
Evaluating theta functions in uniform quasi-linear time

in any dimension

Jean Kieffer (CNRS, Loria)

NuSCAP annual meeting, Paris, May 23, 2024

Joint work with Noam D. Elkies

1/25

Plan of the talk

1. Introduction: evaluating theta functions

2. The “naive” algorithm

3. The duplication formula

4. The final algorithm

2/25

The Riemann theta function

Parameters:

• g ≥ 1: the dimension (sometimes called genus)

• τ ∈ Hg , the Siegel upper half-space: this means τ ∈ Matg×g (C) is symmetric and

Im(τ) is positive definite (yT Im(τ)y > 0 for all nonzero y ∈ Rg).

• z ∈ Cg .

Define the Riemann theta function:

θ(z , τ) =
∑
n∈Zg

E (nT τn + 2nT z).

where E (x) := exp(πix). This sum converges quickly (terms get small as n → ∞).

If g = 1, this is the Jacobi theta function

θ(z , τ) =
∑
n∈Z

E (τn2 + 2nz).

3/25

Theta functions with characteristics

More generally, for all theta characteristics a, b ∈ {0, 1}g , define:

θa,b(z , τ) =
∑

n∈Zg+ a
2

E
(
nT τn + 2nT (z + b

2)
)
.

Before, we had a = b = 0.

Remark

Up to an exponential factor, θa,b(z , τ) is simply θ0,0(z + τ a
2 + b

2 , τ). The reason for

this notation will become clear on the next slide.

4/25

Why theta functions?

Theta functions are closely connected to elliptic curves and abelian varieties over C.

1. If τ is fixed and z varies, then θ(·, τ) is (roughly) periodic with respect to the

lattice L = Zg + τZg ⊂ Cg .

The quotient A = Cg/L is an abelian variety of dimension g , and theta functions

with characteristics are coordinate functions on A. For instance, take A to be the

Jacobian of any algebraic curve.

2. Fixing z = 0 and letting τ vary, the theta constants θa,b(0, ·) are modular forms.

They can be used as invariants to identify an abelian variety, a curve, etc.

These properties (periodicity, modular forms) are also generally helpful when

manipulating theta functions, as we will see.

5/25

Evaluating theta functions

Algorithmic problem

Given (z , τ) ∈ Cg ×Hg , and a precision N ≥ 0, compute the complex numbers

θa,b(z , τ) for all a, b ∈ {0, 1}g at precision N up to an error of at most 2−N .

In applications, N can be in the millions.

Theorem (in progress, joint with Noam D. Elkies)

There exists an algorithm which, given g ≥ 1, N ≥ 0, and given (z , τ) that are

suitably reduced, evaluates θa,b(z , τ) to precision N in quasi-linear time

O(2O(g log g)M(N) logN) uniformly in τ and z .

Based on the duplication formula. Implemented in FLINT 3.1.

6/25

https://flintlib.org/doc/acb_theta.html

Brief history of previous work

• The naive algorithm (see Deconinck et al., 2002) consists in summing up enough

terms in the theta series

θa,b(z , τ) =
∑

n∈Zg+
a
2

E
(
nT τn + 2nT (z + b

2)
)
.

Useful at low precisions, but not quasi-linear. Optimized in the g = 1 case by

Enge–Hart–Johansson (2018).

• Dupont (2006), Labrande–Thomé (2010): quasi-linear algorithm based on a clever

use of Newton’s method. Heuristic, mainly tested for g ≤ 3. Does not beat the

naive algorithm for g = 1 in the feasible range.

• In some cases (g ≤ 2) one can prove that the Newton approach works and yields a

uniform algorithm (K., 2022). Still not known to work for all τ as soon as g ≥ 3.

7/25

Brief list of available implementations

Implementations based on the naive algorithm:

• Theta.jl by Agostini–Chua (2020), low precision only.

• Magma’s Theta, arbitrary g and precisions, extremely slow.

• RiemannTheta, Sage package by Nils Bruin, arbitrary g and precisions, less slow.

• acb modular (FLINT) by Enge–Hart–Johansson (2018). g = 1 only, uses interval

arithmetic, fast.

Often also support theta functions with characteristics, derivatives.

Implementations based on Newton’s method exist, but are not easily accessible.

New implementation: acb theta in FLINT 3.1. Any g , fast, quasi-linear, uniform,

uses interval arithmetic, supports characteristics and derivatives, extensively tested.

Use that one!
8/25

https://github.com/chualynn/Theta.jl
https://magma.maths.usyd.edu.au/magma/handbook/text/260
https://github.com/nbruin/RiemannTheta
https://flintlib.org/doc/acb_modular.html
https://flintlib.org/doc/acb_theta.html

The “naive” algorithm

Convergence of the theta series

Recall:

θ0,0(z , τ) =
∑
n∈Zg

E (nT τn + 2nT z).

Write Y = Im(τ) and y = Im(z). Then:∣∣E (nT τn + 2nT z)
∣∣ = exp(−πnTYn − 2πnT y)

= C exp(−∥n − x0∥2τ)

where ∥·∥τ is the Euclidean norm attached to πY , and C , x0 depend only on τ and z .

Useful consequence

For each N ≥ 0, the lattice points n ∈ Zg indexing terms whose absolute value is

≥ 2−N are exactly the points in an ellipsoid ∥n − x0∥τ ≤ R with R = O(
√
N).

9/25

The tail of the series

Proposition

Let τ ∈ Hg , let C be the Cholesky matrix attached to π Im(τ) (meaning: C is

upper-triangular and π Im(τ) = CTC), and let γ1, . . . , γg be the diagonal coefficients

of C . For each R ≥ 4, we have:

∑
n∈Zg , ∥n−x0∥τ>R

exp(−∥n − x0∥2τ) ≤ 2g+1Rg−1 exp(−R2)

g∏
i=1

(
1 +

2

γi

)
.

→ taking R = O(
√
N), the tail of the series is bounded by 2−N .

A first step when evaluating is to obtain nicer ellipsoids (i.e. larger γi) by reducing the

arguments τ and z .

10/25

Argument reduction

Easy reductions using periodicity:

• reduce τ such that |Re(τ)| ≤ 1
2 (changes nothing)

• reduce z such that z = u + τv with u, v ∈ Rg and |u|, |v | ≤ 1
2

→ the center of the ellipsoid is not far away from 0.

We also want to reduce Im(τ). This changes the shape of the ellipsoids.

0

good: large γi

bad: one of the γi is small

11/25

The symplectic group

The symplectic group Sp2g (Z) consists of products of matrices of the form(
Ig S

0 Ig

)
, S ∈ Matg×g (Z) symmetric(

U 0

0 U−T

)
, U ∈ GLg (Z)

Jg :=

(
0 Ig

−Ig 0

)
.

Equivalently, all matrices M such that MT JgM = Jg .

The group Sp2g (Z) acts on Cg ×Hg :(
α β

γ δ

)
· (z , τ) =

(
(γτ + δ)−T z , (ατ + β)(γτ + δ)−1)

)
.

12/25

Theta as a modular form

Theorem (Mumford, Igusa ’60s)

Let M = (α β
γ δ) ∈ Sp2g (Z). Fix theta characteristics a, b. For every (z , τ) ∈ Cg ×Hg :

θa,b(M · (z , τ)) = exp(· · ·) · ζ ·
√

det(γτ + δ) · θa′,b′(z , τ)

where:

• a′, b′ are other characteristics given by an explicit formula in terms of a, b,M,

• ζ is an 8th root of unity independent of z , τ ,

• we must make a fixed choice of holomorphic sqrt of τ 7→ det(γτ + δ) on Hg .

Sort out the details → can act by Sp2g (Z) before computing theta functions.

13/25

A nicer imaginary part

We have

Im
(
(ατ + β)(γτ + δ)−1)

)
= (γτ + δ)−T Im(τ)(γτ + δ)−1.

Therefore:

• Can use lattice reduction (LLL) by taking M =

(
U 0

0 U−T

)
.

• Can increase det Im(τ) whenever |det(γτ + δ)| < 1. In particular, use the usual

reduction for the action of SL2(Z) on H1 on each diagonal coefficient.

Consequence

We can assume that Im(τ) is LLL-reduced and its diagonal coefficients are ≥
√
3/2.

The ellipsoids we get in the naive algorithm are uniformly nice and round.

14/25

Naive algorithm: complexity

Result

Given reduced (z , τ) ∈ Cg ×Hg and N ≥ 1, one can compute θa,b(z , τ) for each

individual characteristic (a, b) to N bits of precision using the naive algorithm in

Og (N
g/2M(N)) binary operations, uniformly in τ and z .

Important optimizations in practice (but not really new):

• Compute exponentials only once, get subsequent terms by multiplying/squaring.

• Compute smaller terms (far from the center of the ellipsoid) at smaller precisions.

• Use existing functions when possible: acb modular theta (g = 1), acb dot.

In FLINT, we implement ellipsoids as a recursive type to make all this easier to write.

15/25

Towards a quasi-linear algorithm

The naive algorithm is not quasi-linear... except when Im(τ) is large!

If τ is reduced and each diagonal coefficient of Im(τ) is Ω(N), then the ellipsoid to

sum on contains O(1) points → complexity Og (M(N) logN).

The duplication formula relates theta values at τ and 2τ .

Main idea

Use the duplication formula k ≃ log2N times starting from theta values at 2kτ ,

computed in quasi-linear time with the naive algorithm.

16/25

The duplication formula

The typical duplication formula

The duplication formula is also used in the Newton approach to computing theta

functions (Dupont ’06, Labrande–Thomé ’16).

We identify {0, 1}g and (Z/2Z)g (addition is xor).

Duplication formula

θa,b(0, 2τ)
2 =

1

2g

∑
b′∈(Z/2Z)g

(−1)a
Tb′θ0,b′(0, τ) θ0,b+b′(0, τ).

Note the particular role of θ0,b compared to more general θa,b.

For us, this goes in the wrong direction: we want to express theta values at τ in terms

of theta values at 2τ .

17/25

A better formula

Cf. Koizumi, or Romain Cosset’s thesis, or apply Jg to the previous formula:

Better duplication formula

θa,b(0, τ)
2 =

∑
a′∈(Z/2Z)g

(−1)a
′Tbθa′,0(0, 2τ) θa+a′,0(0, 2τ).

This time, the 2g “fundamental” theta values are the θa,0(0, τ). For now, we focus on

computing those and put z = 0, b = 0.

To apply the duplication formula, we need to:

1. Make the 2g sums on the right (one for each a ∈ {0, 1}g , with b = 0). Do this in

O(2g) operations with Hadamard transformations.

2. Extract square roots: get θa,b(0, τ) from θa,0(0, τ)
2. 18/25

The root problem

Problems when extracting square roots:

1. We need to know what the correct sign is → need a low-precision approximation

of θa,0(0, τ). Can compute it using the naive algorithm.

2. Taking square roots brings a precision loss, perhaps as much as half of the current

precision since
√
2−N = 2−N/2.

Both problems get worse the closer θa,0(0, τ) gets to zero.

Dream Scenario

There exists ε > 0 such that for all k ≥ 0 and a ∈ {0, 1}g , we have
∣∣θa,0(0, 2kτ)∣∣ ≥ ε.

This is however just false, since θa,0(0, 2
kτ) −→

k→∞
0 as soon as a ̸= 0.

Need to quantify this to show that we’re not killed by the naive algorithm and/or

precision losses. 19/25

The absolute value of theta

Recall our previous analysis: the term corresponding to n ∈ Zg + a
2 in the series

defining θa,0(0, τ) has absolute value exp(−∥n∥2τ).

Dream Scenario 2

There exists ε > 0 such that for each k ≥ 0, we have∣∣θa,0(0, 2kτ)∣∣ ≥ ε exp
(
−2k Distτ (0,Zg + a

2)
)

Here Distτ denotes the distance (between point and set) attached to the norm ∥·∥τ .

In other words |θa,0(τ)| is comparable to the absolute value of the largest term

appearing in the sum – no crazy cancellation occurs.

We expect this to be true (with a reasonable ε) for almost every τ .

20/25

The dream world

Assume Dream Scenario 2. Then each time we apply the duplication formula:

• Computing an approximation of θa,0(0, τ) with the naive algorithm costs O(1).

• We lose O(1) bits of precision in square roots, provided that we think in terms of

shifted absolute precision.

Convention

By “computing θa,0(0, 2
kτ) to shifted absolute precision N”, we mean computing it

to absolute precision N +
⌈
2k Distτ (0,Zg + a

2)/ log(2)
⌉
.

This accounts for the fact that
∣∣θa,0(0, 2kτ)∣∣ is known to be small. In Dream

Scenario 2, this is the same as relative precision.

• Small miracle: when summing in the duplication formula, we also lose only O(1)

bits of shifted absolute precision (parallelogram identity!)

• To initialize at 2k = O(N), we use the naive algorithm and win.
21/25

The final algorithm

The real world

• For some special τ ’s, we might have unexpected vanishings of θa,0(0, 2
kτ). Then

the previous algorithm does not work.

• We also want to compute θa,0(z , τ) for nonzero z .

Observation

Let t ∈ Rg be any vector. If, at each step, we compute θa,0(2
kv , 2kτ) for all

a ∈ {0, 1}g and all v ∈ {0, t, 2t, z , z + t, z + 2t}, then we can bootstrap using

variants of the duplication formula.

This requires us to take square roots of θa,0(2
kv , 2kτ)2 for v ∈ {t, 2t, z + t, z + 2t},

but not v = 0 and v = z (get those by division).

Introducing the real vector t changes nothing to ellipsoids and distances, but can

prevent unexpected cancellations. In practice, a random t does the trick.
22/25

Theoretical result

Proposition (writeup in progress)

Fix g ≥ 1 and m ≥ 0. Then there exists ε > 0 such that for a proportion at least 1/2

of vectors t ∈ [0, 1]g , the following holds:

For each reduced (z , τ) ∈ Cg ×Hg , for each a ∈ {0, 1}g , for each 0 ≤ k ≤ m, and

for each v ∈ {t, 2t}, we have∣∣θa,0(2kv , 2kτ)∣∣ ≥ ε exp
(
−2k Distτ (0,Zg + a

2)
)
,∣∣θa,0(2k(z + v), 2kτ)

∣∣ ≥ ε exp
(
−2k Distτ (x0,Zg + a

2)
)

where x0 denotes the center of the ellipsoid attached to z and ε = m−Poly(g).

Choosing t at random, precision losses are mild with a probability ≥ 1/2. ✓

23/25

Further comments

• If one of the diagonal coefficients γi is very large, the ellipsoids for ∥·∥τ are thick

in some directions and very thin in other directions. We leverage this by writing

θa,0(z , τ) as a (short) sum of theta values for smaller g .

• This algorithm overcomes FLINT’s implementation of the naive algorithm for

g = 1 between 10 000 and 50 000 bits of precision. I’m sure this can be improved.

• We also compute derivatives of theta functions in quasi-linear time using finite

differences with rigorous error bounds.

24/25

Thank you!

https://flintlib.org/doc/acb_theta.html

25/25

https://flintlib.org/doc/acb_theta.html

	The ``naive'' algorithm
	The duplication formula
	The final algorithm

