Fast evaluation of genus 2 modular polynomials via theta functions

Jean Kieffer (CNRS Nancy) Leuven Isogeny Days 5, September 12, 2024

Classical modular polynomials

Fix $\ell \geq 1$ prime. The classical modular polynomial of level ℓ is

$$\Phi_{\ell} \in \mathbb{Z}[X, Y].$$

If k is a field of char. $\neq \ell$, and E, E' are elliptic curves over k, then

$$\Phi_\ell(j(E),j(E'))=0 \iff E \text{ and } E' \text{ are } \ell\text{-isogenous over } \overline{k}.$$

Example

$$\Phi_2(X,Y) = X^3 + Y^3 - X^2Y^2 + 1488X^2Y + 1488XY^2 - 162000X^2 - 162000Y^2 + 40773375XY + 8748000000X + 8748000000Y - 1574640000000000.$$

Supersingular isogeny graph over \mathbb{F}_{p^2} , $\ell=2$:

• Starting point: *E*

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say
- Solve $\Phi_2(j(E_0), Y)/(Y j(E)) = 0$: find 2 roots $j(E_{00}), j(E_{01})$

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say
- Solve $\Phi_2(j(E_0), Y)/(Y j(E)) = 0$: find 2 roots $j(E_{00}), j(E_{01})$
- Pick path to E_{01} , say

- Starting point: E
- Solve $\Phi_2(j(E), Y) = 0$ in \mathbb{F}_{p^2} : find 3 roots
- Pick path to E_0 , say
- Solve $\Phi_2(j(E_0), Y)/(Y j(E)) = 0$: find 2 roots $j(E_{00}), j(E_{01})$
- Pick path to E_{01} , say
- Continue!

Remarks on modular polynomials

- As opposed to Vélu's formulas, no kernel information as input.
- Efficient algorithm in $O(\ell^2)$ if the kernel/image of isogenies are unknown.
- Rich literature on computing modular polynomials in relation with point counting.
 See Sabrina and Damien's ANTS paper [KR24].

What about higher dimensions?

Genus 2 modular polynomials: setup

To generalize Φ_{ℓ} , we need:

- A family of abelian varieties: for instance p.p. abelian surfaces, either Jac(C) where C has genus 2 or $E_1 \times E_2$.
- Isogenies between them: for instance (ℓ,ℓ) -isogenies where ℓ is a fixed prime. This means $\ker(\varphi) \subset A[\ell]$ is an isotropic $(\mathbb{Z}/\ell\mathbb{Z})^2$.
- New invariants to replace the j-invariant: for instance the Igusa invariants j_1, j_2, j_3 . (Not defined for $E_1 \times E_2$.)

Genus 2 modular polynomials: properties

Given PPASs A and A' over a field k with Igusa invariants (j_1, j_2, j_3) and (j'_1, j'_2, j'_3) , we want some algebraic equation which is satisfied by these invariants exactly when A and A' are (ℓ, ℓ) -isogenous.

We actually need three equations, one for each invariant. Write them in the form:

$$\begin{split} \Psi_{\ell,1}(j_1,j_2,j_3,j_1') &= 0, & \text{i.e. } j_1' \text{ is a root of } \Psi_{\ell,1}(j_1,j_2,j_3,X) \\ j_2' &= \frac{\Psi_{\ell,2}}{\partial_X \Psi_{\ell,1}}(j_1,j_2,j_3,j_1'), \\ j_3' &= \frac{\Psi_{\ell,3}}{\partial_X \Psi_{\ell,2}}(j_1,j_2,j_3,j_1'). \end{split}$$

Assuming only A is known, we solve for j'_1 , then determine j'_2 and j'_3 .

Genus 2 modular polynomials: definition

Definition/Proposition

The genus 2 modular polynomials (of Siegel type, in Igusa invariants, of level ℓ) are the unique set of three rational fractions

$$\Psi_{\ell,1}, \Psi_{\ell,2}, \Psi_{\ell,3} \in \mathbb{Q}(J_1, J_2, J_3)[X]$$

satisfying the property from the previous slide. See e.g. [BL09].

In principle, everything we can do with classical modular polynomials is also possible with this generalized version.

(There isn't enough space to write down $\Psi_{2,1}$ on this slide, unfortunately...)

Genus 2 modular polynomials: remarks

Major drawback: genus 2 modular polynomials are huge.

- Degree in each of the 4 variables is $O(\ell^3)$
- Size of coefficients is $O(\ell^3 \log \ell)$, so total size $O(\ell^{15} \log \ell)$ [K22].

 $\Psi_{2,1}$ is 280 kB, $\Psi_{3,1}$ is 68 MB.

Cannot reasonably hope to write them down for $\ell > 7$.

Genus 2 modular polynomials: remarks

Major drawback: genus 2 modular polynomials are huge.

- Degree in each of the 4 variables is $O(\ell^3)$
- Size of coefficients is $O(\ell^3 \log \ell)$, so total size $O(\ell^{15} \log \ell)$ [K22].

 $\Psi_{2,1}$ is 280 kB, $\Psi_{3,1}$ is 68 MB.

Cannot reasonably hope to write them down for $\ell > 7$.

More reasonable task

Given $j_1, j_2, j_3 \in k$, evaluate the polynomials $\Psi_{\ell,k}(j_1, j_2, j_3, X)$ for $1 \leq k \leq 3$.

- This is what we need to navigate isogeny graphs.
- Smaller output: if $j_1, j_2, j_3 \in \mathbb{Q}$, output size is $\ell^6(\log \ell + \text{size of } j_1, j_2, j_3)$. If $j_1, j_2, j_3 \in \mathbb{F}_q$, output size is $\ell^3 \log q$.

Main result

Theorem (K. '24?)

Given primes p, ℓ and a generic tuple $(j_1, j_2, j_3) \in \mathbb{F}_p^3$, one can evaluate $\Psi_{\ell,k}(j_1, j_2, j_3, X) \in \mathbb{F}_p[X]$ for $1 \le k \le 3$ in time $\widetilde{O}(\ell^6 \log p)$.

- Not quasi-linear time, but still the most efficient way to navigate genus 2 isogeny graphs without torsion information.
- \bullet The algorithm also works over $\mathbb Q$ (in quasi-linear time!) and other number fields/finite fields.

Related example

Taken from [vBCCK23].

Over \mathbb{Q} , consider the genus 2 curves

$$C_1: y^2 + (x+1)y = x^5 + 23x^4 - 48x^3 + 85x^2 - 69x + 45.$$

$$C_2: y^2 + xy = -x^5 + 2573x^4 + 92187x^3 + 2161654285x^2 + 406259311249x + 93951289752862.$$

Related example

Taken from [vBCCK23].

Over \mathbb{Q} , consider the genus 2 curves

$$C_1: y^2 + (x+1)y = x^5 + 23x^4 - 48x^3 + 85x^2 - 69x + 45.$$

 $C_2: y^2 + xy = -x^5 + 2573x^4 + 92187x^3 + 2161654285x^2 + 406259311249x + 93951289752862.$

Fact

There exists a (31, 31)-isogeny $\varphi : \operatorname{Jac}(C_1) \to \operatorname{Jac}(C_2)$ defined over \mathbb{Q} .

The algorithm we used to construct C_2 directly computes rational roots of modular polynomials over \mathbb{Q} in time $\widetilde{O}(\ell^3)$. Time: roughly 1h.

The evaluation algorithm: preliminaries

We describe the algorithm for elliptic curves, as in [Eng09].

Reminders on elliptic curves over \mathbb{C} :

- They are complex tori of the form $E(\tau) = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ where $\tau \in \mathcal{H}_1$ (i.e. $\tau \in \mathbb{C}$ and $Im(\tau) > 0$).
- The period τ is unique up to the action of $SL_2(\mathbb{Z})$ on \mathcal{H}_1 .
- The *j*-invariant of $E(\tau)$ is given by an analytic function $j: \mathcal{H}_1 \to \mathbb{C}$.
- Given a prime $\ell > 1$ and $\tau \in \mathcal{H}_1$, one can easily enumerate the elliptic curves that are ℓ -isogenous to $E(\tau)$: they correspond to sublattices of index ℓ in $\mathbb{Z} + \tau \mathbb{Z}$.

Given $j(E) \in \mathbb{F}_p$, we evaluate $\Phi_{\ell}(j(E), X)$ as follows.

1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.
- 3. Enumerate periods $\tau'_1, \ldots, \tau'_{\ell+1}$ of all elliptic curves that are ℓ -isogenous to $E(\tau)$.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.
- 3. Enumerate periods $\tau'_1, \ldots, \tau'_{\ell+1}$ of all elliptic curves that are ℓ -isogenous to $E(\tau)$.
- 4. Compute $j(\tau'_1), ..., j(\tau'_{\ell+1})$.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.
- 3. Enumerate periods $\tau'_1, \ldots, \tau'_{\ell+1}$ of all elliptic curves that are ℓ -isogenous to $E(\tau)$.
- 4. Compute $j(\tau'_1), ..., j(\tau'_{\ell+1})$.
- 5. Compute $\Phi_{\ell}(\widetilde{j},X) = \Phi_{\ell}(j(\tau),X) = \prod_{k=1}^{\ell+1} (X-j(\tau_k'))$ in $\mathbb{C}[X]$.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.
- 3. Enumerate periods $\tau'_1, \ldots, \tau'_{\ell+1}$ of all elliptic curves that are ℓ -isogenous to $E(\tau)$.
- 4. Compute $j(\tau'_1), ..., j(\tau'_{\ell+1})$.
- 5. Compute $\Phi_{\ell}(\widetilde{j},X) = \Phi_{\ell}(j(\tau),X) = \prod_{k=1}^{\ell+1} (X j(\tau'_k))$ in $\mathbb{C}[X]$.
- 6. Recognize each coefficient of $\Phi_\ell(\widetilde{j},X)$ as an integer.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.
- 3. Enumerate periods $\tau_1', \dots, \tau_{\ell+1}'$ of all elliptic curves that are ℓ -isogenous to $E(\tau)$.
- 4. Compute $j(\tau'_1), ..., j(\tau'_{\ell+1})$.
- 5. Compute $\Phi_{\ell}(\widetilde{j},X) = \Phi_{\ell}(j(\tau),X) = \prod_{k=1}^{\ell+1} (X j(\tau'_k))$ in $\mathbb{C}[X]$.
- 6. Recognize each coefficient of $\Phi_\ell(\widetilde{j},X)$ as an integer.
- 7. Output the reduced polynomial modulo p.

Given $j(E) \in \mathbb{F}_p$, we evaluate $\Phi_{\ell}(j(E), X)$ as follows.

- 1. Lift j(E) to $\widetilde{j} \in \mathbb{Z}$. We will evaluate $\Phi_{\ell}(\widetilde{j}, X)$, then reduce it mod p.
- 2. Compute $\tau \in \mathcal{H}_1$ such that $j(\tau) = \widetilde{j}$.
- 3. Enumerate periods $\tau'_1, \ldots, \tau'_{\ell+1}$ of all elliptic curves that are ℓ -isogenous to $E(\tau)$.
- 4. Compute $j(\tau'_1), ..., j(\tau'_{\ell+1})$.
- 5. Compute $\Phi_{\ell}(\widetilde{j},X) = \Phi_{\ell}(j(\tau),X) = \prod_{k=1}^{\ell+1} (X j(\tau'_k))$ in $\mathbb{C}[X]$.
- 6. Recognize each coefficient of $\Phi_{\ell}(\widetilde{j},X)$ as an integer.
- 7. Output the reduced polynomial modulo p.

In steps 2 to 5, we use interval arithmetic and a high precision $N = \Theta(\ell \log \ell + \ell \log p)$ digits to get a unique and provably correct result in step 6.

We must compute periods and j-invariants in quasi-linear time in N.

Evaluating the *j*-invariant

To efficiently evaluate $j(\tau)$, we write it in terms of theta functions. Set $q = \exp(\pi i \tau)$, and

$$egin{aligned} heta_{00}(au) &= \sum_{n \in \mathbb{Z}} q^{n^2}, \ heta_{01}(au) &= \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2}, \ heta_{10}(au) &= \sum_{n \in \mathbb{Z}} q^{(n+rac{1}{2})^2}. \end{aligned}$$

These series converge fast. Sum enough terms, then

$$j(\tau) = 32 \frac{(\theta_{00}^8 + \theta_{01}^8 + \theta_{10}^8)^3}{(\theta_{00}\theta_{01}\theta_{10})^8}.$$

Still not quasi-linear in the required precision...

Evaluating theta functions

Theorem (Elkies, K., in preparation)

Given $N \ge 0$, and given $\tau \in \mathcal{H}_1$ that is suitably reduced, one can evaluate $\theta_{00}(\tau)$, $\theta_{01}(\tau)$, $\theta_{10}(\tau)$ to precision N in quasi-linear time $O(\mathcal{M}(N)\log N)$, uniformly in τ .

- Implemented in [FLINT] 3.1: https://flintlib.org/doc/acb_theta.html. (A new, faster version is in preparation.)
- Applies to theta functions in any genus g, still in quasi-linear time.
- Earlier works [Dup11], [LT14] are specific to small g, tricky to run in interval arithmetic, and less efficient.
- When evaluating Φ_{ℓ} , we add a (negligible) reduction step to move $\tau'_1, \ldots, \tau'_{\ell+1}$ to the fundamental domain under $\mathsf{SL}_2(\mathbb{Z})$.

Genus 2 translation

To evaluate $\Psi_{\ell,k}(j_1,j_2,j_3,X)$ for $1 \leq k \leq 3$ instead of $\Phi_{\ell}(j(E),X)$:

- Same general approach (complex uniformization and interval arithmetic)
- Replace $SL_2(\mathbb{Z})$ acting on \mathcal{H}_1 by $Sp_4(\mathbb{Z})$ acting on \mathcal{H}_2 : period matrices
- Use genus 2 theta functions
- Extra step to handle the denominator of modular equations $\Psi_{\ell,k}$ and make sure we recognize integers.

One project I have: break the genus 2 point-counting records, SEA-style.

Genus 2 translation

To evaluate $\Psi_{\ell,k}(j_1,j_2,j_3,X)$ for $1 \leq k \leq 3$ instead of $\Phi_{\ell}(j(E),X)$:

- Same general approach (complex uniformization and interval arithmetic)
- Replace $SL_2(\mathbb{Z})$ acting on \mathcal{H}_1 by $Sp_4(\mathbb{Z})$ acting on \mathcal{H}_2 : period matrices
- Use genus 2 theta functions
- Extra step to handle the denominator of modular equations $\Psi_{\ell,k}$ and make sure we recognize integers.

One project I have: break the genus 2 point-counting records, SEA-style.

Thank you!

References

- [vBCCK23] R. van Bommel, S. Chidambaram, E. Costa, and J. Kieffer, *Computing isogeny classes of typical principally polarized abelian surfaces over the rationals*, LuCaNT 2023
 - [BL09] R. Bröker and K. Lauter, *Modular polynomials for genus 2*, LMS J. Comput. Math 12 (326–339), 2009.
 - [Dup11] R. Dupont, Fast evaluation of modular functions using Newton iterations and the AGM, Math. Comp. 80, 1823–1847, 2011.
 - [Eng09] A. Enge, *Computing modular polynomials in quasi-linear time*, Math. Comp. 78, 1809–1824, 2009.
 - [FLINT] The FLINT team, FLINT: Fast Library for Number Theory, version 3.1.0, 2023.
 - [K22] J. Kieffer, *Degree and height estimates for modular equations on PEL Shimura Varieties*, J. London Math. Soc. (2) 105, 1314–1361, 2022.
 - [KR24] S. Kunzweiler and D. Robert, Computing modular polynomials by deformation, ANTS 2024
 - [LT14] H. Labrande and E. Thomé, Computing theta functions in quasi-linear time in genus 2 and above, ANTS 2016
 - (K. '24?) J. Kieffer, Evaluating modular equations for abelian surfaces, 2022.