Genus 2 point counting using isogenies

Jean Kieffer

Supervision: D. Robert, A. Page
Journées Codes et Cryptographie
Erdeven, 15-20 March 2020 Online, 2-6 November 2020
LFANT team, IMB (Univ. Bordeaux)

The case of elliptic curves

Point counting

Given an elliptic curve E / \mathbb{F}_{p},

$$
E: y^{2}=x^{3}+a x+b, \quad\left(a, b \in \mathbb{F}_{p}\right)
$$

compute $\# E\left(\mathbb{F}_{p}\right)=$ group order.
Use in crypto: pick random curves until we find one of prime order.

The case of elliptic curves

Point counting

Given an elliptic curve E / \mathbb{F}_{p},

$$
E: y^{2}=x^{3}+a x+b, \quad\left(a, b \in \mathbb{F}_{p}\right)
$$

compute $\# E\left(\mathbb{F}_{p}\right)=$ group order.
Use in crypto: pick random curves until we find one of prime order.
Schoof's algorithm (1985)
For a bunch of small primes $\ell: \ell$-torsion subgroup $E[\ell]$.

$$
\begin{gathered}
\text { Frob } G E[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2} . \\
\# E\left(\mathbb{F}_{p}\right)=p+1-\operatorname{Tr}_{E[\ell]}(\text { Frob }) \quad \bmod \ell .
\end{gathered}
$$

Then, Chinese remainders. Polynomial time in $\log p$, but slow.

The SEA algorithm (Schoof-Elkies-Atkin)
Replace $E[\ell]$ by a subgroup $K \simeq \mathbb{Z} / \ell \mathbb{Z}$:

$$
K=\text { kernel of an } \ell \text {-isogeny } \phi: E \rightarrow E^{\prime} \text { defined over } \mathbb{F}_{p}
$$

Elkies's method to compute $\# E\left(\mathbb{F}_{p}\right) \bmod \ell$:

1. See if such an ℓ-isogeny ϕ exists. If not, pick another ℓ.
2. Compute the kernel K.
3. Compute Frobenius eigenvalue λ, then $\operatorname{Tr}=\lambda+p / \lambda \bmod \ell$.

Crucial improvement over Schoof's algorithm: $\# K=\ell$, not ℓ^{2}.

Computing isogenies from modular equations

Detecting an ℓ-isogeny
with the help of the ℓ-th classical modular polynomial $\Phi_{\ell}(X, Y)$:

$$
\phi \text { exists } \Longleftrightarrow \Phi_{\ell}(j(E), Y) \text { has a root over } \mathbb{F}_{p}
$$

Computing the kernel

- Construct $E^{\prime} / \mathbb{F}_{p}$ such that $\Phi_{\ell}\left(j(E), j\left(E^{\prime}\right)\right)=0$.
- Several algorithms to compute an ℓ-isogeny $\phi: E \rightarrow E^{\prime}$ are known (Elkies 90's, Bostan et al. 2006, ...)

1. The genus 2 setting
2. The isogeny algorithm
3. Application to point counting

The genus 2 setting

Genus 2 curves and their Jacobians

Let \mathcal{C} be a smooth genus 2 curve over \mathbb{F}_{p},

$$
\mathcal{C}: v^{2}=f(u), \quad \operatorname{deg}(f) \in\{5,6\}
$$

- Group law on the Jacobian $\operatorname{Jac}(\mathcal{C})$. $\operatorname{Jac}(\mathcal{C})$ has dimension 2: abelian surface.
- Generically,

$$
\text { point on } \operatorname{Jac}(\mathcal{C})=\text { unordered pair of points on } \mathcal{C} \text {. }
$$

Jacobians of genus 2 curves are (generically) characterized up to isomorphism by three Igusa invariants: j_{1}, j_{2}, j_{3}.

Modular equations in genus 2

ℓ-isogenies

- $\operatorname{Jac}(\mathcal{C})[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{4}$ with a Weil pairing.
- An ℓ-isogeny $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$ is such that $\operatorname{ker} \phi \subset \operatorname{Jac}(\mathcal{C})[\ell], \quad \operatorname{ker} \phi \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2}$ and isotropic.

Modular equations in genus 2

ℓ-isogenies

- $\operatorname{Jac}(\mathcal{C})[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{4}$ with a Weil pairing.
- An ℓ-isogeny $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$ is such that

$$
\operatorname{ker} \phi \subset \operatorname{Jac}(\mathcal{C})[\ell], \quad \operatorname{ker} \phi \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2} \text { and isotropic. }
$$

Siegel modular equations

Three equations $\Psi_{1}, \Psi_{2}, \Psi_{3}$ that vanish on Igusa invariants of ℓ-isogenous Jacobians:

$$
\left\{\begin{array}{l}
\Psi_{1}\left(j_{1}, j_{2}, j_{3}, j_{1}^{\prime}\right)=0 \\
j_{2}^{\prime}=\Psi_{2}\left(j_{1}, j_{2}, j_{3}, j_{1}^{\prime}\right) \\
j_{3}^{\prime}=\Psi_{3}\left(j_{1}, j_{2}, j_{3}, j_{1}^{\prime}\right) .
\end{array}\right.
$$

The isogeny algorithm

Computing isogenies from modular equations

Let $\mathcal{C}, \mathcal{C}^{\prime}$ be genus 2 curves s.t. $\operatorname{Jac}(\mathcal{C}), \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$ are ℓ-isogenous.
Problem
Compute an ℓ-isogeny $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$.
Representing ϕ

$$
\operatorname{Jac}(\mathcal{C}) \xrightarrow{\phi} \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)
$$

Computing isogenies from modular equations

Let $\mathcal{C}, \mathcal{C}^{\prime}$ be genus 2 curves s.t. $\operatorname{Jac}(\mathcal{C}), \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$ are ℓ-isogenous.
Problem
Compute an ℓ-isogeny $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$.
Representing ϕ

$$
\mathcal{C} \longleftrightarrow \operatorname{Jac}(\mathcal{C}) \xrightarrow{\phi} \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)
$$

- Choice of base point P defines an embedding $\mathcal{C} \hookrightarrow \operatorname{Jac}(\mathcal{C})$

Computing isogenies from modular equations

Let $\mathcal{C}, \mathcal{C}^{\prime}$ be genus 2 curves s.t. $\operatorname{Jac}(\mathcal{C}), \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$ are ℓ-isogenous.
Problem
Compute an ℓ-isogeny $\phi: \operatorname{Jac}(\mathcal{C}) \rightarrow \operatorname{Jac}\left(\mathcal{C}^{\prime}\right)$.
Representing ϕ

- Choice of base point P defines an embedding $\mathcal{C} \hookrightarrow \operatorname{Jac}(\mathcal{C})$
- Describe image by a pair of points on \mathcal{C}^{\prime} :

$$
\phi_{P}(u, v)=\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle
$$

- Compute $x_{1}+x_{2}=S(u, v)$, etc.

The normalization matrix

Differential forms

Equation of $\mathcal{C} \rightarrow$ basis of differential forms on \mathcal{C} :

$$
\omega=\left(\frac{u d u}{v}, \frac{d u}{v}\right) .
$$

ω is also a basis of differential forms on $\operatorname{Jac}(\mathcal{C})$.
The normalization matrix
$\mathcal{C}, \mathcal{C}^{\prime}$ define bases ω, ω^{\prime}.

$$
m \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right): \text { matrix of } \phi^{*} \text { in the bases } \omega^{\prime}, \omega
$$

The isogeny algorithm

1. Compute the normalization matrix m :

Use derivatives of modular equations, and computations with Siegel modular forms.
2. Solve a differential system to compute ϕ_{P} :

$$
\left\{\begin{array}{l}
\frac{x_{1} d x_{1}}{y_{1}}+\frac{x_{2} d x_{2}}{y_{2}}=\left(m_{1,1} u+m_{2,1}\right) \frac{d u}{v} \\
\frac{d x_{1}}{y_{1}}+\frac{d x_{2}}{y_{2}}=\left(m_{1,2} u+m_{2,2}\right) \frac{d u}{v} \\
y_{1}^{2}=f_{\mathcal{C}^{\prime}}\left(x_{1}\right) \\
y_{2}^{2}=f_{\mathcal{C}^{\prime}}\left(x_{2}\right)
\end{array}\right.
$$

Solve locally around P using power series in a uniformizer z, then rational reconstruction.

Application to point counting

Smaller subgroups

Point counting

Given \mathcal{C}, compute $\# \operatorname{Jac}(\mathcal{C})\left(\mathbb{F}_{p}\right)$.
As before: study subgroups of $\operatorname{Jac}(\mathcal{C})[\ell]$ with Frobenius action.

Isogenies yield smaller subgroups

$$
\text { Full torsion }(\mathbb{Z} / \ell \mathbb{Z})^{4} \leadsto \text { Kernel of isogeny }(\mathbb{Z} / \ell \mathbb{Z})^{2}
$$

The real multiplication case
$\mathbb{Z}_{K} \hookrightarrow \operatorname{End}(\operatorname{Jac}(\mathcal{C})), \quad K$ fixed real quadratic field.
Kernel of endomorphism $(\mathbb{Z} / \ell \mathbb{Z})^{2} \leadsto$ Kernel of isogeny $\mathbb{Z} / \ell \mathbb{Z}$

Cost comparison

Cost comparison for a curve over \mathbb{F}_{p}, using asymptotically fast polynomial multiplication.
Balance smaller subgroups with the cost of evaluating modular equations.

Classical Schoof Isogenies (SEA)

Elliptic curves
Genus 2
Genus 2, small height Genus 2, with RM

$$
\begin{aligned}
& \widetilde{O}\left(\log (p)^{5}\right) \\
& \widetilde{O}\left(\log (p)^{8}\right) \\
& \widetilde{O}\left(\log (p)^{8}\right) \\
& \widetilde{O}\left(\log (p)^{5}\right)
\end{aligned}
$$

$\widetilde{O}\left(\log (p)^{4}\right)$
$\widetilde{O}\left(\log (p)^{8}\right)$
$\widetilde{O}\left(\log (p)^{7}\right)$
$\widetilde{O}\left(\log (p)^{4}\right)$

Implementation

Implementation is on the way.

- Evaluating modular equations in the RM case with $K=\mathbb{Q}(\sqrt{5})$ is quite fast (a few minutes) when ℓ is in the hundreds.
- Can we beat a point-counting record?

Thank you!

Evaluating modular equations

Let's consider elliptic curves. We want to evaluate

$$
\Phi_{\ell}(j(E), X) \in \mathbb{F}_{p}[X]
$$

Using complex approximations:

1. Lift $j(E)$ to $\tilde{j} \in \mathbb{Z}$.
2. Find a floating-point $\tau \in \mathbb{H}_{1}$ such that $j(\tau)=\widetilde{j}$.
3. Evaluate j at every $\frac{\gamma \tau}{\ell}$, where γ runs through $\Gamma_{0}(\ell) \backslash \mathrm{SL}_{2}(\mathbb{Z})$.
4. Compute

$$
\Phi_{\ell}(\tilde{j}, X)=\prod_{\gamma}\left(X-j\left(\frac{\gamma \tau}{\ell}\right)\right)
$$

5. Recognize integer coefficients from approximations.
6. Reduce to \mathbb{F}_{p}.
