
A Small Survey on Glitch Minimization
Approaches in FPGAs

Jérémie Dumas
École Normale Supérieure de Lyon

December 2011

This report will cover the topic of reducing the dynamic power consuption
in FPGAs through the elemination of glitches, or spurious transitions, that
occur in a circuit. Several approaches have been designed to tackle the issue
at different stage of the FPGA conception (see either [LLW07], [DCW10] and
[CCW07]). This document will focus on first two approaches, for they take
place after the routing process.

Contents

1 Introduction 2
1.1 Architectural Background . 2
1.2 Power Dissipation and Glitches . 2

2 GlitchLess: Glitch Removal using Programmable Delay Element 3
2.1 The Programmable Delay Element . 3
2.2 Configuration Algorithms . 3
2.3 Simulation Process . 4

3 GlitchReroute: A Path Balancing Rerouting Algorithm 5
3.1 A Rerouting Heuristic . 5
3.2 Source to Sink Balancing . 5

4 Results Comparison 6
4.1 Power Savings . 6
4.2 Overhead . 7
4.3 Conclusion . 7

1

1 Introduction

1.1 Architectural Background

We remind that a field-programmable gate array (FPGA) consists of configurable logic
block elements interconnected through a net of wires running across the chip. The usual
process of compiling a FPGA from its high-level description to the low-level transistors
revolves around these three steps :

Technology Mapping The behavior of the circuit is expressed as a graph of gates (LUT).

Placement The gates are physically put on the chip.

Routing The switch boxes are configured to connect the logic block elements.

Wires’ lengths and channels width is chosen so as to facilitate routing via approximated
heuristics, because the underlying problem is usually NP-hard. Routing is usually devised
to minimize essentially the delay of the critical path in the obtained architecture, where
the critical path represent the longest path a signal can go through in the network.
While of primary importance, the length of the critical path in a FPGA is not the only

criterion to be concerned about. Power consumption is also becoming more and more
detrimental to reduce the cost of computing with FPGAs.

1.2 Power Dissipation and Glitches

There are two kinds of power dissipation in a FPGA. Static power dissipation occurs
inevitably due to the nature of the transistors and current leaking through the com-
ponents. Dynamic power dissipation is however inherent to individual signals toggling
between two values. Lamoureux et al. [LLW07] indicate in their introduction that dy-
namic power account for 62% of the total power, and as such is a major source of power
dissipation in FPGAs.
Transitions causing dynamic power dissipation can be distinguished between the func-

tional transitions — which indicates a change in the gate input signal between two clock
cycle — and spurious transitions or glitches — which do not change the output of the
gate at the end of the cycle. This second kind of transition is an unwanted hazard we
would like to suppress.
We denote by Si the switching activity of gate i, i.e. the average number of signal

transitions per unit time. Dinh et al. in [DCW10] used a dynamic power dissipation
model that grow linearly in the Si. The goal of both reviewed papers is to balance signal
path, by delaying early-arriving signals, so as to align functional transitions and thus
avoiding unnecessary glitches. A illustration can be seen in Figure 1.
Narrow shifts won’t affect the output of the gate : the signal have to be separated by

a minimal delay δ, called intertial delay, in order to create a significant glitch ; otherwise
the glitch is filtered out naturally. Typical inertial delay is hinted to be 0.2ns in [LLW07].

2

Figure 1: The idea behind glitch removal.

2 GlitchLess: Glitch Removal using Programmable Delay
Element

2.1 The Programmable Delay Element

The cornerstone of the approach designed by Lamoureux et al. in [LLW07] is the pro-
grammable delay element illustrated in Figure 2. The idea is delay the signal passing
trhough the circuit by an adjustable value ∆, controlled with the SRAM bits. They
can be introduced in the logic block element of a FPGA in several ways, as hinted by
Figure 3.

Figure 2: Programmable delay element.

In Figure 3, the Basic Logic Elements (BLEs) designate the combination of look-up
tables (LUTs) and flip-flops. The LUTs have K input signals. The delay elements
are controlled by several parameters, such as minimum and maximum delay they can
incur, the number of delay elements at the input of a BLE, etc. When adjusting theses
parameters, the more flexibility we get, the more important the area overhead will be.

2.2 Configuration Algorithms

Once the delay elements are placed, and the routing in the FPGA is done, we have to
take advantage of the programmable delays in order to align input signals of the different

3

Figure 3: Delay insertion schemes.

BLEs of each cell. In scheme 1 there is only one way to delay each input signal, but
scheme 2 to 4 offer multiple ways to do so. The first step of the algorithm is to compute
the ideal Needed_Delay(n, f) for each input signal f of node n. This is simply the
difference between the arrival time of the two signals and the delay incurred by signal f
when it goes through node n.
The configuration algorithm for scheme 1 boils down to setting the Added_Delay(n, f)

for each input f of node n to be as close to Needed_Delay(n, f) as possible. For
scheme 2, the configuration process makes use of the delay elements placed at the output
of the BLEs to somehow factorize the minimum delay needed for each other BLEs’ input
it is connected to ; the algorithm visit each gate in the topological order of its gates from
the primary inputs up to the final outputs of the circuit.
The configuration of scheme 3 and 4 works the same way, with a first step adjusting

the I input delays in the logic block element (CLB) or the blank delay elements. When
this is done, the delay element at the entrance of each BLE is configured the same way
as with scheme 1.

2.3 Simulation Process

The experimentation protocol followed by Lamoureux et al. [LLW07] works as follow.
The CAD tools used for placement and routing is the widespread Versatile Place and

4

Route (VPR) tool. Simulation of the generated FPGA is done using the HSPICE soft-
ware, which is a comprehensive simulation tool for integrated circuits. It includes models
for power dissipation, and allows to compute critical path overheads due to the insertion
of the programmable delay elements.
Thorough calibration of each scheme parameters (such as minimum and maximum

delays offered by the programmable delay elements) is done by simulation. Calibration
is done over a wide range of benchmark circuits, using LUT with K = 4, 5 and 6 entries.
To calibrate one parameter, ideal values for all the others are set, and empirical simulation
yields the optimal value we are looking for. This multi-dimensional optimization is done
quite empirically but it seems to bode well and gives coherent results — which will be
presented in Section 4.

3 GlitchReroute: A Path Balancing Rerouting Algorithm

3.1 A Rerouting Heuristic

Instead of adding new delay elements which increase area and power consumption in a
slight way, the principle of the rerouting algorithm proposed by Dinh et al. [DCW10]
is to perform a new re-routing step to balance signal arrival at the input gates. As the
algorithm only delay the early arriving signals, the critical path is not modifying and the
new routing is still optimal from the graph-diameter point of view.
As with the rip-up and re-route approach of the VPR tool, this algorithm select a pair

of node (s, t) and try to find a new route from s to t, whose length falls into a target
range [d−∆, d+ ∆], where ∆ is the inertial delay mentioned in Section 1.2.
The pair (s, t) is chosen according to a certain heuristic, which favors the input that

most influence the corresponding LUT’s output on one hand, and that need smaller lifts
on the other hand. Intuitively, inputs that generate more transitions of their LUT’s are
responsible for more glitches. And paths that need to be delayed by a long shot will
increase significantly the number of wires needed for the routing, in a way impeding
other paths to be lifted later in the process.

Remark. Their selection process consider only the first-level logic blocks, which are the
fan-outs of the primary inputs of the FPGA. This is justified because it represents a very
good trade-of between reduction of the switching activity and the increased capacitance
caused by the use of more wire to route signals. Intuitively unaligned primary input
signals will cause glitches that can ripple to more gates since they where created early in
the graph.

3.2 Source to Sink Balancing

We are now interested in finding a new path between pair of nodes (s, t) through the wire
network, with a delay in a window of d±∆. Because there are many paths between two
node in a graph, the heuristic restricts its search to specific ones, composed of shortest
paths from s to s′, and shortest paths from t′ to t, where s′, t′ are arbitrary nodes.

5

As the computed path needs to be simple (node wire may be used more than once),
the following heuristic is used : split the graph in two sets S and T , where S contains
nodes which are closer to s than to t, and T contains nodes which are closer to t than to
s. Then any path of the form s s′ − t′ t — where s′ ∈ S, t′ ∈ T and s s′ (resp.
t′ t) is a shortest path from s to s′ (resp. t′ to t) — is a valid path with no loop (proof
in [DCW10], see Figure 4a for an illustration).
Set S and T also avoid nodes distant from s or t by more than 1

2 · (d + ∆), as they
would induce a path from s to t that falls out of the desired window. Finally, since the
delay are positive Dijsktra’s algorithm can be used to find efficiently the shortest paths
emanating from s and the shortest paths terminating in t.

(a) Single-edge path (b) Two-edge and recursive

Figure 4: Finding a balanced path composed of two shortest path segments.

The authors also suggested two extensions of their path-finding heuristic (see Fig-
ure 4b):

Two-edge extension The candidate paths explored are of the form s . . . s′,m, t′ . . . t,
where m can be any node in the graph.

Recursive improvement If no path of the desired length is found, choose an arbitrary
path s . . . s′, t′ . . . t with maximum length 6 d − ∆, and lift recursively the paths
associated to pairs (s, s′) and (t′, t).

Their experimental results indicated that the two-edge extension were the most effi-
cient, while the recursive method did not improve the overall gain that much.

4 Results Comparison

4.1 Power Savings

Both GlitchLess [LLW07] and GlitchReroute [DCW10] methods claims to achieve close
dynamic power savings : on average 18% for GlitchLess and 11% for GlitchReroute, but
with respective reduction of the glitching activity by 91% and 27%. This highlight that
primary inputs signals are responsible for a major part of the spurious transition in a
circuit.

6

Benchmarks showed that the simpler scheme 1 for GlitchLess’s insertion of programmable
delay elements lead to the most satisfactory results.

4.2 Overhead

Power Overhead A consequence to both method is a slight power consumption over-
head. For GlitchLess, the extra power dissipation comes from the use of the pro-
grammable delay elements themselves, but the overhead is around 1% in average for
each scheme. For GlitchReroute, the extra consumption is explained by the increased
wire length used in the new paths found.

Delay Overhead As GlitchLess inserts new delay elements in the logic blocks, an in-
evitable small increase in the critical path is expected. This is especially true with
scheme 2 and 3, as every signal in a logic block must pass through a programmable de-
lay element (there is no fast-path for critical signals). The GlitchReroute method is not
affected by this issue since it only reroute signals. Still, delay overhead is only ≈ 0.2%
for scheme 1 and 4, whereas ≈ 2% for scheme 2 and 3.

Area Overhead Yet an issue present in the GlitchLess method, but absent with the
GlitchReroute approach. Indeed, the programmable delay element take place, and in-
crease the global chip area by a factor of ≈ 5%.

4.3 Conclusion

The GlitchReroute algorithm has several advantages over GlitchLess method, as there
is no area and delay overhead. However, it cancels less glitches when considering only
primary input signals, and GlitchLess seems closer to the ideal dynamic power saving
of 22.6%. Both methods take place after the routing process, are not incompatible with
each other, and could be combined with other techniques such as GlitchMap [CCW07].

References

[CCW07] Lei Cheng, Deming Chen, and Martin D. F. Wong. GlitchMap: an FPGA
technology mapper for low power considering glitches. In Proceedings of the
44th annual Design Automation Conference, DAC ’07, pages 318–323. ACM,
2007.

[DCW10] Quang Dinh, Deming Chen, and Martin D. F. Wong. A Routing Approach to
Reduce Glitches in Low Power FPGAs. IEEE Trans. on CAD of Integrated
Circuits and Systems, 29(2):235–240, 2010.

[LLW07] Julien Lamoureux, Guy G. Lemieux, and Steven J. E. Wilton. GlitchLess:
an active glitch minimization technique for FPGAs. In Proceedings of the
2007 ACM/SIGDA 15th international symposium on Field programmable gate
arrays, FPGA ’07, pages 156–165. ACM, 2007.

7

	Introduction
	Architectural Background
	Power Dissipation and Glitches

	GlitchLess: Glitch Removal using Programmable Delay Element
	The Programmable Delay Element
	Configuration Algorithms
	Simulation Process

	GlitchReroute: A Path Balancing Rerouting Algorithm
	A Rerouting Heuristic
	Source to Sink Balancing

	Results Comparison
	Power Savings
	Overhead
	Conclusion

