xσ. t)

Γ[x 7→ σ] `M–(t) α̃ /∈ TV+(σ)
EX–.

Γ `M–(∃xσ. t)

Theorem 5.18 (Soundness of Ms) Let M and M ′ be models such that M vΓ M ′. If Γ `
M+(t), then M � t implies M ′ � t. If Γ `M–(t), then M 6� t implies M ′ 6� t.

Proof (induction on the derivation of Γ `Ms(t)) The TERM and IMP cases are obvious. Let
M = (S,V) and M ′ = (S ′,V ′).

EQ–: Assume Γ ` t : σ, Γ ` u : σ, and M 6� t ' u. Since M is a standard model, we know
that JtKM 6= JuKM . By Theorem 5.12, we have JtKM vσ JtKM ′ and JuKM vσ JuKM ′ . By the
left-uniqueness of vσ, the extensions cannot be equal, and thus M ′ 6� t ' u.

12



ALL–: Assume Γ[x 7→ σ] ` M–(t) and M 6� ∀xσ. t. Then there exists a ∈ JσKS such that
(S,V[x 7→ a]) 6� t. Sincevσ is left-total, there exists an extension bwσ a. Since (S,V[x 7→ a])
vΓ (S ′,V ′[x 7→ b]), we have (S ′,V ′[x 7→ b]) 6� t by induction hypothesis. Thus M ′ 6� ∀xσ. t.

ALL+: Assume Γ[x 7→σ] `M+(t), α̃ /∈TV+(σ), and M � ∀xσ. t. We show that M ′ � ∀xσ. t.
Let b ∈ JσKS ′ . Since vσ is right-total (Lemma 5.5), there exists a restriction a ∈ JσKS with
avσ b. By assumption, (S,V[x 7→ a]) � t. Since (S,V[x 7→ a])vΓ (S ′,V ′[x 7→ b]), we con-
clude (S ′,V ′[x 7→ b]) � t by induction hypothesis. ut

Theorem 5.19 (Soundness of the Calculus) If Γ`M+(t) can be derived in some arbitrary
context Γ, then t is monotonic. If Γ `M–(t) can be derived in some arbitrary context Γ, then
t is antimonotonic.

Proof The definition of monotonicity requires showing the existence of a model M ′ =
(S ′,V ′) for any scope S ′ such that S ≤α̃ S ′. By Theorem 5.18, we can take any model
M ′ for which M vΓ M ′. Such a model exists because vΓ is left-total (by Lemma 5.3 and
Definition 5.8). ut

Example 5.20 The following table lists some example formulas, including all those from
the introduction. For each formula, we indicate whether it is monotonic or antimonotonic
with respect to α according to the calculi M1 and M2 and to the semantic definitions.

MONOTONIC ANTIMONOTONIC

FORMULA M1 M2 SEM. M1 M2 SEM.

∃xα y. x 6' y 3 3 3 · · ·
f xα ' x ∧ f y 6' y 3 3 3 3 3 3

sα�o ' t · 3 3 3 3 3

{yα} ' {z} · 3 3 3 3 3

(λxα. x' y)' (λx. x' z) · · 3 3 3 3

(∀xα. f x' x) ∧ f y 6' y · · 3 3 3 3

∀xα y. x' y · · · 3 3 3

∃xα y. x 6' y ∧ ∀z. z' x ∨ z' y · · · · · ·

Remark In Definition 5.4, both the positive and the negative type variables in σ count as
positive occurrences in σ→F τ. This raises the question of whether a fully covariant be-
havior, with TVs(σ→F τ) = TVs(σ) ∪ TVs(τ), could also be achieved, presumably with a
different definition of vσ→Fτ. Although such a behavior looks more regular, it would make
the calculus unsound, as the following counterexample shows:

∀F (α̃�o)�o f α̃�o g h. f ∈ F∧g ∈ F∧ f a 6' g a−→ h ∈ F.

The formula is not monotonic: Regardless of the value of the free variable a, it is true for
|α̃| = 1, since the assumptions imply that f 6' g, and as there are only two functions of
type α̃→ o, h can only be one of them, so it must be in F. This argument breaks down for
larger scopes, so the formula is not monotonic. However, with a fully covariant F-arrow,
we could type F as F (α̃�Go)�Fo and the rule ALL+ would apply, since there are no positive
occurrences of α̃ in the types of F, f , g, and h.

5.4 Type Inference

Expecting all types to be fully annotated with G and F is unrealistic, so we now face the prob-
lem of computing annotations such that a given term is typable—a type inference problem.

13



We follow a standard approach to type inference: We start by annotating all types with
annotation variables ranging over {G,F}. Then we construct a typing derivation by back-
ward chaining, collecting a set of constraints over the annotations. Finally, we look for an
instantiation of the annotation variables that satisfies all the constraints.

Definition 5.21 (Annotation Constraint) An annotation constraint over a set of annota-
tion variables X is an expression of the form σ≤ τ, α̃ /∈ TV+(σ), or α̃ /∈ TV–(σ), where the
types σ and τ may contain annotation variables in V . Given a valuation ρ : X→{G,F}, the
meaning of a constraint is given by Definitions 5.4 and 5.10.

A straightforward way of solving such constraints is to encode them in propositional logic,
following Definitions 5.4 and 5.10, and give them to a SAT solver. Annotation variables,
which may take two values, are mapped directly to propositional variables. Only one rule,
SUB, is not syntax-directed, but it is sufficient to apply it to the second argument of an
application and to variables and constants before invoking VAR or CONST. This approach
proved very efficient on the problems that we encountered in our experiments.

Remark Like the simply-typed λ-calculus, our type system admits principal types if we al-
low annotation variables in types and keep the constraints in the types. A type schema would
have the form ∀A. ∀α. σ 〈C〉, where σ is an annotated type containing annotation variables
A and type variables α, and C is a list of constraints of the form given in Definition 5.21.
Equality would have the principal type schema ∀A. ∀α. α→G α→A o 〈α̃ /∈ TV–(α)〉.

6 Third Calculus: Handling Set Comprehensions and Bounded Quantifiers

An obvious deficiency of the calculus M2 from the previous section is that the rule LAM

always types λ-abstractions with G-arrows. The only way to construct a term whose type
contains F-annotations is to build it from primitives whose types are justified semantically.
In other words, we cannot type set comprehensions precisely.

This solution is far from optimal. To take one example, consider the term λR S x z.
∃y. R x y ∧ S yz, which composes two binary relations R and S. Semantically, composition is
constant for type (α→F β→F o)→G (β→F γ→F o)→G α→F γ→F o, but M2 cannot infer
this. As a result, it cannot infer the monotonicity of any of the four type variables occurring in
the associativity law for composition unless composition is added to the context Γc. Another
annoyance is that the η-expansion λx. t x of a term t α̃�Fo can only be typed with a G-arrow.

The calculus M3 introduced in this section is designed to address this. The underlying
intuition is that a term λx α̃. t can be typed as α̃→F o if we can show that the body t evaluates
to ⊥ whenever x is new in the larger scope. The key is to track what happens to a term
when one or several of its free variables are assigned a new value. When abstracting over
a variable, we can then use this information to annotate the function arrow precisely. Such
a scheme covers set comprehensions such as λx. x ∈ A α̃�Fo ∧ x ∈ B α̃�Fo and, by way of
consequence, bounded quantifications such as ∀x. x ∈ A α̃�Fo −→ q x.

Definition 6.1 (Annotated Type) An annotated type is a HOL type in which each function
arrow carries an annotation A ∈ {G,N,F,T}.

The G- and F-annotations have the same meaning as in Section 5. The T-annotation is similar
to F, but with > instead of ⊥ as its default extension value of type o; the universal set U α�o

can be typed precisely as α→T o. Finally, the N-annotation indicates that if the argument to
the function is a new value, so is its result.

14



6.1 Extension Relation

The extension relationvσ distinguishes the four kinds of arrows. The G and F cases coincide
with Definition 5.2.

Definition 6.2 (Extension) Let σ be an annotated type, and let S, S ′ be scopes such that
S ≤α̃ S ′. The extension relation vσ ⊆ JσKS× JσKS ′ for S and S ′ is defined by

avσ b iff a = b if σ is o or a type variable

f vσ→Aτ g iff ∀a b. avσ b−→ f (a)vτ g(b) and ∀b. Nσ(b)−→ Aτ(g(b))

and
Gσ(b) iff > Fσ(b) iff b = (|σ|)F

Nσ(b) iff @a. avσ b Tσ(b) iff b = (|σ|)T

where (|o|)F =⊥, (|o|)T =>, (|α|)A ∈ S(α), and (|σ→τ|)A = a ∈ JσKS ′ 7→ (|τ|)A.

We cannot require (|α|)F 6= (|α|)T because this would be impossible for |α| = 1. Hence, we
will be careful to assume (|σ|)F 6= (|σ|)T only if σ is of the form σ1→ ·· · →σn→o.

Definition 6.3 (Positive and Negative Type Variables) The set of positive type variables
TV+(σ) and the set of negative type variables TV–(σ) of an annotated type σ are defined
as follows:

TV+(o) = /0

TV+(α) = {α}
TV+(σ→A τ) =

{
TV+(τ) ∪ TV–(σ) if A = G
TV+(τ) ∪ TV–(σ) ∪ TV+(σ) otherwise

TV–(o) = /0

TV–(α) = /0
TV–(σ→A τ) =

{
TV–(τ) ∪ TV+(σ) if A ∈ {G,N}
TV–(τ) otherwise.

With the introduction of an N-annotation, not all annotated types are legitimate. For exam-
ple, α̃→N o would mean that new values of type α̃ are mapped to new Booleans, but there
is no such thing as a new Boolean, since JoK is always {⊥,>}.

Definition 6.4 (Well-Annotated Type) An annotated type σ is well-annotated if WA(σ)
holds, where WA(σ) is defined by the following equivalences:

WA(σ) iff > if σ is o or a type variable

WA(σ→A τ) iff WA(σ) and WA(τ) and A = N−→ body(τ) = α̃

where body(o) = o, body(α) = α, and body(σ→τ) = body(τ).

Lemma 6.5 If σ is well-annotated, then vσ is left-total (total) and left-unique (injective).

Proof (structural induction on σ) The proof is similar to that of Lemma 5.3, except that we
must propagate the WA assumption. There is one genuinely new case.

LEFT-TOTALITY OF vσ→Nτ: For f ∈ Jσ→ τKS , we find an extension g as follows: Let
b ∈ JσKS ′ . If b extends an a, that a is unique by left-uniqueness ofvσ. Sincevτ is left-total,
there exists a y such that f (a)vτ y, and we let g(b) = y. If b does not extend any a, then we
set g(b) to a new element y constructed as follows: Since σ→N τ is well-annotated, τ must
be of the form τ1→A1 · · ·→An−1 τn→An α̃. As value for y, we simply take y1 ∈ Jτ1KS ′ 7→
· · · 7→ yn ∈ JτnKS ′ 7→ y′, where y′ is not the extension of any x′. Such a y′ exists, because
otherwise |S(α̃)|= |S ′(α̃)|, which is inconsistent with the assumption on b.

15



Lemma 6.6 Let σ be a well-annotated type. If α̃ /∈ TV+(σ), then vσ is right-total (surjec-
tive). If α̃ /∈ TV–(σ), then vσ is right-unique (functional).

Proof The proof is similar to that of Lemma 5.5. Lemma 6.5, which replaces Lemma 5.3,
requires σ to be well-annotated. ut

6.2 Type Checking

As in Section 5, constancy checking is treated as a type checking problem involving anno-
tated types. The judgments still have the form Γ ` t : σ, but the context now carries more
information about t’s value when its free variables are assigned new values.

Definition 6.7 (Context) A context is a pair Γ = (Γc,Γv), where Γc maps constant symbols
to sets of annotated types, and Γv is a list [x1 :A1 σ1, . . . , xm :Am σm] associating m distinct
variables xi with annotations Ai and annotated types σi. A context is well-annotated if all
the types σi are well-annotated.

We assume as before that Γc is fixed and compatible with the standard constant model and
write simply Γ for Γv. We also let 〈xm :Am σm〉 abbreviate [x1 :A1 σ1, . . . , xm :Am σm].

The intuitive meaning of a typing judgment Γ ` t : σ with Γ = 〈xm :Am σm〉 is that if x1
is new, then Aσ1

1 (t) holds; if V(x1) vσ1 V ′(x1) but x2 is new, then Aσ2
2 (t) holds; and so on.

Furthermore, if V(xi) vσi V ′(xi) for all i ∈ {1, . . . ,m}, then JtKM vσ JtKM ′ . It may help to
think of a judgment 〈xm :Am σm〉 ` t : σ as meaning roughly the same as [] ` λx1 . . . xm. t :
σ1→A1 · · · →An−1 σn→An σ.

Example 6.8 Given a constant r such that α̃→T α̃→F o ∈ Γc(r), the new typing rules will
let us derive the following judgments:

[x :T α̃, y :F α̃] ` r x y : o [x :T α̃] ` λy. r x y : α̃→F o [] ` λx y. r x y : α̃→T α̃→F o.

Notice that the η-expanded form λx y. r x y can be typed in the same way as r.

Definition 6.9 (Model Extension) Let M = (S,V) and M ′ = (S ′,V ′) be models, and let
Γ, ∆ be two contexts with disjoint sets of variables. The model M ′ extends M strongly in
Γ and weakly in ∆, written M v∆

Γ
M ′, if S ≤α̃ S ′, x :A σ ∈ Γ implies V(x) vσ V ′(x), and

x :A σ∈∆ implies either V(x)vσ V ′(x) or Nσ(V ′(x)) for all x. If ∆= [], we write M vΓ M ′.

Definition 6.10 (Constancy) Let σ be an annotated type. A term t is σ-constant in a con-
text Γ if JtKM vσ JtKM ′ for all models M , M ′ such that M vΓ M ′.

Definition 6.11 (Conformity) Let σ be an annotated type, and let Γ be a context. A term
t is σ-conformant to Γ if for all decompositions Γ = ∆, [x :A τ],E and for all models M , M ′

such that M vE
∆

M ′, we have that Nτ(JxKM ′) implies Aσ(JtKM ′).

Equipped with these semantic definitions, we are ready to examine the inference rules of
M3 relating to constancy and monotonicity.

Definition 6.12 (Typing Rules) The typing relation Γ ` t : σ is given by the rules below.

Context rules:
Γ,∆ ` t : τ

ADD
Γ, [x :G σ],∆ ` t : τ

Γ, [x :A σ],∆ ` t : τ
ANN

Γ, [x :G σ],∆ ` t : τ

Γ, [y :B τ, x :A σ],∆ ` t : υ
SWAP where A ∈ {B ,G}.

Γ, [x :A σ, y :B τ],∆ ` t : υ

16



Nonlogical rules:

VAR
[x :N σ] ` x : σ

σ ∈ Γc(c)
CONST

[] ` c : σ

Γ ` t : σ σ≤ σ′
SUB

Γ ` t : σ′
Γ, [x :A σ] ` t : τ

LAM
Γ ` λx. t : σ→A τ

〈xm :Am σm〉 ` t : σ→B τ 〈xm :G σm〉,〈yn :N τn〉 ` u : σ
APP where Ai ∈ {G,F,T}.

〈xm :Am σm〉,〈yn :B τn〉 ` t u : τ

Logical rules:

FALSE
〈xm :F σm〉 ` False : o

TRUE
〈xm :T σm〉 ` True : o

〈xm :Am σm〉 ` t : o 〈xm :Bm σm〉 ` u : o
IMP where A B =

T if A= F or B =T
F if A=T and B = F
G otherwise.〈xm :Am Bm σm〉 ` t −→ u : o

The subtype relation σ≤ τ is defined by the rules

REFL
σ≤ σ

σ′ ≤ σ τ≤ τ′
GEN

σ→A τ≤ σ′→G τ
′

σ′ ≤ σ σ≤ σ′ τ≤ τ′
ANY.

σ→A τ≤ σ′→A τ
′

The nonlogical rules are similar to the rules of Definition 5.10, but the LAM rule now allows
arbitrary annotations, and the other rules impose various restrictions on the annotations in
contexts. The logical rules support rudimentary propositional reasoning within terms.

In M2 the context was a set and we dispensed with explicit context rules. The context
now being a list, we need weakening rules to add and permute variables and to change the
annotations in a controlled way. The new typing rules form a substructural type system [23].

Lemma 6.13 If σ≤ σ′, then vσ ⊆vσ′ .

Proof Similar to the proof of Lemma 5.11. ut

The proof of the soundness theorem relies on two closure properties of functional abstraction
and application.

Lemma 6.14 Let g ∈ Jσ→τKS ′ .

(a) If Aτ(g(b)) for all b ∈ JσKS ′ , then Aσ→Bτ(g).
(b) If A ∈ {G,F,T} and Aσ→Bτ(g), then Aτ(g(b)) for all b ∈ JσKS ′ .

Proof Immediate from Definition 6.2. ut

It is regrettable that Lemma 6.14(b) does not hold uniformly for all annotation types and,
as a result, that the APP rule has a side condition Ai ∈ {G,F,T}. The crux is that while a
function that maps old values to new values is necessarily new, the converse does not hold:
A function may be new even if it maps old values to old values. Given the type α̃→F o, the
function (⊥,⊥,>) depicted in Figure 5.1(b) is such an example.

Theorem 6.15 (Soundness of Typing) If Γ ` t : σ, then t is both σ-constant in Γ and
σ-conformant to Γ.

Proof (induction on the derivation of Γ` t :σ) The cases ADD, ANN, VAR, CONST, FALSE,
TRUE, and IMP are easy to prove using the definitions of vσ, constancy, and conformity.
The remaining cases are proved below.

17



SWAP: The case A = G is easy. And in the remaining case, the only subtlety occurs when
both x and y are new, i.e., Nσ(JxKM ′) and Nτ(JyKM ′); but since A=B , the behaviors dictated
by x and y agree and we can exchange them.

SUB: By Lemma 6.13 and Definition 6.10.

LAM: The (σ→A τ)-conformity of λx. t follows from Lemma 6.14(a) and the induction
hypothesis; constancy is easy to prove from the induction hypothesis and the definition of
vσ→Aτ. We can omit [x :A σ] in the conclusion because x does not occur free in λx. t.

APP: Let Γ = 〈xm :Am σm〉,〈yn :B τn〉. The constancy proof is as for Theorem 5.12. It re-
mains to show that t u is τ-conformant to Γ. Let Γ = ∆, [z :C υ],E and assume Nυ(JzKM ′).
If z is one of the xi’s, we have Cσ→Bτ(JtKM ′) by the first induction hypothesis and hence
C τ(Jt uKM ′) by Lemma 6.14(b). If z is among the yj’s (in which case C = B), the second
induction hypothesis tells us that JuKM ′ is new, and since JtKM vσ→Bτ JtKM ′ by the first
induction hypothesis, we have Bτ(Jt uKM ′) by the definition of vσ→Bτ. ut

From Definition 6.12, it is straightforward to derive typing rules for ¬, ∧, ∨, ∀, and ∃ in the
style of Definition 5.17. We have omitted the derivations due to lack of space.

With powerful typing rules at our disposal, we no longer need to reason semantically
about set constructs. This leaves us with a much reduced constant context.

Definition 6.16 (Standard Constant Context) The standard constant context Γ̂c is the
following mapping:

−→ 7→ {o→G o→G o}
' 7→ {σ→Gσ→F o | α̃ /∈ TV–(σ)}

The examples below exploit the new calculus to type set constructs precisely.

Example 6.17 The empty set /0σ�o and the universal set Uσ�o get their natural typings:

FALSE
[x :F σ] ` False : o

LAM
[] ` λx. False : σ→F o

TRUE
[x :T σ] ` True : o

LAM
[] ` λx. True : σ→T o

Example 6.18 The complement A of a set A is the set U−A. Using the rule

〈xm :Am σm〉 ` t : o
NOT where ∼A =

T if A = F
F if A = T
G otherwise〈xm :∼Am σm〉 ` ¬ t : o

derived from IMP and FALSE in the obvious way, set complementation can be typed as
follows for A ∈ {G,F,T}:

VAR
[s :N σ→A o] ` s : σ→A o

ANN
[s :G σ→A o] ` s : σ→A o

VAR
[x :N σ] ` x : σ

ADD
[s :G σ→A o, x :N σ] ` x : σ

APP
[s :G σ→A o, x :A σ] ` s x : o

NOT
[s :G σ→A o, x :∼A σ] ` ¬ s x : o

LAM
[s :G σ→A o] ` λx. ¬ s x : σ→∼A o

LAM
[] ` λs x. ¬ s x : (σ→A o)→Gσ→∼A o

18



6.3 Monotonicity Checking

The rules for checking monotonicity and antimonotonicity are similar to those given in
Section 5. The only new rule is ALL+

T; it exploits the context to avoid the restriction on α̃.

Definition 6.19 (Monotonicity Rules) The predicates Γ `M+(t) and Γ `M–(t) are given
by the rules

Γ ` t : o
TERM

Γ `Ms(t)

〈xm :Am σm〉 `M∼s(t) 〈xm :Bm σm〉 `Ms(u)
IMP

〈xm :Am Bm σm〉 `Ms(t −→ u)

〈xm :G σm〉 ` t : σ 〈xm :G σm〉 ` u : σ
EQ–

〈xm :G σm〉 `M–(t ' u)

Γ, [x :G σ] `M–(t)
ALL–

Γ `M–(∀x. t)

Γ, [x :G σ] `M+(t) α̃ /∈ TV+(σ)
ALL+

Γ `M+(∀x. t)

Γ, [x :T σ] `M+(t)
ALL+

T .
Γ `M+(∀x. t)

From Definition 6.19, it is straightforward to derive monotonicity rules for False, True, ¬,
∧, ∨, and ∃.

Theorem 6.20 (Soundness of Ms) Let M and M ′ be models such that M vΓ M ′. If Γ `
M+(t), then t is monotonic and o-conformant to Γ. If Γ `M–(t), then t is antimonotonic and
o-conformant to Γ.

Proof (induction on the derivation of Γ `Ms(t)) The TERM, EQ–, ALL–, and ALL+ cases
are similar to the corresponding cases in the proof of Theorem 5.18. The IMP case is analo-
gous to the IMP case of Theorem 6.15. Finally, the rule ALL+

T can be derived by considering
∀x. t an abbreviation for (λx. t)' (λx. True). ut

Theorem 6.21 (Soundness of the Calculus) If Γ`M+(t) can be derived in some arbitrary
well-annotated context Γ, then t is monotonic. If Γ `M–(t) can be derived in some arbitrary
well-annotated context Γ, then t is antimonotonic.

Proof By Theorem 6.20, we can take any model M ′ such that M vΓ M ′ as witness for
monotonicity. Such a model exists because vΓ is left-total for well-annotated contexts Γ

(by Lemma 5.3 and Definition 5.8). ut

Example 6.22 The bounded quantification ∀x. x ∈ A α̃�o −→ q x can be inferred monotonic
in the context Γ = [A :G α̃→F o] if q x can be inferred monotonic:

VAR
[A :N α̃→F o] ` A : α̃→F o

ANN
Γ ` A : α̃→F o

VAR
Γ[x :N α̃] ` x : α̃

APP
Γ[x :F α̃] ` x ∈ A : o

TERM
Γ[x :F α̃] `M–(x ∈ A)

...

[x :G α̃] `M+(q x)
ADD

Γ[x :G α̃] `M+(q x)
IMP

Γ[x :T α̃] `M+(x ∈ A−→ q x)
ALL+

T
Γ `M+(∀x. x ∈ A−→ q x)

19



6.4 Type Inference

At the cost of some inelegant technicalities, the approach sketched in Section 5.4 for infer-
ring types can be adapted to M3. The nonlogical rules VAR, CONST, and LAM as well as
all the logical rules are syntax-directed and pose no problem when constructing a typing
derivation by backward chaining. The SUB rule is unproblematic for the same reasons as for
M2. Similarly, the context rules ADD and ANN can be deferred to the leaves of the deriva-
tion. SWAP is useful only together with APP, the only other rule that examines the order of
the context variables; other occurrences of SWAP can be postponed or omitted altogether.

The challenge is to handle APP and SWAP, because it is not obvious where to split the
context in two parts and whether variables should be exchanged first. Since the context is
finite, we could enumerate all permutations and splittings, but this might lead to an expo-
nential explosion in the number of constraints. Fortunately, there is a general approach to
determine which variables to permute and where to split the context, based on the rule

〈xm :Am σm〉 ` t : σ→B τ 〈xm :G σm〉,〈yn :G τn〉,〈zp :N υp〉 ` u : σ
3APP

〈xm :Am σm〉,〈yn :G τn〉,〈zp :B υp〉 ` t u : τ

where Ai ∈ {G,F,T}, xi ∈ FV(t), and yj,zk /∈ FV(t). This rule is easy to derive from APP and
ADD. Before applying it, we invoke SWAP repeatedly to separate the variables occurring
free in t (the xi’s) from the others (the yj’s and zk’s).

The remaining hurdle is to determine where to split between the yj’s and the zk’s. This
can be coded as polynomial-size constraints. If B = G, we can ignore the zk’s and list all
variables /∈ FV(t) as part of the yj’s; otherwise, the right-hand part of the context must have
the form 〈yn :G τn〉,〈zp :B υp〉 already—the SWAP rule cannot bring it into that form if it is
not already in that form. So we keep the variables /∈ FV(t) in the order in which they appear
without distinguishing statically between the yj and zk variables, and generate constraints
to ensure that the annotations for the yj’s and zk’s in the conclusion have the desired form
G, . . . ,G,B , . . . ,B and correspondingly in the second hypothesis but with N instead of B .

The completeness proof rests on two ideas:

1. Any APP instance in which some of the variables xi do not occur free in t can only carry
a G-annotation and will eventually be eliminated using ADD.1

2. The variable exchanges we perform to bring the xi’s to the left are necessary to meet the
general invariant FV(t) ⊆ {x1, . . . , xm} on all derivations 〈xm :Am σm〉 ` t : σ, and any
additional SWAPs can be postponed.

Type inference is in NP because our procedure generates a polynomial-size SAT prob-
lem. It is also NP-hard because we can reduce SAT to it using the following simple scheme:
Translate propositional variables to HOL variables of type α̃→o and connectives to the cor-
responding set operations; for example, (A∧¬B)∨ B becomes (A ∩ B) ∪ B. The proposi-
tional formula is satisfiable iff the corresponding term is typable as α̃→T o in some context.

7 Practical Considerations

To make monotonicity checking useful in practice, we must add support for user-defined
constants and types, which we have not yet considered. In this section, we briefly sketch
these extensions before we evaluate our approach empirically on existing Isabelle theories.

1 In pathological cases such as the application (λy. False) x, the variables not occurring in t can be mapped
to F or T and eliminated using FALSE or TRUE. We can avoid these cases by β-reducing all terms.

20



7.1 Constant Definitions

In principle, user-defined constant symbols are easy to handle: We can simply build a con-
junction from the definitions and the negated conjecture (where the user-defined symbols
appear as variables) and hand it to the monotonicity checker. Unfortunately, this has disas-
trous effects on the precision of our method: Even a simple definition of f α�β by an equality
leads to a formula of the form (∀xα. f x ' t) ∧ ¬u, which does not pass the monotonicity
check because the universal quantifier requires α /∈ TV+(α). Rewriting the definition to the
form f ' (λx. t) does not help. We must thus treat definitions specially.

Definition 7.1 Let xσ be a variable. We say that a formula t is a specification for x if t is
satisfiable in each scope and FV(t) = {x}. Then the (nonempty) set of values in JσKS that
satisfy t is denoted by Spec t

S .

In our application, specifications arise from Isabelle/HOL; we can assume that they are
explicitly marked as such and do not have to recognize them syntactically.

Specifications are trivially monotonic because they are satisfiable in each scope, and we
can safely drop the monotonicity check for them. However, we must assign an annotated
type to the defined symbol x, which we can use for checking the rest of the formula.

Definition 7.2 Given an annotated type σ, we say that a specification t for x respects σ if
S ≤α̃ S ′ implies that for each a ∈ Spec t

S there exists b ∈ Spec t
S ′ such that avσ b.

It is easy to see that if a specification respects σ, we may assume that the defined value is
σ-constant and augment our context with [x :G σ] while checking the rest of the formula.

We can check this property for specification formats occurring in practice. For brevity,
we only consider the case of a recursive function definition ∀x. f σ�τ x ' F f x where the
recursion is known to be terminating (as is required by Isabelle). Termination gives us a
well-founded relation Rσ�σ�o such that

� ∀ f g x. (∀y. R y x−→ f y' g y)−→ F f x' F g x . (∗)

Then it suffices to type-check the functional F, circumventing the quantifiers and equality.

Lemma 7.3 Let σ, τ be annotated types and t = (∀x. f σ�τ x' F f x) a specification for f
such that the property (∗) holds for some well-founded relation R. If [] ` F : (σ→G τ)→G τ,
then t respects σ→G τ.

Proof Let S, S ′ be scopes such that S ≤α̃ S and M , M ′ be models for S and S ′ that both
satisfy t. Let f̂ ∈ Spec t

S and ĝ ∈ Spec t
S ′ . We show f̂ vσ→Gτ ĝ.

Let ≺ = JRKM ′ and FM ( f , x) = JFKM ( f )(x). By well-founded induction on b ∈ JσKS ′

using the relation≺, we show that ∀a. avσ b−→ f̂ (a)vτ ĝ(b). As induction hypothesis we
have ∀b′ ≺ b. ∀a′. a′ vσ b′ −→ f̂ (a′) v ĝ(b′). We pick an arbitrary extension g wσ→Gτ f̂ ,
and define the modified function g′ so that g′(x) = ĝ(x) if x≺ b and g′(x) = g(x) otherwise.
From the induction hypothesis, we know that f̂ vσ→Gτ g′ and can thus use the typing for F
(and Theorem 6.15) to conclude FS( f̂ ,a)vτ FS ′(g′,b). Moreover, the condition (∗) implies
that FS ′(g′,b) = FS ′(ĝ,b), since g′ and ĝ behave the same on ≺-smaller elements. Thus,
unfolding the fixpoint equation (which holds in M and M ′), we finally get

f̂ (a) = FS( f̂ ,a)vτ FS ′(g
′,b) = FS ′(ĝ,b) = ĝ(b) . ut

21



7.2 Inductive Datatypes

The most important way of introducing new types in Isabelle/HOL is to declare an inductive
datatype using the command

datatype ᾱ κ = C1 σ11 . . . σ1k1 | · · · | Cn σn1 . . . σnkn

Inductive datatypes are a derived concept in HOL [2]. However, our analysis benefits from
treating them specially as opposed to unfolding the underlying construction.

The datatype declaration introduces the type constructor κ, together with the term con-
structors Ci of type σi1→G · · · →G σiki→G ᾱ κ. The type ᾱ κ may occur recursively in the
σij’s, but only in positive positions. For simplicity, we assume that any arrows in the σij’s
already carry annotations. (In the implementation, annotation variables are used to infer
them.) The interpretation Jᾱ κKS is given by the corresponding free term algebra.

We must now extend the basic definitions of v, ≤, and TVs to this new construct. For
Definition 6.2, we add the following case:

Ci(a1, . . . ,aki)v
τ̄ κ Ci(b1, . . . ,bki) iff ∀ j ∈ {1, . . . ,ki}. aj vσij[ᾱ 7→τ̄] bj.

Similarly, Definition 6.3 is extended with

TVs(τ̄ κ) =
⋃

1≤i≤n
1≤ j≤ki

TVs(σij[ᾱ 7→ τ̄])

and Definition 6.12 with

σij[ᾱ 7→ τ̄]≤ σij[ᾱ 7→ τ̄′] for all 1≤ i≤ n, 1≤ j≤ ki

τ̄ κ ≤ τ̄′ κ
.

To extend our soundness result, we must show that Lemmas 6.5 to 6.14 still hold. The
proofs are straightforward and omitted from this article. Constancy of the datatype construc-
tors also follows directly from the above definitions.

Example 7.4 Consider the type α list of lists over α equipped with the constructors []α list

and · α�α list�α list. A theory of lists could comprise the following definitions:

[]_ ys' ys (x ·xs)_ ys' x ·(xs_ ys)

set []' /0 set (x ·xs)' {x} ∪ set xs

dist []' True dist (x ·xs)' (x /∈ set xs ∧ dist xs).

The table below presents the results of our analyses on three theorems about lists adapted
from Isabelle’s List theory.

MONOTONIC ANTIMONO.
FORMULA M1 M2 M3 M1 M2 M3

set (xs_ ys)' set xs ∪ set ys · 3 3 3 3 3

dist (xs_ ys)−→ dist xs ∧ dist ys 3 3 3 3 3 3

dist (xs_ ys)−→ set xs ∩ set ys' /0 · 3 3 3 3 3

22



7.3 Evaluation

What proportion of monotonic formulas are detected as such by our calculi? We applied Nit-
pick’s implementations of M1, M2, and M3 on the user-supplied theorems from six highly
polymorphic Isabelle theories. In the spirit of counterexample generation, we conjoined the
negated theorems with the relevant axioms. The results are given below.

FORMULAS SUCCESS RATE

THEORY M1 M2 M3 TOTAL M1 M2 M3

AVL2 29 33 33 33 88% 100% 100%
Fun 71 94 116 118 60% 80% 98%
Huffman 46 91 90 99 46% 92% 91%
List 441 510 545 659 67% 77% 83%
Map 113 117 117 119 95% 98% 98%
Relation 64 87 100 155 41% 56% 65%

The table indicates how many formulas were found to involve at least one monotonic
type variable using M1, M2, and M3, over the total number of formulas involving type
variables in the six theories. Since the formulas are all negated theorems, they are all seman-
tically monotonic (no models exist for any scope).

An ideal way to assess the calculi would have been to try them on a representative
database including (negated) non-theorems, but we lack such a database. Nonetheless, our
experience suggests that the calculi perform as well on non-theorems as on theorems, be-
cause realistic non-theorems tend to use equality and quantifiers in essentially the same way
as theorems. Interestingly, non-theorems that are derived from theorems by omitting an as-
sumption or mistyping a variable name are even more likely to pass the monotonicity check
than the corresponding theorems.

Although the study of monotonicity is interesting in its own right and leads to an ele-
gant theory, our main motivation—speeding up model finders—is resolutely pragmatic. For
Nitpick, which uses a default upper bound of 8 on the cardinality of the atomic types, we ob-
served a speed increase factor of about 5 per inferred monotonic type. Since each monotonic
type reduces the number of scopes to consider by a factor of 8, we could perhaps expect an
8-fold speed increase; however, the scopes that can be omitted by exploiting monotonicity
are smaller and faster to check than those that are actually checked. The time spent perform-
ing the monotonicity analysis (i.e., generating the annotation constraints and solving the
resulting SAT problem) for M2 is negligible; for M3, the SAT solver occasionally reached
the time limit of one second, which explains why M2 beat M3 on the Huffman theory.

8 Related Work

In the first-order world, Alloy constitutes an interesting case in point. Although Alloy’s logic
is unsorted, models must give a semantics to “primitive types,” which are sets of uninter-
preted atoms. Early versions of the logic ensured monotonicity with respect to the primitive
types by providing only bounded quantification and disallowing explicit references to the
sets that denote the types [11]. Monotonicity has been lost in more recent versions of Alloy,
which allow such references [10, p.165]. Nonetheless, many Alloy formulas are monotonic,
notably those in existential–bounded-universal form [12].

23



The satisfiability-modulo-theories (SMT) community has also shown interest in mono-
tonicity. The original Nelson–Oppen method allows the combination of decision procedures
for first-order theories satisfying certain restrictions, notably that the theories are stably in-
finite (or finitely unsatisfiable) [16]. This criterion has since been weakened, and one of
the remaining requirements on the theories to be composed is that they be “smooth,” that
is, every quantifier-free formula must be monotonic modulo the theory [21]. Smoothness is
usually proved with pen and paper for the theories that need to be combined.

For some logics, small model theorems provide an upper bound on the cardinality of a
sort [5], primitive type [15], or variable’s domain [19]. If no model exists below that bound,
no larger models exist. Paradox and Alloy exploit such theorems to speed up the search. Our
approach is complementary and could be called a large model theorem.

We presented an earlier version of this article at IJCAR 2010 [3]. The main additions
here are the introduction of the calculus M3 and the treatment of constant definitions. We
also elaborated some of the existing proofs and added explanations throughout.

Following on our IJCAR 2010 paper, Claessen et al. [6] devised two calculi for first-
order logic similar to ours. Their first calculus is slightly stronger than M1 in that it infers
∀x α̃. f (x) ' g(x) monotonic, by ensuring that the extensions of f and g coincide on new
values. Their second calculus handles bounded quantifications specially; it is closely related
to M3 but was developed independently. Each predicate can be false- or true-extended,
corresponding to our F- and T-annotations. The inference problem is NP-complete, and they
use a SAT solver to determine which predicates should be false-extended and which should
be true-extended. They observe that monotonic sorts can be safely erased when translating
from many-sorted to unsorted first-order logic and exploit this in their new translation tool
Monotonox, with applications in both theorem provers and model finders.

9 Conclusion

In model finders that work by enumerating scopes (domain cardinalities specifications), the
choice of the scopes and their order is critical to obtain good performance, especially for for-
mulas involving many atomic types. Yet, little work has been done on this problem beyond
the discovery of small model theorems.

We presented a solution for HOL that prunes the search space by inferring monotonicity
with respect to atomic types. Monotonicity is in general undecidable, so we approximate it
with syntactic criteria. The main difficulty occurs in conjunction with common set idioms,
which we detect using a suitable type system. Our approach also handles datatypes defined
in terms of the atomic types. Our measurements show that monotonic formulas are pervasive
in HOL formalizations and that syntactic criteria can usually detect them. The calculus M3
has been implemented as part of Isabelle’s SAT-based counterexample generator Nitpick,
with dramatic speed gains.

Acknowledgment. We would like to thank Lukas Bulwahn, Ann Lillieström, Tobias Nip-
kow, Andrei Popescu, Mark Summerfield, and the anonymous reviewers for suggesting sev-
eral textual improvements, as well as Chad Brown and Pascal Fontaine, whose feedback on
the IJCAR 2010 talk helped enrich the article.

24



References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof (2nd
Ed.), volume 27 of Applied Logic. Springer, 2002.

2. S. Berghofer and M. Wenzel. Inductive datatypes in HOL—lessons learned in formal-logic engineering.
In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, TPHOLs ’99, volume 1690 of
LNCS, pages 19–36, 1999.

3. J. C. Blanchette and A. Krauss. Monotonicity inference for higher-order formulas. In J. Giesl and
R. Hähnle, editors, IJCAR 2010, volume 6173 of LNAI, pages 91–106. Springer, 2010.

4. J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic based on
a relational model finder. In M. Kaufmann and L. Paulson, editors, ITP 2010, volume 6172 of LNCS,
pages 131–146. Springer, 2010.

5. K. Claessen. Private communication, 2009.
6. K. Claessen, A. Lillieström, and N. Smallbone. Sort it out with monotonicity: Translating between

many-sorted and unsorted first-order logic. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-
23. Springer, 2011. To appear.

7. K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In MODEL,
2003.

8. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press, 1993.

9. J. Harrison. HOL Light: A tutorial introduction. In FMCAD 1996, volume 1166 of LNCS, pages 265–
269. Springer, 1996.

10. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.
11. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In ESEC/FSE 2001, pages

62–73, 2001.
12. V. Kuncak and D. Jackson. Relational analysis of algebraic datatypes. In H. C. Gall, editor, ESEC/FSE

2005, 2005.
13. W. McCune. A Davis–Putnam program and its application to finite first-order model search: Quasigroup

existence problems. Technical report, ANL, 1994.
14. J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
15. L. Momtahan. Towards a small model theorem for data independent systems in Alloy. Electr. Notes

Theor. Comput. Sci., 128(6):37–52, 2005.
16. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. Prog. Lang.

Sys., 1(2):245–257, 1979.
17. T. Nipkow. Verifying a hotel key card system. In K. Barkaoui, A. Cavalcanti, and A. Cerone, editors,

ICTAC 2006, volume 4281 of LNCS, pages 1–14. Springer, 2006.
18. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic,

volume 2283 of LNCS. Springer, 2002.
19. A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The small model property: How small can it be? Inf.

Comput., 178(1):279–293, 2002.
20. K. Slind and M. Norrish. A brief overview of HOL4. In O. A. Mohamed, C. Muñoz, and S. Tahar,

editors, TPHOLs 2008, volume 5170 of LNCS, pages 28–32, 2008.
21. C. Tinelli and C. G. Zarba. Combining decision procedures for sorted theories. In J. Alferes and J. Leite,

editors, JELIA 2004, volume 3229 of LNCS, pages 641–653. Springer, 2004.
22. E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg and M. Huth, editors,

TACAS 2007, volume 4424 of LNCS, pages 632–647. Springer, 2007.
23. D. Walker. Substructural type systems. In B. Pierce, editor, Advanced Topics in Types and Programming

Languages, pages 3–44. MIT Press, 2005.
24. T. Weber. SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept. of Informat-

ics, T.U. München, 2008.
25. J. Zhang and H. Zhang. SEM: A system for enumerating models. In C. S. Mellish, editor, IJCAI-95,

volume 1, pages 298–303. Morgan Kaufmann, 1995.

25


