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Classical modular polynomials

Fix £ > 1 prime. The of level ¢
b, € Z[X, Y]
satisfies: if k is a field of char. # ¢, and E, E’ are elliptic curves over k, then
&y((E),j(E')) =0 < E and E’ are over k.

Example

da(X,Y) = X3+ Y3 — X2Y? +1488X°Y 4 1488XY? — 162000X° — 162000 Y?>
+ 40773375XY + 8748000000X + 8748000000Y — 157464000000000.

Used to navigate isogeny graphs and compute isogenies.
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Navigating isogeny graphs

2-isogeny graph of supersingular elliptic curves over F:
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Navigating isogeny graphs
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Computing isogenies

Theorem (Elkies 95, Bostan—Morain—Salvy—Schost '08)
e / prime, k a field of char. 0 or > 4/ + 1.
e E, E’ elliptic curves over k that are /-isogenous.
e Assume IxP,(J(E),j(E")) # 0, i.e. j(E') is a simple root of ®,(j(E),Y).
This is true generically.

Then, given E, E' and dx®(j(E),j(E’)), one can compute for
the /-isogeny
p: E— FE,

in particular an equation of ker ¢, in O(f) operations in k (quasi-linear time.)
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Complexity bounds

The of F e Q(Xq,...,Xy)is

h(F) = log(max|c|), where ¢ runs through the coefficients of F.

Complexity bounds for ¢,
e &y has degree ¢ + 1 in both variables X and Y.
o h(®y) ~6llogl [Cohen '84]. Storing ®;, costs O(¢3log¢) space.
e ®; can be computed in quasi-linear time O(£3) [Enge '09,
Broker—Lauter—Sutherland '12, Sutherland '13].

In summary:
o &, allow us to manipulate isogenies
o than computing (subgroups of) E[¢] from scratch: e.g. the

(Schoof-Elkies—Atkin '90s) computes #E(F,) in time O(log* q).
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State of the art

dim 1 dim 2 dim g
Definition of ¢, v
Complexity bounds v
Evaluating ®,(j(E), Y) v
Isogenies without torsion input v
Point counting v

More compact variants of &, v Atkin, ...
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State of the art

dim 1 dim 2 dim g
Definition of &, v v’ Broker—Lauter '09, ...
Complexity bounds v
Evaluating ®,(j(E), Y) v
Isogenies without torsion input v
Point counting v

More compact variants of ®, v Atkin, ...
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State of the art

dim 1 dim 2 dim g
Definition of &, v v’ Broker—Lauter '09, ... VK. '22
Complexity bounds v VK. 22 VK. 22
Evaluating ¢®,(j(E), Y) v VK. 27 7 partial
Isogenies without torsion input v v K., Page, Robert '27 ? dim 37
Point counting v K. '2? ? RM?
More compact variants of ®,  v'Atkin, ... ? Theta functions? 7

Goals of this talk
e Generalize &, using the geometry of
e Briefly talk about complexity bounds and computing isogenies.

e Present the , its performance and applications.

7/23



Geometric interpretation of ¢, (1)

It is easier to work over C.

e 7 is the upper half plane {Im(7) > 0}. Action of SL»(Z) on H1:

a b ar + b
T = :
c d ct+d
Aj = SLy(Z)\H; is the moduli space of elliptic curves. It is an algebraic variety
defined over Q. We view the j-invariant as a coordinate on Aj.

e Let M%(¢) C SLy(Z) be the subgroup of matrices such that b =0 mod /. It has
index £+ 1 in SLo(Z).
The quotient Ay (¢) = F2(¢)\H; is the moduli space of pairs (E, K) where K C E
is the kernel of an f-isogeny. It is a more complicated curve than Aj.
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Geometric interpretation of ¢, (2)

We have Ai(f) — Ay, both (¢ + 1)-to-one:
Al(f) — Az I'O(E)\Hl — SLQ(Z)\H]_
“Domain” map (E,K)— E T T
“Codomain” map (E,K)— E/K T 7/L.

Geometric interpretation

®, is an equation for the image in A; x A; of the joint map
.A1(€) —- A1 x A
(E,K) — (E E/K),

using the j-invariant as a coordinate on Aj.

For every 7 € H1, ' '
ofi(r)y,v)= I (v -iG).
YEMO(L\I'(1)
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Modular polynomials for abelian surfaces (1)

e A is the moduli space of .
Ab is an algebraic variety defined over Q of dimension 3, consisting of
of genus 2 curves (dense open) and E; x E; (dimension 2 subvariety).

e The J1,J2,J3 are convenient coordinates on As.
e Ax(¢) is the moduli space of pairs (A, K) where K is the kernel of an (¢, ¢)-isogeny,
i.e. K C A[f] is isomorphic to (Z/¢Z)? and isotropic for the Weil pairing.

Modular polynomials for abelian surfaces
The W, 1, V2, W3 are equations for the image of

Ax(0) — Az x Ay
(A K) = (AA/K)
using the lgusa invariants as coordinates on As.
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Modular polynomials for abelian surfaces (2)

The image of A»(¢) is a dimension 3 subvariety in a dimension 6 ambient space, so has
several possible sets of equations.
Choose the polynomials Wy, such that Wy, € Q(Xy, X2, X3)[Y] and

Ve (j1(A), 2(A), j3(A), i (A/K) ) =0,

. v . . : . .
R(AK) = 55 ((A). 2(A), 5(A), i1 (A/K)),  and same for js

Note
e Computing the isogenous abelian surfaces is easy (no Grobner bases!)
e Convenient as in the case of ®y.

e Can play the same game with any moduli space of abelian varieties: any
dimension g, real multiplication, level structures, etc.
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State of the talk

dim 1 dim 2 dim g
Definition of ®, v v Broker-Lauter '09, ... V' K.'22
Complexity bounds v

Evaluating ®,(j(E), Y) v
Isogenies without torsion input v
Point counting v

More compact variants of ®,  v'Atkin, ... ? Theta functions? 77
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Complexity bounds

Recall: Wy, € Q(Xq, X2, X3)[Y] for 1 < k < 3.
Theorem (K. '22)

e The degree of W, in each variable is O(¢3). Tight explicit bounds.
e h(V,,) = O(logl). Explicit bounds (huge, not tight).

A general theorem applies to modular polynomials on any PEL Shimura variety.

Corollary
e The size of Wy as a 4-variable fraction is O(¢*° log ¢). [Note: 410 MB for ¢ = 3]

o If ji,j2,/3 € Q, the size of Wy i(j1,j2,j3, Y) € Q[Y] is O(¢°(H + log())
where H = max{h(j1), h(j2), h(j3)}

We need an algorithm to at (j1,/2,/3) directly!
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Computing isogenies

Theorem (K., Page, Robert)
e / prime, k a field of char. 0 or > 8/ + 7.
e A A’ Jacobians of genus 2 curves over k that are (¢, ¢)-isogenous.

e Assume that the 3 x 3 matrix (8X;w€,k),~ . evaluated at the lgusa invariants
of A, A" is invertible. This is true generically.

Then, given A, A" and the above matrix, one can compute for
the (¢, £)-isogeny
p: A= A

in O(¢) operations in k (quasi-linear time).

One can then compute ker(y) using polynomial arithmetic (resultants...)
The evaluation algorithm should also evaluate the derivatives of W ..
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State of the talk

dim 1 dim 2 dim g
Definition of &, v v’ Broker—Lauter '09, ... VK. '22
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Point counting v
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The evaluation algorithm




Analytic formula

Recall: for 7 € H;,
o(in) = [T (v-iGm):
YETO(£)\ SL2(2)
Similar formula in dimension 2:
o Hy = {7 € Matax2(C) : 7 symmetric, Im 7 pos. def.}: Siegel upper half space.
e The symplectic group Sps(Z) acts on Hp: in block notation,

(i Z) .7 = (ar + b)(cT + d) L.

e Subgroup M°(¢) C Sp,(Z) defined by b = 0 mod ¢, with index ¢3 + (% 4+ ¢ + 1.
For instance: for 7 € Ho,
Veali(r)io()is(r), V) = T (Y =alm).

YETO(£)\ Spy(Z)
16 /23



The evaluation algorithm

Let j1, /2, /3 € Q of height H be given.

1. Find 7 € H» with these Igusa invariants (a ) at

2. Enumerate the matrices %77 and compute their lgusa invariants.

3. Compute the modular polynomials in C[Y] using the analytic formula.
4

. Recognize each coefficient as a

e This algorithm has been implemented in C using the libraries FLINT /Arb.

e We use throughout to ensure correctness. In step 4, we can

actually get instead of rational numbers.
e In step 1, we use the AGM method (Dupont '06) with some improvements.

e Step 2 dominates the algorithm and relies on . stay tuned.
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Theorem (K.)
We can evaluate the Siegel modular polynomials of level ¢ and their derivatives at

1. a generic point (ji,j2,j3) € Q3 of height at most H in time O(£3H? + (°H),
2. a generic point (j1,j2,/3) € Fg for p prime in time 5(63 log? p + % log p).
This is .
“Generic’ means that the algorithm will fail on a closed dimension 2 subvariety of A,

(e.g. lgusa invariants not defined...)
Proof of 2.: lift to Q and apply 1.! To handle IF;, we extend 1. to number fields.
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Practical timings

Time to evaluate Wy (j1,/2,/3, Y) at (ji,j2,/3) = random 3-digit rational numbers:

4 2 3 5 7 11 13 17
Time (s) 1.3 51 97 1200 40000 1.6-10° 1.1-10°
0.002/%log®(¢)loglog(¢) - - 62 1200 43000 1.5-10° 1.1-10°

Using related methods, we computed a Jacobians of genus 2 curves over QQ linked by
isogenies of large degree, e.g. (197,19, 19) or (31,31), in roughly 1h (van Bommel,
Costa, Chidambaram, K. '24).
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Consequences on point counting

Results

o If Ais a p.p. abelian surface over F, with , then we
compute #A(Fp) in heuristic time O(log” p). Improves on Schoof'’s method
in O(log® p) (Gaudry-Schost '12)

e If A/Q is fixed, then we can compute #A(F,) for several primes p (in fact
Q(H log p) of them) in O(log® p).

e If A/F, has by Q(+/5) or another small real quadratic field,
then we compute #A(Fp) in time O(log” p) as in the dimension 1 case.

| still need an to (hopefully) establish a new point-counting record.
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Theta functions

Recall: in the evaluation algorithm, we get matrices 71,...,7, € Ho. We need to
in C at high precision N, i.e. up to an error of < 2N

We do this in O(M(N)log N) using theta functions.
Definition
Fix theta characteristics a, b € {0,1}8. Then

Oap(r)= > exp(in(n"7n+ n’b)).
nEZE+3

e They are 2?8 analytic functions on He (16 for g =2.)

e Coordinates on Ag, e.g. the lgusa invariants, can be expressed as rational
fractions in terms of theta functions.
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Main theorem on theta functions

Theorem (Elkies, K., in preparation)

Given g > 1, N > 0, and given 7 € H, and z € C& that are suitably reduced, one
can evaluate 6, p(z,7) for all characteristics (a, b) to precision N in

0(20(&log&) M(N) log N), in 7 and z.

o Implemented in FLINT 3.1: https://flintlib.org/doc/acb_theta.html
e The “naive” algorithm (sum the exponential series) is quasi-linear.

e Earlier works (Dupont '06, Labrande—Thomé '14) are specific to small g and
tricky to run in interval arithmetic. This new algorithm is ~10x faster for g = 2.

The timings above were with Dupont'’s algorithm.
e When evaluating modular polynomials, we add a (negligible) reduction step.
e For general g, how do we compute 7 in the first place?
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https://flintlib.org/doc/acb_theta.html

Thank you for listening!
Any questions?

dim 1 dim 2 dim g
Definition of &, v v’ Broker—Lauter '09, ... VK. '22
Complexity bounds v VK. 22 VK. 22
Evaluating ®,(j(E), Y) v VK. 27 7 partial
Isogenies without torsion input v v'K., Page, Robert '27 ? dim 37
Point counting v K. '2? ? RM?
More compact variants of ®,  v'Atkin, ... ? Theta functions? 7

23/23



	Higher dimensions
	The evaluation algorithm
	Theta functions

