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Theta functions

g ≥ 1
τ ∈ Hg (i.e. τ is a complex g × g symmetric matrix and Im τ > 0)
z ∈ Cg : column vector
a, b ∈ {0, 1}g : theta characteristics.

Theta functions:

θa,b(z , τ) =
∑
m∈Zg

E
(

(m + a
2)tτ(m + a

2) + 2(m + a
2)t(z + b

2 )
)

where E (x) := exp(iπx).

Theta constants: value at z = 0, as a function of τ .
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Why theta functions?

θa,b(z , τ) satisfies many symmetry properties w.r.t. both variables:

• z : quasi-periodic with respect to lattice Λ(τ).

• τ : modular form, i.e. transformation formula under Sp2g (Z).

They are universal:

• Lefschetz’s theorem: Theta functions (z variable, τ fixed)
provide projective embeddings of complex abelian varieties.

• Igusa: Theta functions (z = torsion point, τ variable) realize
modular varieties Γ(n2, 2n2)\Hg as quasi-projective varieties.
Any Siegel modular form can be expressed as a rational
fraction in terms of theta functions.
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Evaluation of theta functions

Goal
Given (approximations of) z ∈ Cg and τ ∈ Hg , and given N ≥ 1,
compute approximations of all θa,b(z , τ) ∈ C up to an absolute
error ≤ 2−N .

Applications

• CM theory and class polynomials (Enge ’09, ’14)

• Modular polynomials and isogenies (Enge ’09, K. ’21)

• Detect subsets of A[`] defined over Q...

Works in combination with height bounds/study of denominators.
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The naive algorithm

Sum individual terms of the theta series.

θa,b(z , τ) =
∑
m∈Zg

E
(

(m + a
2)tτ(m + a

2) + 2(m + a
2)t(z + b

2 )
)

• We need all terms ‖m‖ �
√
N, to ' N bits of precision.

• E can be computed in quasi-linear time O(M(N) logN).

• Total: O(Ng/2M(N) logN).

Lots of possible optimizations.
Uniform in z , τ if suitably reduced.
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Main result

Dupont (2006) and Labrande–Thomé (2016) describe a quasi-linear
time algorithm in Oτ (M(N) logN) operations to evaluate theta
functions. Relies on heuristics.

Theorem (K., 2022)
Variants of Dupont’s algorithm yield explicit, provably correct,
uniform, quasi-linear time algorithms of cost O(M(N) logN) for

• theta functions for g = 1

• theta constants for g = 2.

In higher genera, we cannot guarantee that the algorithm will work
for all (z , τ). If it does, then the output can be certified.
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Dupont’s algorithm
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Theta constants and the AGM (1)

For τ ∈ H1, write

Θ(τ) =
(
θ2
0,0(0, τ), θ2

0,1(0, τ)
)
.

The duplication formula tells us that

Θ(τ) Θ(2τ)

is an AGM step (x , y) 7→ ( x+y
2 ,
√
xy). There is a sign ambiguity

when choosing
√
x and

√
y .

• Choice of signs is good when
√
x ,
√
y lie in a quarter plane.

• An AGM sequence with good sign choices converges
quadratically to a nonzero value.
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Good sign choices

O

√
x1

√
x2

√
x3

√
x4

√
x5

√
xn
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Theta constants and the AGM (2)

We know:

• For each τ ∈ H1,
(
Θ(2nτ)

)
n≥0 is an AGM sequence.

• Write q = exp(iπτ), going to zero as τ →∞; then

θ0,0(τ) = 1 + 2q + 2q4 + O(q9)

θ0,1(τ) = 1− 2q + 2q4 + O(q9)

Consequence: if λ ∈ C×, then(
λΘ(2nτ)

)
n≥0

is an AGM sequence and converges quadratically to
(
λ, λ

)
.

We recover Θ(τ) without multiplicative factor.
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Inversion of theta constants

Use the AGM to invert theta constants.
Input: Θ(τ/2) ∈ P1(C).

• Duplication: compute
(
θ2
a,b(τ)

)
a,b

as a projective point.

• Action by S =
( 0 1
−1 0

)
: compute Θ(Sτ) ∈ P1(C) using

θ2
0,0(Sτ) = −iτθ2

0,0(τ), θ2
0,1(Sτ) = −iτθ2

1,0(τ)

Multiplicative factors cancel.

• Limits of AGM sequences: compute θ2
0,0(τ) and θ2

0,0(Sτ).
If τ lies in the fundamental domain, all sign choices are good.

• Recover τ using the transformation formula once more.

Complexity: Oτ (M(N) logN).
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Dupont’s algorithm

Use a Newton scheme.
Given τ , compute Θ(τ/2) as follows:

• Compute an approximation Θ0 of Θ(τ/2) at low precision N0.

• Apply the AGM to compute the corresponding τ0, close to τ .

• Approximate the derivative D of this AGM function at Θ0

(finite differences).

• Set Θ1 = Θ0 + D−1(τ − τ0); it is an approximation of Θ(τ/2)

to precision 2N0 − δ.
• Repeat until we reach precision N.

Complexity: still quasi-linear time Oτ (M(N) logN).
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A uniform algorithm

Uniform quasi-linear time
naive algorithm

Uniform quasi-linear time
Newton scheme

Ni

4i

O

i

τ

τ
2

τ
4
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Higher genus instances (1)

Dupont’s algorithm generalizes to (z , τ) ∈ Cg ×Hg .

• Genus g theta constants (z = 0): use

Θ(τ) =
(
θ2
0,b(0, τ)

)
b∈{0,1}g

.

• Genus g theta functions: use

Θ(τ) and Θ̃(z , τ) :=
(
θ2
0,b(z , τ)

)
b∈{0,1}g

.

Dimension of θ-space: 2g − 1 or 2g+1 − 2.
Dimension of τ -space: g(g + 1)/2 or g(g + 3)/2.
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Higher genus instances (2)

• Generalizations of the AGM in higher dimensions: Borchardt
sequences. Θ(2nτ)→ (1, . . . , 1). Similar characterization of
quadratic convergence by good sign choices.

• Also consider extended Borchardt sequences (studied by
Labrande–Thomé): compute µ from(

λΘ(τ), µΘ̃(z , τ)
)

(Usual Borchardt sequence computes λ.)

• Act by at least g(g + 1)/2 symplectic matrices S ∈ Sp2g (Z).
The linearized system should be invertible, in particular square.

For g = 2, explicit set of symplectic matrices.
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Heuristic aspects

• Describe correct choices of square roots in AGM steps?

• Is the linearized system actually invertible?

• Upper bound on precision loss δ in the Newton scheme?

Make the algorithm uniform in τ?
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Certified Newton schemes
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Certified Newton schemes

Let U ⊂ Cr open, f : U → Cr complex-analytic, and x0 ∈ U.
Let 0 < ρ ≤ 1, M ≥ 1 and B ≥ 1 be such that:

• D(x0, ρ) ⊂ U.

• ‖f (x)‖ ≤ M for each x ∈ D(x0, ρ).

• ‖df (x0)−1‖ ≤ B .

Let C be a “nice” function such that f (x) can be evaluated to
precision N in time O(C (N)) uniformly on D(x0, ρ).
Then, given

• f (x0) to precision N,

• x0 to precision 2
⌈
log2(2(r + 1)M/ρ)

⌉
+ 2
⌈
log2(B)

⌉
+ 4,

there is an explicit Newton scheme to compute x0 to
precision N − dlog2(B)e − 1 in time O(C (N)).
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Sketch of proof

Usual explicit bounds for Newton schemes using either:

• Upper bound on ‖df (x0)‖, and uniform upper bound
on ‖d2f (x)‖ locally around x0. (Works for C2 functions.)

• Upper bounds on all derivatives of f at x0. (Works for
real-analytic functions.)

For complex-analytic functions, Cauchy’s formula gives both.

Precision losses during the computation can also be managed:
Newton schemes have auto-correction.
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Limits of Borchardt sequences are analytic (1)

Let 0 < ρ < M and

Ug (ρ,M) =
{
z = (zi )1≤i≤2g : ρ < Re(zi ) < M for all i

}
.

Theorem
There is a unique analytic function λ : Ug (ρ,M)→ C such
that λ(z) is the limit of the Borchardt sequence with good sign
choices starting from z ; we have ρ < ‖λ(z)‖ < M on Ug (ρ,M).

Proof
Finite sequences of AGM steps are analytic + locally uniform
convergence.
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Limits of Borchardt sequences are analytic (2)

Analogous statements for extended Borchardt sequences, but
constants are worse.

Without the assumption of good choices of square roots, need to

• Bound the number of bad steps (finite);

• Bound each term away from zero during bad steps.
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Good sign choices in low genus

Genus 1 case: Dupont ’06 (theta constants), Labrande ’18 (theta
functions) proved that sign choices are good in all the AGM
sequences appearing in Dupont’s algorithm, provided that the input
is suitably reduced.

Theorem (K. ’21)
The same property holds in the case of genus 2 theta constants.

The proof provides explicit lower bounds for the radius of
convergence of the AGM functions we are interested in.

This is unlikely to hold verbatim as g grows. However we can still
hope for uniform upper bounds on the number of bad steps, etc.
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Recall: certified Newton schemes

Let U ⊂ Cr open, f : U → Cr complex-analytic, and x0 ∈ U.
Let 0 < ρ ≤ 1, M ≥ 1 and B ≥ 1 be such that:

• D(x0, ρ) ⊂ U.

• ‖f (x)‖ ≤ M for each x ∈ D(x0, ρ).

• ‖df (x0)−1‖ ≤ B .

[...]
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Invertibility of the linearized system

• If the dimensions of τ -space and θ-space are equal (g = 1,
genus 2 theta constants):
The inverse system is entirely described by theta functions.
We can obtain uniform upper bounds on ‖df −1‖.
• Higher dimensions: we can either use more symplectic

matrices, or equations for the image of θ (which has
non-smooth points).
Obtaining uniform bounds is harder, but we can still certify the
Newton scheme independently on each input.
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Final computations

Theorem (K. ’22)
For suitably reduced input restricted to a compact set, Dupont’s
algorithm converges in a certified way starting from approximations
of at precision

• 60 for genus 1 theta constants,

• 300 for genus 2 theta constants,

• 1600 for genus 1 theta functions.

These are below the practical thresholds with the naive algorithm.

26 / 27



Thank you!
Questions?
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