Genus 2 point counting using isogenies

Jean Kieffer Supervision: D. Robert, A. Page

Journées Codes et Cryptographie Erdeven, 15–20 March 2020 Online, 2–6 November 2020

LFANT team, IMB (Univ. Bordeaux)

Point counting

Given an elliptic curve E/\mathbb{F}_p ,

$$E: y^2 = x^3 + ax + b, \quad (a, b \in \mathbb{F}_p)$$

compute $\#E(\mathbb{F}_p) =$ group order.

Use in crypto: pick random curves until we find one of prime order.

Point counting

Given an elliptic curve E/\mathbb{F}_p ,

$$E: y^2 = x^3 + ax + b, \quad (a, b \in \mathbb{F}_p)$$

compute $\#E(\mathbb{F}_p)$ = group order.

Use in crypto: pick random curves until we find one of prime order.

Schoof's algorithm (1985)

For a bunch of small primes ℓ : ℓ -torsion subgroup $E[\ell]$.

$$\begin{aligned} & \operatorname{Frob} \, {\mathbb{G}} \, E[\ell] \simeq ({\mathbb{Z}}/\ell{\mathbb{Z}})^2. \\ & \# E({\mathbb{F}}_p) = p + 1 - \operatorname{Tr}_{E[\ell]}(\operatorname{Frob}) \mod \ell. \end{aligned}$$

Then, Chinese remainders. Polynomial time in $\log p$, but slow.

The SEA algorithm (Schoof–Elkies–Atkin) Replace $E[\ell]$ by a subgroup $K \simeq \mathbb{Z}/\ell\mathbb{Z}$:

 $K = \text{kernel of an } \ell \text{-isogeny } \phi \colon E \to E' \text{ defined over } \mathbb{F}_p.$

Elkies's method to compute $\#E(\mathbb{F}_p) \mod \ell$:

- 1. See if such an ℓ -isogeny ϕ exists. If not, pick another ℓ .
- 2. Compute the kernel K.
- 3. Compute Frobenius eigenvalue λ , then $Tr = \lambda + p/\lambda \mod \ell$.

Crucial improvement over Schoof's algorithm: $\#K = \ell$, not ℓ^2 .

Detecting an *l*-isogeny

with the help of the ℓ -th classical modular polynomial $\Phi_{\ell}(X, Y)$:

$$\phi$$
 exists $\iff \Phi_{\ell}(j(E), Y)$ has a root over \mathbb{F}_{p} .

Computing the kernel

- Construct E'/\mathbb{F}_p such that $\Phi_\ell(j(E), j(E')) = 0$.
- Several algorithms to compute an ℓ-isogeny φ: E → E' are known (Elkies 90's, Bostan et al. 2006, ...)

1. The genus 2 setting

2. The isogeny algorithm

3. Application to point counting

The genus 2 setting

Let \mathcal{C} be a smooth genus 2 curve over \mathbb{F}_p ,

$$\mathcal{C}\colon v^2=f(u),\quad \deg(f)\in\{5,6\}.$$

- Group law on the Jacobian Jac(C).
 Jac(C) has dimension 2: abelian surface.
- Generically,

point on $Jac(\mathcal{C}) = unordered pair of points on C$.

Jacobians of genus 2 curves are (generically) characterized up to isomorphism by three Igusa invariants: j_1, j_2, j_3 .

ℓ -isogenies

- $\mathsf{Jac}(\mathcal{C})[\ell] \simeq (\mathbb{Z}/\ell\mathbb{Z})^4$ with a Weil pairing.
- An ℓ -isogeny ϕ : $Jac(\mathcal{C}) \rightarrow Jac(\mathcal{C}')$ is such that

 $\ker \phi \subset \mathsf{Jac}(\mathcal{C})[\ell], \qquad \ker \phi \simeq (\mathbb{Z}/\ell\mathbb{Z})^2 \text{ and isotropic.}$

ℓ -isogenies

- $\mathsf{Jac}(\mathcal{C})[\ell] \simeq (\mathbb{Z}/\ell\mathbb{Z})^4$ with a Weil pairing.
- An ℓ -isogeny ϕ : $Jac(\mathcal{C}) \rightarrow Jac(\mathcal{C}')$ is such that

 $\ker \phi \subset \operatorname{Jac}(\mathcal{C})[\ell], \qquad \ker \phi \simeq (\mathbb{Z}/\ell\mathbb{Z})^2 \text{ and isotropic.}$

Siegel modular equations

Three equations Ψ_1, Ψ_2, Ψ_3 that vanish on Igusa invariants of ℓ -isogenous Jacobians:

$$\begin{cases} \Psi_1(j_1, j_2, j_3, j_1') = 0\\ j_2' = \Psi_2(j_1, j_2, j_3, j_1')\\ j_3' = \Psi_3(j_1, j_2, j_3, j_1'). \end{cases}$$

The isogeny algorithm

Computing isogenies from modular equations

Let C, C' be genus 2 curves s.t. Jac(C), Jac(C') are ℓ -isogenous.

Problem

Compute an ℓ -isogeny ϕ : $\mathsf{Jac}(\mathcal{C}) \to \mathsf{Jac}(\mathcal{C}')$.

Representing ϕ

$$\operatorname{Jac}(\mathcal{C}) \xrightarrow{\phi} \operatorname{Jac}(\mathcal{C}')$$

Computing isogenies from modular equations

Let C, C' be genus 2 curves s.t. Jac(C), Jac(C') are ℓ -isogenous.

Problem

Compute an ℓ -isogeny ϕ : $\mathsf{Jac}(\mathcal{C}) \to \mathsf{Jac}(\mathcal{C}')$.

Representing ϕ

$$\mathcal{C} \longleftrightarrow \mathsf{Jac}(\mathcal{C}) \xrightarrow{\phi} \mathsf{Jac}(\mathcal{C}')$$

• Choice of base point *P* defines an embedding $\mathcal{C} \hookrightarrow \operatorname{Jac}(\mathcal{C})$

Computing isogenies from modular equations

Let C, C' be genus 2 curves s.t. Jac(C), Jac(C') are ℓ -isogenous.

Problem

Compute an ℓ -isogeny ϕ : $\mathsf{Jac}(\mathcal{C}) \to \mathsf{Jac}(\mathcal{C}')$.

- Choice of base point *P* defines an embedding $\mathcal{C} \hookrightarrow \operatorname{Jac}(\mathcal{C})$
- Describe image by a pair of points on C':

$$\phi_P(u,v) = \langle (x_1,y_1), (x_2,y_2) \rangle$$

• Compute $x_1 + x_2 = S(u, v)$, etc.

Differential forms

Equation of $\mathcal{C} \rightarrow$ basis of differential forms on \mathcal{C} :

$$\omega = \left(\frac{u\,du}{v},\frac{du}{v}\right).$$

 ω is also a basis of differential forms on $\mathsf{Jac}(\mathcal{C}).$

The normalization matrix

 $\mathcal{C}, \mathcal{C}' \text{ define bases } \omega, \omega'.$

```
m \in GL_2(\mathbb{F}_p): matrix of \phi^* in the bases \omega', \omega.
```

The isogeny algorithm

- Compute the normalization matrix *m*: Use derivatives of modular equations, and computations with Siegel modular forms.
- 2. Solve a differential system to compute ϕ_P :

$$\begin{cases} \frac{x_1 \, dx_1}{y_1} + \frac{x_2 \, dx_2}{y_2} = (m_{1,1}u + m_{2,1})\frac{du}{v} \\ \frac{dx_1}{y_1} + \frac{dx_2}{y_2} = (m_{1,2}u + m_{2,2})\frac{du}{v} \\ y_1^2 = f_{\mathcal{C}'}(x_1) \\ y_2^2 = f_{\mathcal{C}'}(x_2) \end{cases}$$

Solve locally around P using power series in a uniformizer z, then rational reconstruction.

Application to point counting

Point counting

Given C, compute $\# \operatorname{Jac}(C)(\mathbb{F}_p)$. As before: study subgroups of $\operatorname{Jac}(C)[\ell]$ with Frobenius action.

Isogenies yield smaller subgroups

Full torsion $(\mathbb{Z}/\ell\mathbb{Z})^4 \rightsquigarrow$ Kernel of isogeny $(\mathbb{Z}/\ell\mathbb{Z})^2$

The real multiplication case

 $\mathbb{Z}_{\mathcal{K}} \hookrightarrow \mathsf{End}(\mathsf{Jac}(\mathcal{C})), \quad \mathcal{K} \text{ fixed real quadratic field.}$

Kernel of endomorphism $(\mathbb{Z}/\ell\mathbb{Z})^2 \rightsquigarrow$ Kernel of isogeny $\mathbb{Z}/\ell\mathbb{Z}$

Cost comparison for a curve over $\mathbb{F}_p,$ using asymptotically fast polynomial multiplication.

Balance smaller subgroups with the cost of evaluating modular equations.

	Classical Schoof	Isogenies (SEA)
Elliptic curves	$\widetilde{O}(\log(p)^5)$	$\widetilde{O}(\log(p)^4)$
Genus 2	$\widetilde{O}(\log(p)^8)$	$\widetilde{O}(\log(p)^8)$
Genus 2, small height	$\widetilde{O}(\log(p)^8)$	$\widetilde{O}(\log(p)^7)$
Genus 2, with RM	$\widetilde{O}(\log(p)^5)$	$\widetilde{O}(\log(p)^4)$

Implementation is on the way.

- Evaluating modular equations in the RM case with $K = \mathbb{Q}(\sqrt{5})$ is quite fast (a few minutes) when ℓ is in the hundreds.
- Can we beat a point-counting record?

Questions?

Thank you!

Let's consider elliptic curves. We want to evaluate

 $\Phi_\ell(j(E),X)\in\mathbb{F}_p[X].$

Using complex approximations:

- **1**. Lift j(E) to $\tilde{j} \in \mathbb{Z}$.
- 2. Find a floating-point $\tau \in \mathbb{H}_1$ such that $j(\tau) = \tilde{j}$.
- 3. Evaluate j at every $\frac{\gamma \tau}{\ell}$, where γ runs through $\Gamma_0(\ell) \setminus SL_2(\mathbb{Z})$.
- 4. Compute

$$\Phi_{\ell}(\widetilde{j}, X) = \prod_{\gamma} \left(X - j\left(\frac{\gamma\tau}{\ell}\right) \right).$$

- 5. Recognize integer coefficients from approximations.
- 6. Reduce to \mathbb{F}_p .