Computing isogeny classes of typical principally polarized abelian surfaces over the rationals

Jean Kieffer (Harvard)
COUNT - Computations and their uses in number theory, CIRM Luminy
February 28, 2023

Joint work with Raymond van Bommel, Shiva Chidambaram, and Edgar Costa (MIT)

Isogenies

Fix a base field k, a number field.

Definition

An isogeny between two abelian varieties is $\varphi: A \rightarrow B$ such that $\# \operatorname{ker} \varphi<\infty$.
Isogenies are obtained by taking quotients by finite rationals subgroups. Being isogenous is an equivalence relation, as we have $\varphi^{\vee}: B^{\vee} \rightarrow A^{\vee}$.

We are interested in the isogeny class of A over k.

Isogeny classes

Two abelian varieties in the same isogeny class share many properties, including

- L-function
- Mordell-Weil rank
- Endomorphism algebra $\operatorname{End}(A) \otimes \mathbb{Q}$.

Theorem (Faltings)

The isogeny class of A over k is finite.

Can construct (finite, connected) isogeny graphs:

- Vertices are abelian varieties in an isogeny class,
- Edges are irreducible isogenies, e.g. labeled by degree.

Question

What are the possible isogeny graphs?

Elliptic curves over the rationals: the LMFDB

We can explore isogeny graphs of elliptic curves over \mathbb{Q} at www. LMFDB.org.

- Ignoring degrees, we find 10 different graphs:

Size	1	2	3	4	6	8
Examples	37.a	$26 . \mathrm{b}$	11.a	27.a, 20.a, 17.a	14.a, 21.a	15.a, 30.a

- All edge labels, i.e. degrees of irreducible isogenies, are prime.
- Not all primes ℓ appear as isogeny degrees: only

$$
\ell \in\{2, \ldots, 19,37,43,67,163\} .
$$

Elliptic curves over the rationals: theorems

Lemma

Any isogeny $\varphi: E \rightarrow E^{\prime}$ can be factored as $E \xrightarrow{[n]} E \xrightarrow{\varphi_{1}} E_{1} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{\varphi_{n}} E_{n}=E^{\prime}$, where $\operatorname{deg}\left(\varphi_{i}\right)=\ell_{i}$ are primes.

Theorem (Mazur)

If $\varphi: E \rightarrow E^{\prime}$ defined over \mathbb{Q} has prime degree ℓ, then $\ell \in\{2, \ldots, 19,37,43,67,163\}$.

Theorem (Kenku)

Any isogeny class of elliptic curves over \mathbb{Q} has size at most 8 .

Chiloyan - Lozano-Robledo 2021

Complete classification of possible labeled isogeny graphs.
The LMFDB contains examples for all of these graphs.

Higher dimensions?

No such complete picture away from elliptic curves over \mathbb{Q}.
One approach is to collect data:

Algorithmic problem

Given an abelian variety A over a number field k, compute its isogeny class.
Eventually restrict to the simplest higher-dimensional case:

- Abelian surfaces
- endowed with principal polarizations
- over $k=\mathbb{Q}$
- that are typical, i.e. $\operatorname{End}\left(A^{\text {al }}\right)=\mathbb{Z}$.

These are all Jacobians of genus 2 curves over \mathbb{Q}.
www. LMFDB. org contains genus 2 curves with small discriminants, grouped by
(heuristic) isogeny class of their Jacobians, but these isogeny classes are not complete. 6/26

Algorithmic approach

Algorithmic problem

Given an abelian variety A over a number field k, compute its isogeny class.

For an elliptic curve E / \mathbb{Q} :

1. Search for ℓ-isogenies $E \rightarrow E^{\prime}$ for each ℓ in Mazur's list. This is a finite problem.
2. Reapply on E^{\prime} as needed.

In general:

1. Reduce to finitely many isogeny types. (E.g., "prime degree" for elliptic curves)
2. Compute a finite number of possible degrees. We now face a finite problem.
3. Search for all isogenies of a given type and degree.
4. Reapply as needed.

Classification of isogenies

$\varphi: A \rightarrow B$ isogeny between principally polarized abelian varieties.

$$
\begin{aligned}
& A \xrightarrow{\varphi} B \\
& 2 \downarrow \lambda_{A} \quad 2 \lambda_{B} \quad \rightsquigarrow \mu=\lambda_{A}^{-1} \circ \varphi^{\vee} \circ \lambda_{B} \circ \varphi \in \operatorname{End}(A) \text {. } \\
& A^{\vee} \underset{\varphi^{\vee}}{\overleftarrow{\varphi}^{\vee}} B^{\vee}
\end{aligned}
$$

Recall that $\operatorname{End}(A)$ has a positive Rosati involution \dagger defined by $\mu^{\dagger}=\lambda_{A}^{-1} \circ \mu^{\vee} \circ \lambda_{A}$.
Theorem (Mumford)
There is a bijection

$$
\begin{aligned}
&\{\varphi: A \rightarrow B\} \longleftrightarrow\left\{(\mu, K): \begin{array}{l}
\mu \in \operatorname{End}(A)^{\dagger}, \mu>0 \\
K \subseteq A[\mu] \text { maximal isotropic }
\end{array}\right\} \\
& \varphi \longmapsto\left(\lambda_{A}^{-1} \circ \varphi^{\vee} \circ \lambda_{B} \circ \varphi, \operatorname{ker} \varphi\right) .
\end{aligned}
$$

Irreducible isogeny types

Assume now that $\operatorname{End}(A)^{\dagger}=\mathbb{Z}$. (True in particular if A is typical).
Any $\varphi: A \rightarrow B$ satisfies: $\operatorname{ker}(\varphi)$ is maximal isotropic in $A[n]$ for some $n \in \mathbb{Z}_{\geq 1}$.
Up to decomposing φ, can assume $n=\ell^{e}$ is a prime power.

Lemma

Assume $e \geq 3$. If $K \subset A\left[\ell^{e}\right]$ is maximal isotropic, then $\ell K \cap A\left[\ell^{e-2}\right]$ is maximal isotropic in $A\left[\ell^{e-2}\right]$.

Thus, any isogeny $\varphi: A \rightarrow B$ can always be factored as

$$
A=A_{0} \xrightarrow{\varphi_{1}} A_{1} \xrightarrow{\varphi_{2}} A_{2} \xrightarrow{\varphi_{3}} \cdots \xrightarrow{\varphi_{n}} A_{n}=B,
$$

where $\operatorname{ker}\left(\varphi_{i}\right)$ is maximal isotropic in $A_{i-1}\left[\ell_{i}\right]$ or $A_{i-1}\left[\ell_{i}^{2}\right]$, for ℓ_{i} prime.

Irreducible isogeny types for abelian surfaces

Further assume that A is an abelian surface (with p.p., and $\operatorname{End}(A)^{\dagger}=\mathbb{Z}$). Then the other p.p. abelian surfaces in the isogeny class of A can be enumerated by looking at isogenies φ of the following types:

1. 1-step: $K:=\operatorname{ker}(\varphi)$ is a maximal isotropic subgroup of $A[\ell]$, so $K \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2}$,
2. 2-step: K is a maximal isotropic subgroup of $A\left[\ell^{2}\right]$ and $K \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2} \times \mathbb{Z} / \ell^{2} \mathbb{Z}$. Degree ℓ^{2} and ℓ^{4} respectively.

Over $\mathbb{Q}^{\text {al }}$, every 2-step isogeny decomposes as a sequence of two 1 -step isogenies, in $\ell+1$ different ways (permuted by Galois).

Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves $/ \mathbb{Q}$	Typical p.p. abelian surfaces $/ \mathbb{Q}$
Isogeny types	Prime degree	1-step or 2-step \checkmark
Possible degrees	Mazur's theorem	$?$
Search for isogenies		

Serre's open image theorem

Theorem (Mazur)

If $\varphi: E \rightarrow E^{\prime}$ defined over \mathbb{Q} has prime degree ℓ, then $\ell \in\{2, \ldots, 19,37,43,67,163\}$.
No uniform result à la Mazur is known for abelian surfaces. However:

Serre's open image theorem

If A is a typical abelian surface, then its Galois representation has open image in $\mathrm{GSp}_{4}(\widehat{\mathbb{Z}})$. Thus, $A[\ell]$ has nontrivial rational subgroups only for finitely many ℓ 's.

Includes all primes for which 1-step and 2-step isogenies exist. Results of Lombardo, Zywina give bounds on such ℓ 's (depending on A), but are impractical.

Dieulefait's algorithm

Results of Lombardo, Zywina give bounds on ℓ as in Serre's open image theorem (depending on A), but are impractical.

Instead we use:

Algorithm (Dieulefait) ${ }^{1}$

Input: Conductor of A and a finite list of L-polynomials
Output: Finite superset of primes ℓ with reducible mod- ℓ Galois representation.
Example where the only possibilities are isogenies of degree 31^{2} :

$$
C: y^{2}+(x+1) y=x^{5}+23 x^{4}-48 x^{3}+85 x^{2}-69 x+45 .
$$

[^0]
Computing isogeny classes

Algorithmic problem

Given a p.p. abelian variety A over a number field k, compute its isogeny class.

	Elliptic curves $/ \mathbb{Q}$	Typical p.p. abelian surfaces $/ \mathbb{Q}$
Isogeny types	Prime degree	1-step or 2-step \checkmark
Possible degrees	Mazur's theorem	Dieulefait's algorithm \checkmark
Search for isogenies	$?$	$? ?$

Modular polynomials

Elliptic curves: usually search for ℓ-isogenies using algebraic equations for the cover of modular curves $X_{0}(\ell) \rightarrow X(1)$.
E.g., the modular polynomials $\Phi_{\ell}(x, y) \in \mathbb{Z}[x, y]$ defined by

$$
\Phi_{\ell}\left(j, j^{\prime}\right)=0 \Longleftrightarrow \exists \varphi: E_{j} \longrightarrow E_{j^{\prime}} \text { such that } \operatorname{ker} \varphi \simeq \mathbb{Z} / \ell \mathbb{Z}
$$

Size grows as $\widetilde{O}\left(\ell^{3}\right)$, big but manageable (28MB for $\ell=163$).

Abelian surfaces: Modular polynomials for p.p. abelian surfaces are impractical.
More variables: $\Phi_{\ell}\left(x_{1}, x_{2}, x_{3}, y\right) \in \mathbb{Q}\left(x_{1}, x_{2}, x_{3}\right)[y]$.
Size grows as $\widetilde{O}\left(\ell^{15}\right)$ (K. 2022), already $\gg 29 \mathrm{~GB}$ for $\ell=7$.
We use complex-analytic methods instead.

Moduli space of elliptic curves

Let E / \mathbb{C} be an elliptic curve. Moduli space: $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}_{1}$.
Can choose $\tau \in \mathbb{H}_{1}$ and an equation $E: y^{2}=x^{3}-27 c_{4} x-54 c_{6}$ such that

$$
\begin{aligned}
E(\mathbb{C}) & \simeq \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z}) \\
\frac{d x}{2 y} & \mapsto 2 \pi i d z
\end{aligned}
$$

Then c_{4}, c_{6} are modular forms:

$$
c_{4}=E_{4}(\tau), \quad c_{6}=E_{6}(\tau), \quad \text { hence } \quad j(E)=j(\tau)=1728 \frac{E_{4}(\tau)}{E_{4}(\tau)^{3}-E_{6}(\tau)^{2}}
$$

Theorem

The graded \mathbb{C}-algebra of modular forms on \mathbb{H}_{1} for $\mathrm{SL}_{2}(\mathbb{Z})$ is $\mathbb{C}\left[E_{4}, E_{6}\right]$.
Moreover E_{4}, E_{6} have integral, primitive Fourier expansions.
Hence c_{4}, c_{6} are indeed "the right invariants" to consider.

Moduli space of p.p. abelian surfaces

A complex p.p. abelian surface takes the form $\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\tau \mathbb{Z}^{2}\right)$ with $\tau \in \mathbb{H}_{2}$. Moduli space: $\mathrm{Sp}_{4}(\mathbb{Z}) \backslash \mathbb{H}_{2}$.

Theorem (Igusa)

The graded \mathbb{C}-algebra of (scalar-valued) Siegel modular forms of even weight on \mathbb{H}_{2} for $\mathrm{Sp}_{4}(\mathbb{Z})$ is $\mathbb{C}\left[M_{4}, M_{6}, M_{10}, M_{12}\right]$, where the M_{i} are algebraically independent.

Normalized such that the M_{j} have primitive, integral Fourier expansions and M_{10}, M_{12} are cusp forms.
Explicit relations with the Igusa-Clebsch invariants $I_{2}, I_{4}, I_{6}, I_{10}$ of a genus 2 curve:

$$
\begin{aligned}
M_{4} & =2^{-2} l_{4}, & M_{6} & =2^{-3}\left(I_{2} I_{4}-3 I_{6}\right), \\
M_{10} & =-2^{-12} I_{10}, & M_{12} & =2^{-15} I_{2} I_{10}
\end{aligned}
$$

The M_{j} 's are "the right invariants" on the moduli space of p.p. abelian surfaces.

Analytic isogenies

Enumerating isogenous abelian varieties is easy on the complex-analytic side.

- Elliptic curves: the complex tori ℓ-isogenous to $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ are given by

$$
\mathbb{C} /\left(\mathbb{Z}+\frac{1}{\ell} \eta \tau \mathbb{Z}\right)
$$

where $\eta \in \mathrm{SL}_{2}(\mathbb{Z})$ are coset representatives for $\Gamma^{0}(\ell) \backslash \mathrm{SL}_{2}(\mathbb{Z})$.
Note: $\frac{1}{\ell} \eta \tau=\gamma \tau$ where $\gamma=\left(\begin{array}{cc}1 & 0 \\ 0 & \ell\end{array}\right) \eta \in \mathrm{GL}_{2}(\mathbb{Q})^{+}$.

- Abelian surfaces: explicit sets $S_{1}(\ell), S_{2}(\ell) \subset \operatorname{GSp}_{4}(\mathbb{Q})^{+}$such that for $i=1,2$, $\left\{\right.$ ab. surfaces i-step ℓ-isogenous to $\left.\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\tau \mathbb{Z}^{2}\right)\right\}=\left\{\mathbb{C}^{2} /\left(\mathbb{Z}^{2}+\gamma \tau \mathbb{Z}^{2}\right)\right\}_{\gamma \in S_{i}(\ell)}$. Cf. explicit formulas for Hecke operators $T(\ell), T_{1}\left(\ell^{2}\right)$.

Algorithmic problem

Decide when $\gamma \tau \in \mathbb{H}_{2}$ is attached to an abelian surface defined over \mathbb{Q}.

Construction of algebraic integers

Theorem (corollary of Igusa)

If f is a Siegel modular form of even weight k with integral Fourier coefficients, then $12^{k} f \in \mathbb{Z}\left[M_{4}, M_{6}, M_{10}, M_{12}\right]$.

Theorem

Let $\tau \in \mathbb{H}_{2}$ such that there exists $\lambda \in \mathbb{C}^{\times}$with $\lambda^{j} M_{j}(\tau) \in \mathbb{Z}$ for $j \in\{4,6,10,12\}$. If f is a Siegel modular form of even weight k with integral Fourier coefficients, then

$$
\prod_{\gamma \in S_{i}(\ell)}\left(X-\left(12 \lambda \ell^{3} \operatorname{det}\left(c_{\gamma} \tau+d_{\gamma}\right)^{-1}\right)^{k} f(\gamma \tau)\right) \in \mathbb{Z}[X]
$$

Thus, for each $j \in\{4,6,10,12\}$, the complex numbers

$$
N(j, \gamma):=\left(12 \lambda \ell^{3} \operatorname{det}\left(c_{\gamma} \tau+d_{\gamma}\right)^{-1}\right)^{j} M_{j}(\gamma \tau) \quad \text { for } \gamma \in S_{i}(\ell), i=1 \text { or } 2,
$$

form a Galois-stable set of algebraic integers.

Algorithm and certification

Input: Invariants $m_{4}, m_{6}, m_{10}, m_{12} \in \mathbb{Z}$ of a genus 2 curve, a prime ℓ, and $i \in\{1,2\}$.
Output: Invariants of all i-step ℓ-isogenous abelian surfaces.

1. Compute complex balls that provably contain:

- $\tau \in \mathbb{H}_{2}$
- $\lambda \in \mathbb{C}^{\times}$such that $\lambda^{j} M_{j}(\tau)=m_{j}$ for $j \in\{4,6,10,12\}$
- $N(j, \gamma)$, for each $j \in\{4,6,10,12\}$ and $\gamma \in S_{i}(\ell)$.

2. Keep the γ_{0} 's such that $N\left(j, \gamma_{0}\right)$ contains an integer m_{j}^{\prime} for each $j \in\{4,6,10,12\}$. The m_{j}^{\prime} are putative invariants for the abelian surface attached to $\gamma_{0} \tau$.
3. Confirm that $N\left(j, \gamma_{0}\right)=m_{j}^{\prime}$ by certifying the vanishing of

$$
\prod_{\gamma \in S_{i}(\ell)}\left(N(j, \gamma)-m_{j}^{\prime}\right) \in \mathbb{Z}
$$

We need to recompute $N\left(j, \gamma_{0}\right)$ (only!) to a much higher precision.

Example, continued

Let $\ell=31, i=1$ and

$$
C: y^{2}+(x+1) y=x^{5}+23 x^{4}-48 x^{3}+85 x^{2}-69 x+45
$$

Working at 300 bits of precision, there is only one γ_{0} such that the $N\left(j, \gamma_{0}\right)$ for $j \in\{4,6,10,12\}$ contain integers:

$$
\begin{aligned}
N\left(4, \gamma_{0}\right) & =\alpha^{2} \cdot 318972640 \pm 7.8 \times 10^{-47} \\
N\left(6, \gamma_{0}\right) & =\alpha^{3} \cdot 1225361851336 \pm 5.5 \times 10^{-39} \\
N\left(10, \gamma_{0}\right) & =\alpha^{5} \cdot 10241530643525839 \pm 1.6 \times 10^{-29} \\
N\left(12, \gamma_{0}\right) & =-\alpha^{6} \cdot 307105165233242232724 \pm 4.6 \times 10^{-22}
\end{aligned}
$$

where $\alpha=2^{2} \cdot 3^{2} \cdot 31$.
We certify these equalities by working at 4128800 bits of precision. Use certified quasi-linear time algorithms for the evaluation of modular forms (K. 2022).*

Reconstructing a genus 2 curve

Given $\left(m_{4}^{\prime}, m_{6}^{\prime}, m_{10}^{\prime}, m_{12}^{\prime}\right)=(318972640,1225361851336,10241530643525839, \ldots)$, find a corresponding curve C^{\prime} such that $\operatorname{Jac}(C)$ and $\operatorname{Jac}\left(C^{\prime}\right)$ are isogenous over \mathbb{Q}.

Mestre's algorithm yields

$$
y^{2}=-1624248 x^{6}+5412412 x^{5}-6032781 x^{4}+876836 x^{3}-1229044 x^{2}-5289572 x-1087304
$$

a quadratic twist by -83761 of the desired curve

$$
C^{\prime}: y^{2}+x y=-x^{5}+2573 x^{4}+92187 x^{3}+2161654285 x^{2}+406259311249 x+93951289752862
$$

We reapply the algorithm to C^{\prime}, and we only find the original curve.

Comments:

- 113 minutes of CPU time for this example; 90% is to certify the results.
- Can independently create a certificate for the isogeny (6.5 hours and 3 MB).

LMFDB data

Originally 63107 typical genus 2 curves in 62600 isogeny classes.
By computing isogeny classes, we found 21923 new curves.

Size	1	2	3	4	5	6	7	8	9	10	12	16	18
Count	51549	2672	6936	420	756	164	40	45	3	2	3	9	1

LMFDB data

Originally 63107 typical genus 2 curves in 62600 isogeny classes.
By computing isogeny classes, we found 21923 new curves.

Size	1	2	3	4	5	6	7	8	9	10	12	16	18
Count	51549	2672	6936	420	756	164	40	45	3	2	3	9	1

Observation

A 2-step 2-isogeny (of degree 16) always implies an existence of a second one.
This explains the $6913 \triangle$ and the $756 \bowtie$ we found.
The whole computation took 75 hours. Only 3 classes took more than 10 minutes:

- 349.a: 56 min , isogeny of degree 13^{4}.
- 353.a: 23 min , isogeny of degree 11^{4}.
- 976.a: 19 min , checking that no isogeny of degree 29^{4} exists.

Upcoming to LMFDB

A new set of 5235806 curves due to Sutherland is soon to be added to the LMFDB. Of these, 1823592 are typical, split amongst $1538149 \pm \varepsilon$ isogeny classes.

We found 688094 new curves (in 97 days). Counts per size:

1	2	3	4	5	6	7	8	≥ 9
1098812	125694	212000	58310	16925	15459	498	6073	4270

We discovered irreducible isogenies of degree

$$
2^{2}(=\text { Richelot isogenies }), 2^{4}, 3^{2}, 3^{4}, 5^{2}, 5^{4}, 7^{2}, 7^{4}, 11^{4}, 13^{2}, 13^{4}, 17^{2}, 31^{2}
$$

- Size 2: 75% have degree $2^{2}, 22 \%$ have degree 3^{4}, and then $3^{2}, 5^{4}, 5^{2}, 7^{4}, 7^{2}, \ldots$
- Size 3: 99.2% are \triangle of degree 2^{4} isogenies.
- Size 4: 97.8% are >- of Richelot isogenies.
- Size 5: 99.8% are \bowtie of degree 2^{4} isogenies.
- Size 6: $75 \%+15 \%$ are two graphs consisting of Richelot isogenies.

Life, the universe, and everything

Isogeny graph consisting of 42 Richelot isogenous curves outside our database, with conductor $497051100=2^{2} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17^{2}$:

https://arxiv.org/abs/2301.10118

Thank you.

[^0]: ${ }^{1}$ See also Banwait-Brumer-Kim-Klagsbrun-Mayle-Srinivasan-Vogt (2023).

