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Classical modular polynomials

Fix £ > 1 prime. The of level ¢ is
o, € Z[X, Y]
If k is a field of char. # ¢, and E, E’ are elliptic curves over k, then
®,((E),j(E')) =0 < E and E’ are over k.

Example

(X, Y) = X3+ Y3 — X?Y? +1488X?Y 4 1488XY? — 162000X> — 162000 Y?>
+ 40773375XY + 8748000000X + 8748000000Y — 157464000000000.
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Navigating isogeny graphs

Supersingular isogeny graph over [, £ = 2:
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Navigating isogeny graphs
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Remarks on modular polynomials

e As opposed to Vélu's formulas, no kernel information as input.
e Efficient algorithm in O(£?) if the kernel /image of isogenies are unknown.

e Rich literature on computing modular polynomials in relation with point counting.
See Sabrina and Damien’s ANTS paper [KR24].

What about higher dimensions?
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Genus 2 modular polynomials: setup

To generalize ®;, we need:

e A family of abelian varieties: for instance p.p. abelian surfaces, either Jac(C)
where C has genus 2 or E; x E;.

e [sogenies between them: for instance (/, ()-isogenies where £ is a fixed prime. This
means ker(¢) C A[¢] is an isotropic (Z/(Z)>.

e New invariants to replace the j-invariant: for instance the Igusa invariants ji, j2, j3.
(Not defined for £y x Ej.)
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Genus 2 modular polynomials: properties

Given PPASs A and A over a field k with lgusa invariants (1, j2,3) and (ji, j3,j3), we
want some algebraic equation which is satisfied by these invariants exactly when A and
" are (¢, ¢)-isogenous.

We actually need three equations, one for each invariant. Write them in the form:

wﬂ,l(j17j27j37.j{) = 07 i.e. ./]/_ is a root of w@,l(jl7.j2>.j37x)

b= Ve (15425 J3: 1)
2 — aw v J2+9J35J1

. V3
J:/’; 8 \U (./17./25./37./1)

Assuming only A is known, we solve for ji, then determine j; and j;.
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Genus 2 modular polynomials: definition

Definition/Proposition
The (of Siegel type, in lgusa invariants, of level ¢) are
the unique set of three rational fractions

V1, Vo, Vo3 € Q(Ur, fo, 3)[X]

satisfying the property from the previous slide. See e.g. [BL09].

In principle, everything we can do with classical modular polynomials is also possible
with this generalized version.

(There isn't enough space to write down W5 ; on this slide, unfortunately...)
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Genus 2 modular polynomials: remarks

Major drawback: genus 2 modular polynomials are huge.

e Degree in each of the 4 variables is O(¢3)

e Size of coefficients is O(¢£3log (), so total size O(/*°log /) [K22].
Vs 1 is 280 kB, W31 is 68 MB.

Cannot reasonably hope to write them down for ¢ > 7.
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Genus 2 modular polynomials: remarks

Major drawback: genus 2 modular polynomials are

e Degree in each of the 4 variables is O(£3)

e Size of coefficients is O(¢3log ), so [K22].
Vs 1 is 280 kB, W31 is 68 MB.

Cannot reasonably hope to write them down for £ > 7.

More reasonable task
Given j1, jo, j3 € k, the polynomials W x(j1, 2,3, X) for 1 < k < 3.
e This is what we need to navigate isogeny graphs.
° L if ji,j0,j3 € Q, output size is £°(log ¢ + size of ji, j2, j3).
If j1,)2,/3 € Fq, output size is Aloggq.
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Theorem (K. '247)
Given primes p, ¢ and a generic tuple (j1,/2,/3) € Fg, one can evaluate
Wy (1,42, j3, X) € Fp[X] for 1 < k < 3 in time O(¢° log p).

e Not quasi-linear time, but still the to navigate genus 2 isogeny

graphs without torsion information.

e The algorithm also works over Q (in quasi-linear time!) and other number
fields/finite fields.
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Related example

Taken from [vBCCK23].
Over Q, consider the genus 2 curves

Criy?+ (x+1)y = x° + 23x* — 48x> + 85x2 — 69x -+ 45.
G y? 4 xy = —x5 4 2573x* + 92187x> + 2161654285x> + 406259311249x + 93951289752862.
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Related example

Taken from [vBCCK23].
Over Q, consider the genus 2 curves

Criy?+ (x+1)y = x° + 23x* — 48x> + 85x2 — 69x -+ 45.
G y? 4 xy = —x5 4 2573x* + 92187x> + 2161654285x> + 406259311249x + 93951289752862.

Fact
There exists a (31, 31)-isogeny ¢ : Jac(Cy) — Jac((2) defined over Q.

The algorithm we used to construct C, directly computes rational roots of modular
polynomials over Q in time O(¢3). Time: roughly 1h.
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The evaluation algorithm: preliminaries

We describe the algorithm for elliptic curves, as in [Eng09].

Reminders on elliptic curves over C:
e They are complex tori of the form E(7) = C/(Z + 7Z) where 7 € H; (i.e. 7€ C
and Im(7) > 0).
e The period 7 is unique up to the action of SL2(Z) on H;.
e The j-invariant of E(7) is given by an analytic function j : H; — C.

e Given a prime £ > 1 and 7 € H;, one can easily enumerate the elliptic curves that
are (-isogenous to E(7): they correspond to sublattices of index ¢ in Z + 77Z.
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The evaluation algorithm: outline

Given j(E) € Fp,, we evaluate ®(j(E), X) as follows.
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p 1 ) T44+1 p g

4. Compute j(71), ---aj(7é+1)'

12/16



The evaluation algorithm: outline

Given j(E) € Fp,, we evaluate ®(j(E), X) as follows.

1.

Lift j(E) to j € Z. We will evaluate ®,(j, X), then reduce it mod p.

2. Compute 7 € H; such that j(7) =]
3.
4
5

Enumerate periods 7/, ..., 7)., of all elliptic curves that are ¢-isogenous to E(T).
p 1 ) T44+1 p g

. Compute j(71), -+, j(7741)-
. Compute &y(j, X) = &,(j(7), X) = [T25 (X — j(r})) in C[X].
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The evaluation algorithm: outline

Given j(E) € Fp,, we evaluate ®(j(E), X) as follows.

1.

Lift j(E) to j € Z. We will evaluate ®,(j, X), then reduce it mod p.

. Compute 7 € H; such that j(7) =]
. Enumerate periods 71, ... ,Té+1 of all elliptic curves that are (-isogenous to E(T).

2
3
4.
5
6

Compute j(77), - .., J'(Té+1)'

. Compute &,(j, X) = ®(j(r), X) = I3 (X = j(74)) in C[X].

. Recognize each coefficient of CDZ(I, X) as an integer.
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The evaluation algorithm: outline

Given j(E) € Fp,, we evaluate ®(j(E), X) as follows.

1.

B R R

Lift j(E) to j € Z. We will evaluate ®,(j, X), then reduce it mod p.

Compute 7 € H; such that j(7) =]

Enumerate periods 71, . .. ,Té+1 of all elliptic curves that are (-isogenous to E(T).
Compute j(71), - -+, j(Tj41)-

Compute ®y(j, X) = ,(j(7), X) = [T5 (X — j(7})) in C[X].

Recognize each coefficient of CDZ(I, X) as an integer.

Output the reduced polynomial modulo p.
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The evaluation algorithm: outline

Given j(E) € Fp,, we evaluate ®(j(E), X) as follows.
1. Lift j(E) to j € Z. We will evaluate ®,(j, X), then reduce it mod p.

Compute 7 € H; such that j(7) =]
Enumerate periods 71, . .. ,Té+1 of all elliptic curves that are (-isogenous to E(T).
Compute j(77), ...,j(TéH).

Compute ®,(j, X) = &,(j(7), X) = [T, (X — j(74)) in CIX].

Recognize each coefficient of CDZ(I, X) as an integer.

B R R

Output the reduced polynomial modulo p.

In steps 2 to 5, we use interval arithmetic and a high precision N = ©(¢log ¢ + ¢ log p)
digits to get a unique and provably correct result in step 6.

We must compute periods and j-invariants in quasi-linear time in N.

12/16



Evaluating the j-invariant

To efficiently evaluate j(7), we write it in terms of theta functions.
Set g = exp(miT), and

Boo(T Z q"

nez
n n2
Box( )=Z(—1) q",
nez
b10(7) =Y g™
nez

These series converge fast. Sum enough terms, then

(080 + 65, + 63)°
(B00b01610)®

Still not quasi-linear in the required precision...

Jj(r) =32
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Evaluating theta functions

Theorem (Elkies, K., in preparation)
Given N > 0, and given 7 € H; that is suitably reduced, one can evaluate 0go(7),
001(7), 610(7) to precision N in quasi-linear time O(M(N)log N), uniformly in 7.

e Implemented in [FLINT] 3.1: https://flintlib.org/doc/acb_theta.html.
(A new, faster version is in preparation.)
e Applies to theta functions in any genus g, still in quasi-linear time.

e Earlier works [Dupl1], [LT14] are specific to small g, tricky to run in interval

arithmetic, and less efficient.

e When evaluating ®,, we add a (negligible) reduction step to move 77, .. .,Té+1 to

the fundamental domain under SL»(Z).
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https://flintlib.org/doc/acb_theta.html

Genus 2 translation

To evaluate Wy x(j1, /2,3, X) for 1 < k < 3 instead of ®,(j(E), X):
e Same general approach (complex uniformization and interval arithmetic)
e Replace SLy(Z) acting on H; by Sp,(Z) acting on Hy: period matrices
e Use genus 2 theta functions

e Extra step to handle the denominator of modular equations W, , and make sure
we recognize integers.

One project | have: break the genus 2 point-counting records, SEA-style.
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Genus 2 translation

To evaluate Wy x(j1, /2,3, X) for 1 < k < 3 instead of ®,(j(E), X):
e Same general approach (complex uniformization and interval arithmetic)
e Replace SLy(Z) acting on H; by Sp,(Z) acting on Hy: period matrices

e Use genus 2 theta functions

e Extra step to handle the denominator of modular equations W, , and make sure
we recognize integers.

One project | have: break the genus 2 point-counting records, SEA-style.

Thank you!
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