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The point counting problem

A, p.p. abelian variety of dimension g over Fq.
We can attach to A its characteristic polynomial of Frobenius χA.

• χA ∈ Z[X ],

• monic of degree 2g ,

• complex roots have absolute value
√
q.

The point-counting problem
Given A, compute χA. Determines #A(Fqr ), isogeny class of A,
local factor of L-function if A comes from a number field.
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Schoof’s polynomial time algorithm

For small primes `� p, look at the Galois representation on A[`]:

• Compute an explicit equation for A[`] ' (Z/`Z)2g .

• Compute the characteristic polynomial of Frobenius on A[`]:
this is χA ∈ (Z/`Z)[X ].

Conclude using the Weil bounds.

Complexity for abelian surfaces: Õ(log8 q), essentially because the
algorithm manipulates polynomials of large degree O(`4).
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Elkies’s method

Attempt to replace A[`] by some subgroup:

• Compute an abelian variety A′ that is `-isogenous to A. There
exists f : A→ A′, of degree `g , with isotropic kernel.

• Compute f as an explicit rational map.

• Obtain K ⊂ A[`] as ker f .

Elkies (90’s) describes this strategy in the case of elliptic curves.

Goal
Extend these methods to higher dimensions, and improve the
complexity of point counting for abelian surfaces.
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Main result

Theorem (K.)
Let K be a number field. Let A/K be a p.p. abelian surface over K
of height at most H. Let q ≥ 1. Then, under the heuristic that
Elkies’s method applies to sufficiently many small primes:

• Given a good prime p of norm N(p) = q, one can compute
χA mod p in ÕK (H log7 q) binary operations.

• Given Θ(H log q) distinct good primes pi such that
logN(pi ) = O(log q), one can compute all polynomials
χA mod pi in ÕK (log6 q) binary operations on average.

Besides this result, develop explicit methods for isogenies in higher
dimensions. In other words: study Galois representations on A[`]

without writing down the full subgroup.
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Higher-dimensional modular
equations



Diagram of moduli spaces

Ag : p.p. abelian varieties of dimension g .
A0

g (`): p.p. abelian varieties with the kernel of an `-isogeny.

A0
g (`) `-isogeny f : A→ A′

Ag Ag

keep A keep A′

A and A′ are `-isogenous ⇐⇒ (A,A′) lies in the image of A0
g (`).

Modular equations of Siegel type
Explicit equations for the image of A0

g (`) in Ag ×Ag .
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Examples of modular equations

• Dimension 1: isomorphism j : A1 → A1.
The modular polynomial Φ` ∈ Z[X ,Y ] is a birational equation
for A0

1(`), i.e. X0(`).
To find elliptic curves that are `-isogenous to E , simply look
for roots of Φ`(j(E ),Y ).

• Dimension 2: birational isomorphism A2 ' P3 given by three
Igusa invariants j1, j2, j3.
Modular equations of Siegel type are three rational fractions in
four variables Ψ`,k ∈ Q(J1, J2, J3)[Y ], for 1 ≤ k ≤ 3.
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State of the art

Previous works
Compute modular equations of small levels for g = 2 (very large!),
and examples of isogenous p.p. abelian surfaces. [Dupont ’06;
Bröker, Lauter ’09; Milio ’15].

In this work

• Compute isogenies without prior knowledge of their kernels,
using modular equations.

• Size bounds for modular equations.

• Efficient evaluation algorithms via complex approximations.

In combination: Elkies’s method for p.p. abelian surfaces.
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Isogeny algorithms and their
complexities



Computing isogenies

Theorem (K., Page, Robert)
Let ` be prime. Let k be a field s.t. char k = 0 or > 8`+ 7. Given:

• two generic `-isogenous p.p. abelian surfaces A,A′ over k ,

• the values of all derivatives of Siegel modular equations Ψ`,k

of level ` at (A,A′),

one can compute an explicit description of an `-isogeny f : A→ A′:

• Genus 2 curve equations C, C′ (maybe over an extension k ′/k).

• The rational map

C Jac(C) Jac(C′) Sym2(C′) A4.
base pt f ∼ coords

The cost is Õ(`) operations in k ′.
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Outline of the isogeny algorithm

• Compute C, C′. The choice of equations encodes a choice of
basis for Ω1(A) and Ω1(A′), or equivalently T0(A) and T0(A′).

• By the Kodaira–Spencer isomorphism Sym2 T0(A) ' TA(Ag ),
we obtain deformations of A, A′.

• Derivatives of modular equations tell us how to modify C, C′ so
that deformations remain `-isogenous. The isogeny f is then
normalized: Sym2(df ) = ` · I3.
• Write a differential system satisfied by f and solve it using

standard computer algebra techniques: Newton iterations on
power series + rational reconstruction.

This relies on an explicit Kodaira–Spencer isomorphism: identify
derivatives of Igusa invariants in terms of coefficients of C.
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Size bounds for modular equations

Theorem (K. 2021)
The modular equations of Siegel type Ψ`,k have:

• total degree O(`3) = O(# of `-isogenies from a given A);

• height O(`3 log `).

Remarks

• Total size of Ψ`,k is O(`15 log `).
Compare with g = 1: size of Φ` is O(`3 log `).

• Can obtain explicit constants. Degree bounds are tight, height
bounds are horrific.

• Analogous result holds for modular equations encoding any
Hecke correspondence on any Shimura variety of PEL type.

11 / 14



Evaluation of modular equations

We only need evaluations of modular equations and their
derivatives at fixed points over a finite/number field.

• Size of Ψ`,k(j1, j2, j3) ∈ Q[Y ] is Õ(`6 h(j1, j2, j3)).

• They can be computed in quasi-linear time using complex
approximations.

Key input: certified, uniform, quasi-linear time algorithm for the
evaluation of genus 2 theta constants at a given complex period
matrix, building on works of Dupont and Labrande–Thomé.
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Implementation results

Time (s) to evaluate modular equations of level ` = 2, 3, . . . at
(159/239,−19/28,−193/246):

2 3 5 7 11 13 17
1.34 5.12 96.7 1.23 · 103 3.97 · 104 1.57 · 105 1.12 · 106

Closely matches 0.002 `6 log(`)3 log log `.

Analogous case of p.p. abelian surfaces with RM by a fixed
quadratic field F . Cyclic, degree ` isogenies exist when ` = bb splits
in F and b is trivial in the narrow class group. Case F = Q(

√
5):

11 19 29 · · · 101 109 · · · 479 491 499
2.45 4.14 9.67 256 315 16800 17900 22100
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Future directions?

• Isogeny algorithm for Jacobians of plane quartics (g = 3),
using the relation between Siegel modular forms and
“concomitants” [Cléry, Faber, van der Geer ’20].

• Better choices of birational models of A0
2(`)? Could bring

large speedups in practice. Cf. many papers in dimension 1.

• Distribution of Elkies primes in higher dimensions?
Dimension 1 case by Shparlinski–Sutherland [’14,’15].

• Certifying the evaluation algorithm for modular equations
involves a good understanding of the associated graded rings
of modular forms over Z.
Examples in the literature are sparse, but there is an ongoing
effort in the Collaboration to compute such graded rings.
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