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The case of elliptic curves

Point counting

Given an elliptic curve E/IFp,
E:y?=x3+ax+b, (a,beTFp)

= group order.
Use in crypto: pick random curves until we find one of prime order.
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The case of elliptic curves

Point counting

Given an elliptic curve E/IFp,
E:y?=x3+ax+b, (a,beTFp)
= group order.
Use in crypto: pick random curves until we find one of prime order.

Schoof’s algorithm (1985)
For a bunch of small primes ¢:

Frob G E[(] ~ (Z/¢Z)>.
#E(F,) = p+1— Trgpg(Frob) mod £.

Then, Chinese remainders. Polynomial time in log p, but

2/14



The case of elliptic curves

The SEA algorithm (Schoof-Elkies—Atkin)
Replace E[/] by a K ~Z/07:

K= ¢: E — E' defined over Fp,.

to compute #E(F,) mod ¢:
1. See if such an f-isogeny ¢ exists. If not, pick another £.
2. Compute the kernel K.
3. Compute Frobenius eigenvalue A, then Tr = XA + p/A mod .

Crucial improvement over Schoof's algorithm: #K = ¢, not /2.
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Computing isogenies from modular equations

Detecting an /-isogeny
with the help of the ¢-th dy(X,Y):

¢ exists <= Dy(j(E), Y) has a root over [Fp.

Computing the kernel

e Construct E'/F, such that ®,(j(E), j(E")) = 0.

e Several algorithms to compute an f-isogeny ¢: E — E’ are
known (Elkies 90's, Bostan et al. 2006, ...)

4/14



1. The genus 2 setting
2. The isogeny algorithm

3. Application to point counting
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The genus 2 setting




Genus 2 curves and their Jacobians

Let C be a smooth genus 2 curve over [,
C:v?=f(u), deg(f)e {5,6}.

e Group law on the Jacobian Jac(C).
Jac(C) has dimension 2:

e Generically,

point on Jac(C) = of points on C.

Jacobians of genus 2 curves are (generically) characterized up to
isomorphism by D142, )3
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Modular equations in genus 2

(-isogenies
e Jac(O)[{] ~ (Z/¢Z)* with a Weil pairing.
e An ¢: Jac(C) — Jac(C’) is such that

ker ¢ < Jac(C)[/], ker ¢ ~ (Z/¢Z)? and isotropic.
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Modular equations in genus 2

(-isogenies
e Jac(O)[{] ~ (Z/¢Z)* with a Weil pairing.
e An ¢: Jac(C) — Jac(C’) is such that

ker ¢ < Jac(C)[/], ker ¢ ~ (Z/¢Z)? and isotropic.

Siegel modular equations
Three equations W1, Wy, W3 that vanish on Igusa invariants of
{-isogenous Jacobians:

wl(.jlvj27j37j{) =0
./é = w2(jl7j27.j37.j{)
Jé = \U3(jl7j27j37.j1)'
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The isogeny algorithm




Computing isogenies from modular equations

Let C, C’ be genus 2 curves s.t. Jac(C), Jac(C’) are ¢-isogenous.

Problem
Compute an f-isogeny ¢: Jac(C) — Jac(C’).

Representing ¢

Jac(C) AN Jac(C")
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Computing isogenies from modular equations

Let C, C’ be genus 2 curves s.t. Jac(C), Jac(C’) are ¢-isogenous.

Problem
Compute an f-isogeny ¢: Jac(C) — Jac(C’).

Representing ¢ c'<2>

C —— Jac(C) AN Jac(C")
e Choice of base point P defines an embedding C — Jac(C)

e Describe image by a pair of points on C':

op(u,v) = {(x1,y1), (x2, ¥2))

e Compute , etc.
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The normalization matrix

Differential forms
Equation of C — basis of differential forms on C:

(udu du>
w=|——].

"4 v

w is also a basis of differential forms on Jac(C).

The normalization matrix

C,C’ define bases w,w’.

m € GLy(Fp) : matrix of ¢* in the bases ', w.
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The isogeny algorithm

1. Compute the normalization matrix m:

Use , and computations with

Siegel modular forms.

2. Solve a differential system to compute ¢p:

(x1dx;  xodxp u
——— F = (m171u + m271)—
Y1 Y2 v
dx;  dxo du
— qp —— = (m172u + m2’2)f
{Nn Y2 v
y2 = fc/ (Xl)
v = for(x2)
Solve locally around P using in a uniformizer z,

then
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Application to point counting




Smaller subgroups

Point counting
Given C, compute # Jac(C)(FFp).
As before: study with Frobenius action.

Isogenies yield smaller subgroups

Full torsion (Z/¢Z)* v~ Kernel of isogeny (Z/(Z)?

The real multiplication case
Zk — End(Jac(C)), K fixed real quadratic field.

Kernel of endomorphism (Z/(Z)? ~~ Kernel of isogeny Z/{Z.
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Cost comparison

Cost comparison for a curve over F,, using asymptotically fast
polynomial multiplication.
Balance smaller subgroups with the cost of

Classical Schoof Isogenies (SEA)

Elliptic curves O(log(p)®) O(log(p)*)
Genus2  O(log(p)®) O(log(p)®)
Genus 2, small height O(log(p)®)
Genus 2, with RM O(log(p)5)
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Implementation

Implementation is on the way.

e Evaluating modular equations in the RM case with
K = Q(+/5) is quite fast (a few minutes) when £ is in the
hundreds.

e Can we beat a point-counting record?
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Thank you!
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Evaluating modular equations

Let's consider elliptic curves. We want to evaluate
G(E), X) € FylX].

Using complex approximations:
1. Lift j(E) to j € Z.
. Find a floating-point 7 € Hj such that j(7) =7

l
o0 =T1(x1(%)).

5. Recognize integer coefficients from approximations.

6. Reduce to [Fp.

2
3. Evaluate j at every ﬂ, where v runs through 'o(¢)\ SL2(Z).
4

. Compute
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