Computing isogeny classes of typical principally polarized abelian surfaces over the rationals

Jean Kieffer (Harvard)

 ${\sf COUNT-Computations}$ and their uses in number theory, CIRM Luminy February 28, 2023

Joint work with Raymond van Bommel, Shiva Chidambaram, and Edgar Costa (MIT)

Isogenies

Fix a base field k, a number field.

Definition

An isogeny between two abelian varieties is $\varphi:A \twoheadrightarrow B$ such that $\#\ker\varphi<\infty.$

Isogenies are obtained by taking quotients by finite rationals subgroups. Being isogenous is an equivalence relation, as we have $\varphi^\vee:B^\vee\to A^\vee$.

We are interested in the isogeny class of A over k.

Isogeny classes

Two abelian varieties in the same isogeny class share many properties, including

- *L*-function
- Mordell–Weil rank
- Endomorphism algebra $\operatorname{End}(A) \otimes \mathbb{Q}$.

Theorem (Faltings)

The isogeny class of A over k is finite.

Can construct (finite, connected) isogeny graphs:

- Vertices are abelian varieties in an isogeny class,
- Edges are irreducible isogenies, e.g. labeled by degree.

Question

What are the possible isogeny graphs?

Elliptic curves over the rationals: the LMFDB

We can explore isogeny graphs of elliptic curves over Q at www.LMFDB.org.

• Ignoring degrees, we find 10 different graphs:

Size	1	2	3	4	6	8
Examples	37.a	26.b	11.a	27.a, 20.a, 17.a	14.a, 21.a	15.a, 30.a

- All edge labels, i.e. degrees of irreducible isogenies, are prime.
- ullet Not all primes ℓ appear as isogeny degrees: only

$$\ell \in \{2,\dots,19,37,43,67,163\}.$$

Elliptic curves over the rationals: theorems

Lemma

Any isogeny $\varphi: E \to E'$ can be factored as $E \xrightarrow{[n]} E \xrightarrow{\varphi_1} E_1 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_n} E_n = E'$, where $\deg(\varphi_i) = \ell_i$ are primes.

Theorem (Mazur)

If $\varphi: E \to E'$ defined over $\mathbb Q$ has prime degree ℓ , then $\ell \in \{2, \dots, 19, 37, 43, 67, 163\}$.

Theorem (Kenku)

Any isogeny class of elliptic curves over $\mathbb Q$ has size at most 8.

Chiloyan - Lozano-Robledo 2021

Complete classification of possible labeled isogeny graphs.

The LMFDB contains examples for all of these graphs.

Higher dimensions?

No such complete picture away from elliptic curves over \mathbb{Q} .

One approach is to collect data:

Algorithmic problem

Given an abelian variety A over a number field k, compute its isogeny class.

Eventually restrict to the simplest higher-dimensional case:

- Abelian surfaces
- endowed with principal polarizations
- over $k = \mathbb{Q}$
- that are typical, i.e. $\operatorname{End}(A^{\operatorname{al}}) = \mathbb{Z}$.

These are all Jacobians of genus 2 curves over \mathbb{Q} .

www.LMFDB.org contains genus 2 curves with small discriminants, grouped by (heuristic) isogeny class of their Jacobians, but these isogeny classes are not complete. 6/26

Algorithmic approach

Algorithmic problem

Given an abelian variety A over a number field k, compute its isogeny class.

For an elliptic curve E/\mathbb{Q} :

- 1. Search for ℓ -isogenies $E \to E'$ for each ℓ in Mazur's list. This is a finite problem.
- 2. Reapply on E' as needed.

In general:

- 1. Reduce to finitely many isogeny types. (E.g., "prime degree" for elliptic curves)
- 2. Compute a finite number of possible degrees. We now face a finite problem.
- 3. Search for all isogenies of a given type and degree.
- 4. Reapply as needed.

Classification of isogenies

 $\varphi: A \to B$ isogeny between principally polarized abelian varieties.

Recall that End(A) has a positive Rosati involution \dagger defined by $\mu^{\dagger} = \lambda_A^{-1} \circ \mu^{\vee} \circ \lambda_A$.

Theorem (Mumford)

There is a bijection

$$\left\{\varphi:A\to B\right\}\longleftrightarrow \left\{(\mu,K): \begin{array}{l} \mu\in\operatorname{End}(A)^\dagger,\ \mu>0\\ K\subseteq A[\mu] \text{ maximal isotropic} \end{array}\right\}$$

$$\varphi\longmapsto \left(\lambda_A^{-1}\circ\varphi^\vee\circ\lambda_B\circ\varphi,\,\ker\varphi\right).$$

Irreducible isogeny types

Assume now that $\operatorname{End}(A)^{\dagger} = \mathbb{Z}$. (True in particular if A is typical).

Any $\varphi:A\to B$ satisfies: $\ker(\varphi)$ is maximal isotropic in A[n] for some $n\in\mathbb{Z}_{\geq 1}$.

Up to decomposing φ , can assume $n=\ell^e$ is a prime power.

Lemma

Assume $e \geq 3$. If $K \subset A[\ell^e]$ is maximal isotropic, then $\ell K \cap A[\ell^{e-2}]$ is maximal isotropic in $A[\ell^{e-2}]$.

Thus, any isogeny $\varphi:A\to B$ can always be factored as

$$A = A_0 \xrightarrow{\varphi_1} A_1 \xrightarrow{\varphi_2} A_2 \xrightarrow{\varphi_3} \cdots \xrightarrow{\varphi_n} A_n = B,$$

where $\ker(\varphi_i)$ is maximal isotropic in $A_{i-1}[\ell_i]$ or $A_{i-1}[\ell_i^2]$, for ℓ_i prime.

Irreducible isogeny types for abelian surfaces

Further assume that A is an abelian surface (with p.p., and $\operatorname{End}(A)^{\dagger} = \mathbb{Z}$). Then the other p.p. abelian surfaces in the isogeny class of A can be enumerated by looking at isogenies φ of the following types:

- 1. 1-step: $K := \ker(\varphi)$ is a maximal isotropic subgroup of $A[\ell]$, so $K \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$,
- 2. 2-step: K is a maximal isotropic subgroup of $A[\ell^2]$ and $K \simeq (\mathbb{Z}/\ell\mathbb{Z})^2 \times \mathbb{Z}/\ell^2\mathbb{Z}$.

Degree ℓ^2 and ℓ^4 respectively.

Over \mathbb{Q}^{al} , every 2-step isogeny decomposes as a sequence of two 1-step isogenies, in $\ell+1$ different ways (permuted by Galois).

Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves $/\mathbb{Q}$	Typical p.p. abelian surfaces $/\mathbb{Q}$				
Isogeny types	Prime degree	1-step or 2-step √				
Possible degrees	Mazur's theorem	?				
Search for isogenies						

Serre's open image theorem

Theorem (Mazur)

If $\varphi: E \to E'$ defined over $\mathbb Q$ has prime degree ℓ , then $\ell \in \{2, \dots, 19, 37, 43, 67, 163\}$.

No uniform result à la Mazur is known for abelian surfaces. However:

Serre's open image theorem

If A is a typical abelian surface, then its Galois representation has open image in $\mathrm{GSp}_4(\widehat{\mathbb{Z}})$. Thus, $A[\ell]$ has nontrivial rational subgroups only for finitely many ℓ 's.

Includes all primes for which 1-step and 2-step isogenies exist. Results of Lombardo, Zywina give bounds on such ℓ 's (depending on A), but are impractical.

Dieulefait's algorithm

Results of Lombardo, Zywina give bounds on ℓ as in Serre's open image theorem (depending on A), but are impractical.

Instead we use:

Algorithm (Dieulefait)¹

Input: Conductor of A and a finite list of L-polynomials

Output: Finite superset of primes ℓ with reducible mod- ℓ Galois representation.

Example where the only possibilities are isogenies of degree 31²:

C:
$$y^2 + (x+1)y = x^5 + 23x^4 - 48x^3 + 85x^2 - 69x + 45$$
.

¹See also Banwait–Brumer–Kim–Klagsbrun–Mayle–Srinivasan–Vogt (2023).

Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves $/\mathbb{Q}$	Typical p.p. abelian surfaces $/\mathbb{Q}$				
Isogeny types	Prime degree	1-step or 2-step √				
Possible degrees	Mazur's theorem	Dieulefait's algorithm √				
Search for isogenies	?	??				

Modular polynomials

Elliptic curves: usually search for ℓ -isogenies using algebraic equations for the cover of modular curves $X_0(\ell) \to X(1)$.

E.g., the modular polynomials $\Phi_{\ell}(x,y) \in \mathbb{Z}[x,y]$ defined by

$$\Phi_\ell(j,j') = 0 \Longleftrightarrow \exists \, \varphi : E_j \longrightarrow E_{j'} \text{ such that } \ker \varphi \simeq \mathbb{Z}/\ell\mathbb{Z}.$$

Size grows as $\widetilde{O}(\ell^3)$, big but manageable (28MB for $\ell=163$).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are impractical.

More variables: $\Phi_{\ell}(x_1, x_2, x_3, y) \in \mathbb{Q}(x_1, x_2, x_3)[y]$.

Size grows as $\widetilde{O}(\ell^{15})$ (K. 2022), already \gg 29 GB for $\ell=7$.

We use complex-analytic methods instead.

Moduli space of elliptic curves

Let E/\mathbb{C} be an elliptic curve. Moduli space: $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}_1$.

Can choose $\tau \in \mathbb{H}_1$ and an equation $E: y^2 = x^3 - 27c_4x - 54c_6$ such that

$$E(\mathbb{C}) \simeq \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}),$$

 $\frac{dx}{2y} \mapsto 2\pi i \, dz.$

Then c_4 , c_6 are modular forms:

$$c_4 = E_4(\tau), \quad c_6 = E_6(\tau), \quad \text{hence} \quad j(E) = j(\tau) = 1728 \frac{E_4(\tau)}{E_4(\tau)^3 - E_6(\tau)^2}.$$

Theorem

The graded \mathbb{C} -algebra of modular forms on \mathbb{H}_1 for $\mathrm{SL}_2(\mathbb{Z})$ is $\mathbb{C}[E_4, E_6]$.

Moreover E_4 , E_6 have integral, primitive Fourier expansions.

Hence c_4 , c_6 are indeed "the right invariants" to consider.

Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form $\mathbb{C}^2/(\mathbb{Z}^2+\tau\mathbb{Z}^2)$ with $\tau\in\mathbb{H}_2$.

Moduli space: $\operatorname{Sp}_4(\mathbb{Z})\backslash \mathbb{H}_2$.

Theorem (Igusa)

The graded \mathbb{C} -algebra of (scalar-valued) Siegel modular forms of even weight on \mathbb{H}_2 for $\mathrm{Sp}_4(\mathbb{Z})$ is $\mathbb{C}[M_4, M_6, M_{10}, M_{12}]$, where the M_i are algebraically independent.

Normalized such that the M_j have primitive, integral Fourier expansions and M_{10} , M_{12} are cusp forms.

Explicit relations with the Igusa-Clebsch invariants l_2 , l_4 , l_6 , l_{10} of a genus 2 curve:

$$M_4 = 2^{-2}I_4,$$
 $M_6 = 2^{-3}(I_2I_4 - 3I_6),$ $M_{10} = -2^{-12}I_{10},$ $M_{12} = 2^{-15}I_2I_{10}.$

The M_j 's are "the right invariants" on the moduli space of p.p. abelian surfaces.

Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic side.

• Elliptic curves: the complex tori ℓ -isogenous to $\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})$ are given by

$$\mathbb{C}/(\mathbb{Z}+\frac{1}{\ell}\eta\tau\mathbb{Z})$$

where $\eta \in \mathrm{SL}_2(\mathbb{Z})$ are coset representatives for $\Gamma^0(\ell) \backslash \mathrm{SL}_2(\mathbb{Z})$. Note: $\frac{1}{\ell} \eta \tau = \gamma \tau$ where $\gamma = \begin{pmatrix} 1 & 0 \\ 0 & \ell \end{pmatrix} \eta \in \mathrm{GL}_2(\mathbb{Q})^+$.

• Abelian surfaces: explicit sets $S_1(\ell)$, $S_2(\ell) \subset \mathrm{GSp}_4(\mathbb{Q})^+$ such that for i=1,2, {ab. surfaces i-step ℓ -isogenous to $\mathbb{C}^2/(\mathbb{Z}^2+\tau\mathbb{Z}^2)$ } = $\left\{\mathbb{C}^2/\left(\mathbb{Z}^2+\gamma\tau\mathbb{Z}^2\right)\right\}_{\gamma\in S_i(\ell)}$. Cf. explicit formulas for Hecke operators $T(\ell)$, $T_1(\ell^2)$.

Algorithmic problem

Decide when $\gamma \tau \in \mathbb{H}_2$ is attached to an abelian surface defined over \mathbb{Q} .

Construction of algebraic integers

Theorem (corollary of Igusa)

If f is a Siegel modular form of even weight k with integral Fourier coefficients, then $12^k f \in \mathbb{Z}[M_4, M_6, M_{10}, M_{12}].$

Theorem

Let $\tau \in \mathbb{H}_2$ such that there exists $\lambda \in \mathbb{C}^{\times}$ with $\lambda^j M_j(\tau) \in \mathbb{Z}$ for $j \in \{4, 6, 10, 12\}$. If f is a Siegel modular form of even weight k with integral Fourier coefficients, then

$$\prod_{\gamma \in S_i(\ell)} \left(X - \left(12 \lambda \ell^3 \det(c_\gamma au + d_\gamma)^{-1}
ight)^k f(\gamma au)
ight) \in \mathbb{Z}[X].$$

Thus, for each $j \in \{4, 6, 10, 12\}$, the complex numbers

$$N(j,\gamma) := \left(12\lambda\ell^3 \det(c_{\gamma}\tau + d_{\gamma})^{-1}\right)^j M_j(\gamma\tau) \quad \text{for } \gamma \in S_i(\ell), \ i = 1 \text{ or } 2,$$

form a Galois-stable set of algebraic integers.

Algorithm and certification

Input: Invariants $m_4, m_6, m_{10}, m_{12} \in \mathbb{Z}$ of a genus 2 curve, a prime ℓ , and $i \in \{1, 2\}$.

Output: Invariants of all *i*-step ℓ -isogenous abelian surfaces.

- 1. Compute complex balls that provably contain:
 - $\tau \in \mathbb{H}_2$
 - $\lambda \in \mathbb{C}^{\times}$ such that $\lambda^{j} M_{j}(\tau) = m_{j}$ for $j \in \{4, 6, 10, 12\}$
 - $N(j, \gamma)$, for each $j \in \{4, 6, 10, 12\}$ and $\gamma \in S_i(\ell)$.
- 2. Keep the γ_0 's such that $N(j, \gamma_0)$ contains an integer m'_j for each $j \in \{4, 6, 10, 12\}$. The m'_i are putative invariants for the abelian surface attached to $\gamma_0 \tau$.
- 3. Confirm that $N(j,\gamma_0)=m_j'$ by certifying the vanishing of

$$\prod_{\gamma \in S_i(\ell)} \left(N(j,\gamma) - m'_j
ight) \in \mathbb{Z}.$$

We need to recompute $N(j, \gamma_0)$ (only!) to a much higher precision.

Example, continued

Let $\ell = 31$, i = 1 and

C:
$$y^2 + (x+1)y = x^5 + 23x^4 - 48x^3 + 85x^2 - 69x + 45$$
.

Working at 300 bits of precision, there is only one γ_0 such that the $N(j, \gamma_0)$ for $j \in \{4, 6, 10, 12\}$ contain integers:

$$N(4, \gamma_0) = \alpha^2 \cdot 318972640 \pm 7.8 \times 10^{-47},$$

$$N(6, \gamma_0) = \alpha^3 \cdot 1225361851336 \pm 5.5 \times 10^{-39},$$

$$N(10, \gamma_0) = \alpha^5 \cdot 10241530643525839 \pm 1.6 \times 10^{-29},$$

$$N(12, \gamma_0) = -\alpha^6 \cdot 307105165233242232724 \pm 4.6 \times 10^{-22}$$

where $\alpha = 2^2 \cdot 3^2 \cdot 31$.

We certify these equalities by working at 4 128 800 bits of precision. Use certified quasi-linear time algorithms for the evaluation of modular forms (K. 2022).*

Reconstructing a genus 2 curve

Given $(m'_4, m'_6, m'_{10}, m'_{12}) = (318972640, 1225361851336, 10241530643525839, ...),$ find a corresponding curve C' such that Jac(C) and Jac(C') are isogenous over \mathbb{Q} .

Mestre's algorithm yields

$$y^2 = -1624248x^6 + 5412412x^5 - 6032781x^4 + 876836x^3 - 1229044x^2 - 5289572x - 1087304$$
, a quadratic twist by -83761 of the desired curve

$$C': y^2 + xy = -x^5 + 2573x^4 + 92187x^3 + 2161654285x^2 + 406259311249x + 93951289752862.$$

We reapply the algorithm to C', and we only find the original curve.

Comments:

- 113 minutes of CPU time for this example; 90% is to certify the results.
- ullet Can independently create a certificate for the isogeny (6.5 hours and 3 MB).

LMFDB data

Originally 63 107 typical genus 2 curves in 62 600 isogeny classes.

By computing isogeny classes, we found 21 923 new curves.

Size	1	2	3	4	5	6	7	8	9	10	12	16	18
Count	51 549	2 672	6 936	420	756	164	40	45	3	2	3	9	1

LMFDB data

Originally 63 107 typical genus 2 curves in 62 600 isogeny classes.

By computing isogeny classes, we found 21 923 new curves.

Size	1	2	3	4	5	6	7	8	9	10	12	16	18
Count	51 549	2 672	6 936	420	756	164	40	45	3	2	3	9	1

Observation

A 2-step 2-isogeny (of degree 16) always implies an existence of a second one. This explains the 6913 \triangle and the 756 \bowtie we found.

The whole computation took 75 hours. Only 3 classes took more than 10 minutes:

- 349.a: 56 min, isogeny of degree 13⁴.
- 353.a: 23 min, isogeny of degree 11⁴.
- 976.a: 19 min, checking that no isogeny of degree 29⁴ exists.

Upcoming to LMFDB

A new set of 5 235 806 curves due to Sutherland is soon to be added to the LMFDB. Of these, 1823 592 are typical, split amongst $1538149\pm\varepsilon$ isogeny classes.

We found 688 094 new curves (in 97 days). Counts per size:

1	2	3	4	5	6	7	8	≥ 9
1098812	125 694	212 000	58 310	16 925	15 459	498	6 073	4 270

We discovered irreducible isogenies of degree

$$2^2 \; (= \; \mathsf{Richelot} \; \mathsf{isogenies}), \; 2^4, 3^2, 3^4, 5^2, 5^4, 7^2, 7^4, 11^4, 13^2, 13^4, 17^2, 31^2.$$

- Size 2: 75% have degree 2², 22% have degree 3⁴, and then 3², 5⁴, 5², 7⁴, 7², ...
- Size 3: 99.2% are \triangle of degree 2⁴ isogenies.
- \bullet Size 4: 97.8% are >— of Richelot isogenies.
- Size 5: 99.8% are \bowtie of degree 2⁴ isogenies.
- \bullet Size 6: 75% + 15% are two graphs consisting of Richelot isogenies.

Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves outside our database, with conductor $497051100 = 2^2 \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17^2$:

The end

https://arxiv.org/abs/2301.10118

Thank you.