Modular polynomials for abelian surfaces and related algorithms

Jean Kieffer (CNRS) KULB seminar, Leuven, May 17, 2024

Classical modular polynomials

Fix $\ell \geq 1$ prime. The classical modular polynomial of level ℓ

$$\Phi_{\ell} \in \mathbb{Z}[X, Y]$$

satisfies: if k is a field of char. $\neq \ell$, and E, E' are elliptic curves over k, then

$$\Phi_{\ell}(j(E), j(E')) = 0 \iff E \text{ and } E' \text{ are } \ell\text{-isogenous over } \overline{k}.$$

Example

$$\Phi_2(X,Y) = X^3 + Y^3 - X^2Y^2 + 1488X^2Y + 1488XY^2 - 162000X^2 - 162000Y^2 + 40773375XY + 8748000000X + 8748000000Y - 1574640000000000.$$

Used to navigate isogeny graphs and compute isogenies.

2-isogeny graph of supersingular elliptic curves over \mathbb{F}_{p^2} :

• Starting point: *E*

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say
- Solve $\Phi_2(j(E_0), Y)/(Y j(E)) = 0$: find 2 roots $j(E_{00}), j(E_{01})$

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say
- Solve $\Phi_2(j(E_0), Y)/(Y j(E)) = 0$: find 2 roots $j(E_{00}), j(E_{01})$
- Pick path to E_{01} , say

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say
- Solve $\Phi_2(j(E_0), Y)/(Y j(E)) = 0$: find 2 roots $j(E_{00}), j(E_{01})$
- Pick path to E_{01} , say
- Continue!

Computing isogenies

Theorem (Elkies '95, Bostan-Morain-Salvy-Schost '08)

- ℓ prime, k a field of char. 0 or $> 4\ell + 1$.
- E, E' elliptic curves over k that are ℓ -isogenous.
- Assume $\partial_X \Phi_\ell(j(E), j(E')) \neq 0$, i.e. j(E') is a simple root of $\Phi_\ell(j(E), Y)$. This is true generically.

Then, given E, E' and $\partial_X \Phi_\ell(j(E), j(E'))$, one can compute polynomial formulas for the ℓ -isogeny

$$\varphi: E \to E',$$

in particular an equation of $\ker \varphi$, in $\widetilde{O}(\ell)$ operations in k (quasi-linear time.)

Complexity bounds

The height of $F \in \mathbb{Q}(X_1, \ldots, X_n)$ is

 $h(F) = \log(\max |c|)$, where c runs through the coefficients of F.

Complexity bounds for Φ_{ℓ}

- Φ_{ℓ} has degree $\ell+1$ in both variables X and Y.
- $h(\Phi_{\ell}) \sim 6\ell \log \ell$ [Cohen '84]. Storing Φ_{ℓ} costs $O(\ell^3 \log \ell)$ space.
- Φ_{ℓ} can be computed in quasi-linear time $\widetilde{O}(\ell^3)$ [Enge '09, Bröker–Lauter–Sutherland '12, Sutherland '13].

In summary:

- Φ_{ℓ} allow us to manipulate isogenies without torsion input.
- Cheaper than computing (subgroups of) $E[\ell]$ from scratch: e.g. the SEA algorithm (Schoof–Elkies–Atkin '90s) computes $\#E(\mathbb{F}_q)$ in time $\widetilde{O}(\log^4 q)$.

State of the art

	dim 1	dim 2	dim g
Definition of Φ_ℓ	√		
Complexity bounds	\checkmark		
Evaluating $\Phi_\ell(j(E), Y)$	\checkmark		
Isogenies without torsion input	\checkmark		
Point counting	\checkmark		
More compact variants of Φ_ℓ	√Atkin,		

Higher dimensions

State of the art

	dim 1	dim 2	dim g
Definition of Φ_ℓ	√	√ Bröker–Lauter '09,	
Complexity bounds	\checkmark		
Evaluating $\Phi_\ell(j(E), Y)$	\checkmark		
Isogenies without torsion input	\checkmark		
Point counting	\checkmark		
More compact variants of Φ_ℓ	√Atkin,		

State of the art

	dim 1	dim 2	$\dim g$
Definition of Φ_ℓ	✓	√ Bröker–Lauter '09,	√K. '22
Complexity bounds	\checkmark	√K. '22	√K. '22
Evaluating $\Phi_{\ell}(j(E), Y)$	\checkmark	√K. '2?	? partial
Isogenies without torsion input	\checkmark	√K., Page, Robert '2?	? dim 3?
Point counting	\checkmark	√K. '2?	? RM?
More compact variants of Φ_ℓ	√Atkin,	? Theta functions?	??

Goals of this talk

- Generalize Φ_{ℓ} using the geometry of moduli spaces.
- Briefly talk about complexity bounds and computing isogenies.
- Present the evaluation algorithm, its performance and applications.

Geometric interpretation of Φ_{ℓ} (1)

It is easier to work over \mathbb{C} .

• \mathcal{H}_1 is the upper half plane $\{\text{Im}(\tau) > 0\}$. Action of $\text{SL}_2(\mathbb{Z})$ on \mathcal{H}_1 :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = \frac{a\tau + b}{c\tau + d} \,.$$

 $A_1 = SL_2(\mathbb{Z}) \setminus \mathcal{H}_1$ is the moduli space of elliptic curves. It is an algebraic variety defined over \mathbb{Q} . We view the *j*-invariant as a coordinate on A_1 .

• Let $\Gamma^0(\ell) \subset SL_2(\mathbb{Z})$ be the subgroup of matrices such that $b = 0 \mod \ell$. It has index $\ell + 1$ in $SL_2(\mathbb{Z})$.

The quotient $\mathcal{A}_1(\ell) = \Gamma^0(\ell) \setminus \mathcal{H}_1$ is the moduli space of pairs (E, K) where $K \subset E$ is the kernel of an ℓ -isogeny. It is a more complicated curve than \mathcal{A}_1 .

Geometric interpretation of Φ_{ℓ} (2)

We have two maps $A_1(\ell) \to A_1$, both $(\ell + 1)$ -to-one:

Geometric interpretation

 Φ_ℓ is an equation for the image in $\mathcal{A}_1 \times \mathcal{A}_1$ of the joint map

$$A_1(\ell) \rightarrow A_1 \times A_1$$

 $(E,K) \mapsto (E,E/K),$

using the *j*-invariant as a coordinate on A_1 .

For every
$$au\in\mathcal{H}_1$$
,

$$\Phi_{\ell}(j(\tau), Y) = \prod_{\gamma \in \Gamma^{0}(\ell) \setminus \Gamma(1)} \left(Y - j(\frac{1}{\ell} \gamma \tau) \right).$$

Modular polynomials for abelian surfaces (1)

- A_2 is the moduli space of principally polarized abelian surfaces. A_2 is an algebraic variety defined over $\mathbb Q$ of dimension 3, consisting of Jacobians of genus 2 curves (dense open) and products $E_1 \times E_2$ (dimension 2 subvariety).
- The Igusa invariants j_1, j_2, j_3 are convenient coordinates on A_2 .
- $A_2(\ell)$ is the moduli space of pairs (A, K) where K is the kernel of an (ℓ, ℓ) -isogeny, i.e. $K \subset A[\ell]$ is isomorphic to $(\mathbb{Z}/\ell\mathbb{Z})^2$ and isotropic for the Weil pairing.

Modular polynomials for abelian surfaces

The Siegel modular polynomials $\Psi_{\ell,1}, \Psi_{\ell,2}, \Psi_{\ell,3}$ are equations for the image of

$$A_2(\ell) \rightarrow A_2 \times A_2$$

 $(A, K) \mapsto (A, A/K)$

using the Igusa invariants as coordinates on A_2 .

Modular polynomials for abelian surfaces (2)

The image of $A_2(\ell)$ is a dimension 3 subvariety in a dimension 6 ambient space, so has several possible sets of equations.

Choose the polynomials $\Psi_{\ell,k}$ such that $\Psi_{\ell,k} \in \mathbb{Q}(X_1,X_2,X_3)[Y]$ and

$$\begin{split} & \Psi_{\ell,1}\Big(j_1(A), j_2(A), j_3(A), j_1(A/K)\Big) = 0, \\ & j_2(A/K) = \frac{\Psi_{\ell,2}}{\partial_Y \Psi_{\ell,1}}\Big(j_1(A), j_2(A), j_3(A), j_1(A/K)\Big), \quad \text{and same for } j_3. \end{split}$$

Note

- Computing the isogenous abelian surfaces is easy (no Gröbner bases!)
- Convenient analytic formulas as in the case of Φ_{ℓ} .
- Can play the same game with any moduli space of abelian varieties: any dimension g, real multiplication, level structures, etc. PEL Shimura varieties.

State of the talk

	dim 1	dim 2	$\dim g$
Definition of Φ_ℓ	√	√ Bröker–Lauter '09,	√K. '22
Complexity bounds	\checkmark		
Evaluating $\Phi_\ell(j(E), Y)$	\checkmark		
Isogenies without torsion input	\checkmark		
Point counting	\checkmark		
More compact variants of Φ_ℓ	√Atkin,	? Theta functions?	??

Complexity bounds

Recall: $\Psi_{\ell,k} \in \mathbb{Q}(X_1, X_2, X_3)[Y]$ for $1 \leq k \leq 3$.

Theorem (K. '22)

- The degree of $\Psi_{\ell,k}$ in each variable is $O(\ell^3)$. Tight explicit bounds.
- $h(\Psi_{\ell,k}) = O(\ell^3 \log \ell)$. Explicit bounds (huge, not tight).

A general theorem applies to modular polynomials on any PEL Shimura variety.

Corollary

- The size of $\Psi_{\ell,k}$ as a 4-variable fraction is $O(\ell^{15} \log \ell)$. [Note: 410 MB for $\ell=3$]
- If $j_1, j_2, j_3 \in \mathbb{Q}$, the size of $\Psi_{\ell,k}(j_1, j_2, j_3, Y) \in \mathbb{Q}[Y]$ is $O(\ell^6(H + \log \ell))$ where $H = \max\{h(j_1), h(j_2), h(j_3)\}$.

We need an algorithm to evaluate the modular polynomials at (j_1, j_2, j_3) directly!

Computing isogenies

Theorem (K., Page, Robert)

- ℓ prime, k a field of char. 0 or $> 8\ell + 7$.
- A, A' Jacobians of genus 2 curves over k that are (ℓ, ℓ) -isogenous.
- Assume that the 3×3 matrix $(\partial_{X_i} \Psi_{\ell,k})_{i,k}$ evaluated at the Igusa invariants of A, A' is invertible. This is true generically.

Then, given A,A' and the above matrix, one can compute polynomial formulas for the (ℓ,ℓ) -isogeny

$$\varphi: A \to A'$$

in $\widetilde{O}(\ell)$ operations in k (quasi-linear time).

One can then compute $ker(\varphi)$ using polynomial arithmetic (resultants...)

The evaluation algorithm should also evaluate the derivatives of $\Psi_{\ell,k}$.

State of the talk

	dim 1	dim 2	$\dim g$
Definition of Φ_ℓ	√	√ Bröker–Lauter '09,	√K. '22
Complexity bounds	\checkmark	√K. '22	√K. '22
Evaluating $\Phi_\ell(j(E), Y)$	\checkmark		
Isogenies without torsion input	\checkmark	√K., Page, Robert '2?	? dim 3?
Point counting	\checkmark		
More compact variants of Φ_ℓ	√Atkin,	? Theta functions?	??

The evaluation algorithm

Analytic formula

Recall: for $\tau \in \mathcal{H}_1$,

$$\Phi_{\ell}(j(\tau),Y) = \prod_{\gamma \in \Gamma^0(\ell) \setminus \operatorname{SL}_2(\mathbb{Z})} \left(Y - j(\tfrac{1}{\ell} \gamma \tau) \right).$$

Similar formula in dimension 2:

- $\mathcal{H}_2 = \{ \tau \in \mathsf{Mat}_{2 \times 2}(\mathbb{C}) : \tau \text{ symmetric, } \mathsf{Im} \tau \text{ pos. def.} \}$: Siegel upper half space.
- The symplectic group $\operatorname{Sp}_4(\mathbb{Z})$ acts on \mathcal{H}_2 : in block notation,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau = (a\tau + b)(c\tau + d)^{-1}.$$

• Subgroup $\Gamma^0(\ell) \subset \operatorname{Sp}_4(\mathbb{Z})$ defined by $b = 0 \mod \ell$, with index $\ell^3 + \ell^2 + \ell + 1$.

For instance: for $\tau \in \mathcal{H}_2$,

$$\Psi_{\ell,1}(j_1(\tau),j_2(\tau),j_3(\tau),Y) = \prod_{\gamma \in \mathsf{\Gamma}^0(\ell) \backslash \, \mathsf{Sp}_4(\mathbb{Z})} \Big(Y - j_1(\tfrac{1}{\ell} \gamma \tau) \Big).$$

Outline

The evaluation algorithm

Let $j_1, j_2, j_3 \in \mathbb{Q}$ of height H be given.

- 1. Find $\tau \in \mathcal{H}_2$ with these Igusa invariants (a period matrix) at high precision.
- 2. Enumerate the matrices $\frac{1}{\ell}\gamma\tau$ and compute their Igusa invariants.
- 3. Compute the modular polynomials in $\mathbb{C}[Y]$ using the analytic formula.
- 4. Recognize each coefficient as a rational number.
- This algorithm has been implemented in C using the libraries FLINT/Arb.
- We use interval arithmetic throughout to ensure correctness. In step 4, we can actually get integers instead of rational numbers.
- In step 1, we use the AGM method (Dupont '06) with some improvements.
- Step 2 dominates the algorithm and relies on theta functions: stay tuned.

Main result

Theorem (K.)

We can evaluate the Siegel modular polynomials of level ℓ and their derivatives at

- 1. a generic point $(j_1, j_2, j_3) \in \mathbb{Q}^3$ of height at most H in time $\widetilde{O}(\ell^3 H^2 + \ell^6 H)$,
- 2. a generic point $(j_1, j_2, j_3) \in \mathbb{F}_p^3$ for p prime in time $\widetilde{O}(\ell^3 \log^2 p + \ell^6 \log p)$.

This is almost quasi-linear time.

"Generic" means that the algorithm will fail on a closed dimension 2 subvariety of \mathcal{A}_2 (e.g. Igusa invariants not defined...)

Proof of 2.: lift to \mathbb{Q} and apply 1.! To handle \mathbb{F}_q , we extend 1. to number fields.

Practical timings

Time to evaluate $\Psi_{\ell,k}(j_1,j_2,j_3,Y)$ at $(j_1,j_2,j_3)=$ random 3-digit rational numbers:

ℓ	2	3	5	7	11	13	17
Time (s)	1.3	5.1	97	1200	40000	$1.6 \cdot 10^5$	$1.1 \cdot 10^6$
$0.002\ell^6\log^3(\ell)\log\log(\ell)$	-	-	62	1200	43000	$1.5 \cdot 10^5$	$1.1\cdot 10^6$

Using related methods, we computed a Jacobians of genus 2 curves over \mathbb{Q} linked by isogenies of large degree, e.g. $(19^2, 19, 19)$ or (31, 31), in roughly 1h (van Bommel, Costa, Chidambaram, K. '24).

Consequences on point counting

Results

- If A is a p.p. abelian surface over \mathbb{F}_p with small Igusa invariants, then we compute $\#A(\mathcal{F}_p)$ in heuristic time $\widetilde{O}(\log^7 p)$. Improves on Schoof's method in $\widetilde{O}(\log^8 p)$ (Gaudry–Schost '12)
- If A/\mathbb{Q} is fixed, then we can compute $\#A(\mathbb{F}_p)$ for several primes p (in fact $\Omega(H\log p)$ of them) in average time $\widetilde{O}(\log^6 p)$.
- If A/\mathbb{F}_p has real multiplication by $\mathbb{Q}(\sqrt{5})$ or another small real quadratic field, then we compute $\#A(\mathbb{F}_p)$ in time $\widetilde{O}(\log^4 p)$ as in the dimension 1 case.

I still need an implementation to (hopefully) establish a new point-counting record.

Theta functions

Theta functions

Recall: in the evaluation algorithm, we get matrices $\tau_1, \ldots, \tau_n \in \mathcal{H}_2$. We need to evaluate their Igusa invariants in $\mathbb C$ at high precision N, i.e. up to an error of $\leq 2^{-N}$.

We do this in quasi-linear time $O(\mathcal{M}(N) \log N)$ using theta functions.

Definition

Fix theta characteristics $a, b \in \{0, 1\}^g$. Then

$$\theta_{a,b}(\tau) = \sum_{n \in \mathbb{Z}^g + \frac{a}{2}} \exp(i\pi(n^T \tau n + n^T b)).$$

- They are 2^{2g} analytic functions on \mathcal{H}_g (16 for g=2.)
- Coordinates on A_g , e.g. the Igusa invariants, can be expressed as rational fractions in terms of theta functions.

Main theorem on theta functions

Theorem (Elkies, K., in preparation)

Given $g \geq 1$, $N \geq 0$, and given $\tau \in \mathcal{H}_g$ and $z \in \mathbb{C}^g$ that are suitably reduced, one can evaluate $\theta_{a,b}(z,\tau)$ for all characteristics (a,b) to precision N in quasi-linear time $O(2^{O(g \log g)}\mathcal{M}(N) \log N)$, uniformly in τ and z.

- Implemented in FLINT 3.1: https://flintlib.org/doc/acb_theta.html
- The "naive" algorithm (sum the exponential series) is not quasi-linear.
- Earlier works (Dupont '06, Labrande–Thomé '14) are specific to small g and tricky to run in interval arithmetic. This new algorithm is $\sim 10 \times$ faster for g=2. The timings above were with Dupont's algorithm.
- When evaluating modular polynomials, we add a (negligible) reduction step.
- For general g, how do we compute τ in the first place?

Thank you for listening! Any questions?

	dim 1	dim 2	dim g
Definition of Φ_ℓ	√	√ Bröker–Lauter '09,	√K. '22
Complexity bounds	\checkmark	√K. '22	√K. '22
Evaluating $\Phi_{\ell}(j(E), Y)$	\checkmark	√K. '2?	? partial
Isogenies without torsion input	\checkmark	√K., Page, Robert '2?	? dim 3?
Point counting	\checkmark	√K. '2?	? RM?
More compact variants of Φ_ℓ	√Atkin,	? Theta functions?	??