Evaluating theta functions in uniform quasi-linear time in any dimension

Jean Kieffer (CNRS, Loria)
NuSCAP annual meeting, Paris, May 23, 2024
Joint work with Noam D. Elkies

Plan of the talk

1. Introduction: evaluating theta functions
2. The "naive" algorithm
3. The duplication formula
4. The final algorithm

The Riemann theta function

Parameters:

- $g \geq 1$: the dimension (sometimes called genus)
- $\tau \in \mathcal{H}_{g}$, the Siegel upper half-space: this means $\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C})$ is symmetric and $\operatorname{Im}(\tau)$ is positive definite $\left(y^{\tau} \operatorname{Im}(\tau) y>0\right.$ for all nonzero $\left.y \in \mathbb{R}^{g}\right)$.
- $z \in \mathbb{C}^{g}$.

Define the Riemann theta function:

$$
\theta(z, \tau)=\sum_{n \in \mathbb{Z}^{g}} E\left(n^{T} \tau n+2 n^{T} z\right)
$$

where $E(x):=\exp (\pi i x)$. This sum converges quickly (terms get small as $n \rightarrow \infty)$.
If $g=1$, this is the Jacobi theta function

$$
\theta(z, \tau)=\sum_{n \in \mathbb{Z}} E\left(\tau n^{2}+2 n z\right)
$$

Theta functions with characteristics

More generally, for all theta characteristics $a, b \in\{0,1\}^{g}$, define:

$$
\theta_{a, b}(z, \tau)=\sum_{n \in \mathbb{Z}^{g}+\frac{a}{2}} E\left(n^{T} \tau n+2 n^{T}\left(z+\frac{b}{2}\right)\right) .
$$

Before, we had $a=b=0$.

Remark

Up to an exponential factor, $\theta_{a, b}(z, \tau)$ is simply $\theta_{0,0}\left(z+\tau \frac{a}{2}+\frac{b}{2}, \tau\right)$. The reason for this notation will become clear on the next slide.

Why theta functions?

Theta functions are closely connected to elliptic curves and abelian varieties over \mathbb{C}.

1. If τ is fixed and z varies, then $\theta(\cdot, \tau)$ is (roughly) periodic with respect to the lattice $L=\mathbb{Z}^{g}+\tau \mathbb{Z}^{g} \subset \mathbb{C}^{g}$.

The quotient $A=\mathbb{C}^{g} / L$ is an abelian variety of dimension g, and theta functions with characteristics are coordinate functions on A. For instance, take A to be the Jacobian of any algebraic curve.
2. Fixing $z=0$ and letting τ vary, the theta constants $\theta_{a, b}(0, \cdot)$ are modular forms. They can be used as invariants to identify an abelian variety, a curve, etc.

These properties (periodicity, modular forms) are also generally helpful when manipulating theta functions, as we will see.

Evaluating theta functions

Algorithmic problem

Given $(z, \tau) \in \mathbb{C}^{g} \times \mathcal{H}_{g}$, and a precision $N \geq 0$, compute the complex numbers $\theta_{a, b}(z, \tau)$ for all $a, b \in\{0,1\}^{g}$ at precision N up to an error of at most 2^{-N}.

In applications, N can be in the millions.

Theorem (in progress, joint with Noam D. Elkies)

There exists an algorithm which, given $g \geq 1, N \geq 0$, and given (z, τ) that are suitably reduced, evaluates $\theta_{a, b}(z, \tau)$ to precision N in quasi-linear time $O\left(2^{O}(g \log g) \mathcal{M}(N) \log N\right)$ uniformly in τ and z.

Based on the duplication formula. Implemented in FLINT 3.1.

Brief history of previous work

- The naive algorithm (see Deconinck et al., 2002) consists in summing up enough terms in the theta series

$$
\theta_{a, b}(z, \tau)=\sum_{n \in \mathbb{Z}^{g}+\frac{a}{2}} E\left(n^{T} \tau n+2 n^{T}\left(z+\frac{b}{2}\right)\right)
$$

Useful at low precisions, but not quasi-linear. Optimized in the $g=1$ case by Enge-Hart-Johansson (2018).

- Dupont (2006), Labrande-Thomé (2010): quasi-linear algorithm based on a clever use of Newton's method. Heuristic, mainly tested for $g \leq 3$. Does not beat the naive algorithm for $g=1$ in the feasible range.
- In some cases $(g \leq 2)$ one can prove that the Newton approach works and yields a uniform algorithm (K., 2022). Still not known to work for all τ as soon as $g \geq 3$.

Brief list of available implementations

Implementations based on the naive algorithm:

- Theta.jl by Agostini-Chua (2020), low precision only.
- Magma's Theta, arbitrary g and precisions, extremely slow.
- RiemannTheta, Sage package by Nils Bruin, arbitrary g and precisions, less slow.
- acb_modular (FLINT) by Enge-Hart-Johansson (2018). $g=1$ only, uses interval arithmetic, fast.
Often also support theta functions with characteristics, derivatives.
Implementations based on Newton's method exist, but are not easily accessible.
New implementation: acb_theta in FLINT 3.1. Any g, fast, quasi-linear, uniform, uses interval arithmetic, supports characteristics and derivatives, extensively tested.

Use that one!

The "naive" algorithm

Convergence of the theta series

Recall:

$$
\theta_{0,0}(z, \tau)=\sum_{n \in \mathbb{Z}^{g}} E\left(n^{T} \tau n+2 n^{T} z\right)
$$

Write $Y=\operatorname{Im}(\tau)$ and $y=\operatorname{Im}(z)$. Then:

$$
\begin{aligned}
\left|E\left(n^{T} \tau n+2 n^{T} z\right)\right| & =\exp \left(-\pi n^{T} Y n-2 \pi n^{T} y\right) \\
& =C \exp \left(-\left\|n-x_{0}\right\|_{\tau}^{2}\right)
\end{aligned}
$$

where $\|\cdot\|_{\tau}$ is the Euclidean norm attached to πY, and C, x_{0} depend only on τ and z.

Useful consequence

For each $N \geq 0$, the lattice points $n \in \mathbb{Z}^{g}$ indexing terms whose absolute value is $\geq 2^{-N}$ are exactly the points in an ellipsoid $\left\|n-x_{0}\right\|_{\tau} \leq R$ with $R=O(\sqrt{N})$.

The tail of the series

Proposition

Let $\tau \in \mathcal{H}_{g}$, let C be the Cholesky matrix attached to $\pi \operatorname{Im}(\tau)$ (meaning: C is upper-triangular and $\pi \operatorname{Im}(\tau)=C^{T} C$), and let $\gamma_{1}, \ldots, \gamma_{g}$ be the diagonal coefficients of C. For each $R \geq 4$, we have:

$$
\sum_{n \in \mathbb{Z}^{g},\left\|n-x_{0}\right\|_{\tau}>R} \exp \left(-\left\|n-x_{0}\right\|_{\tau}^{2}\right) \leq 2^{g+1} R^{g-1} \exp \left(-R^{2}\right) \prod_{i=1}^{g}\left(1+\frac{2}{\gamma_{i}}\right)
$$

\rightarrow taking $R=O(\sqrt{N})$, the tail of the series is bounded by 2^{-N}.
A first step when evaluating is to obtain nicer ellipsoids (i.e. larger γ_{i}) by reducing the arguments τ and z.

Argument reduction

Easy reductions using periodicity:

- reduce τ such that $|\operatorname{Re}(\tau)| \leq \frac{1}{2}$ (changes nothing)
- reduce z such that $z=u+\tau v$ with $u, v \in \mathbb{R}^{g}$ and $|u|,|v| \leq \frac{1}{2}$
\rightarrow the center of the ellipsoid is not far away from 0 .
We also want to reduce $\operatorname{Im}(\tau)$. This changes the shape of the ellipsoids.

The symplectic group

The symplectic group $\mathrm{Sp}_{2 g}(\mathbb{Z})$ consists of products of matrices of the form

$$
\begin{aligned}
& \left(\begin{array}{cc}
I_{g} & S \\
0 & I_{g}
\end{array}\right), \\
\left(\begin{array}{cc}
U & 0 \\
0 & U^{-T}
\end{array}\right), & U \in \operatorname{Mat}_{g \times g}(\mathbb{Z}) \text { symmetric } \\
J_{g}:=\left(\begin{array}{cc}
0 & l_{g} \\
-I_{g} & 0
\end{array}\right) . &
\end{aligned}
$$

Equivalently, all matrices M such that $M^{\top} J_{g} M=J_{g}$.
The group $\mathrm{Sp}_{2 g}(\mathbb{Z})$ acts on $\mathbb{C}^{g} \times \mathcal{H}_{g}$:

$$
\left.\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot(z, \tau)=\left((\gamma \tau+\delta)^{-T} z,(\alpha \tau+\beta)(\gamma \tau+\delta)^{-1}\right)\right) .
$$

Theta as a modular form

Theorem (Mumford, Igusa '60s)

Let $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{Sp}_{2 g}(\mathbb{Z})$. Fix theta characteristics a, b. For every $(z, \tau) \in \mathbb{C}^{g} \times \mathcal{H}_{g}$:

$$
\theta_{a, b}(M \cdot(z, \tau))=\exp (\cdots) \cdot \zeta \cdot \sqrt{\operatorname{det}(\gamma \tau+\delta)} \cdot \theta_{a^{\prime}, b^{\prime}}(z, \tau)
$$

where:

- a^{\prime}, b^{\prime} are other characteristics given by an explicit formula in terms of a, b, M,
- ζ is an 8th root of unity independent of z, τ,
- we must make a fixed choice of holomorphic sqrt of $\tau \mapsto \operatorname{det}(\gamma \tau+\delta)$ on \mathcal{H}_{g}.

Sort out the details \rightarrow can act by $\mathrm{Sp}_{2 g}(\mathbb{Z})$ before computing theta functions.

A nicer imaginary part

We have

$$
\left.\operatorname{Im}\left((\alpha \tau+\beta)(\gamma \tau+\delta)^{-1}\right)\right)=(\gamma \tau+\delta)^{-T} \operatorname{Im}(\tau)(\gamma \tau+\delta)^{-1}
$$

Therefore:

- Can use lattice reduction (LLL) by taking $M=\left(\begin{array}{cc}U & 0 \\ 0 & U^{-T}\end{array}\right)$.
- Can increase $\operatorname{det} \operatorname{lm}(\tau)$ whenever $|\operatorname{det}(\gamma \tau+\delta)|<1$. In particular, use the usual reduction for the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H}_{1} on each diagonal coefficient.

Consequence

We can assume that $\operatorname{Im}(\tau)$ is LLL-reduced and its diagonal coefficients are $\geq \sqrt{3} / 2$.
The ellipsoids we get in the naive algorithm are uniformly nice and round.

Naive algorithm: complexity

Result

Given reduced $(z, \tau) \in \mathbb{C}^{g} \times \mathcal{H}_{g}$ and $N \geq 1$, one can compute $\theta_{a, b}(z, \tau)$ for each individual characteristic (a, b) to N bits of precision using the naive algorithm in $O_{g}\left(N^{g / 2} \mathcal{M}(N)\right)$ binary operations, uniformly in τ and z.

Important optimizations in practice (but not really new):

- Compute exponentials only once, get subsequent terms by multiplying/squaring.
- Compute smaller terms (far from the center of the ellipsoid) at smaller precisions.
- Use existing functions when possible: acb_modular_theta ($g=1$), acb_dot.

In FLINT, we implement ellipsoids as a recursive type to make all this easier to write.

Towards a quasi-linear algorithm

The naive algorithm is not quasi-linear... except when $\operatorname{Im}(\tau)$ is large!
If τ is reduced and each diagonal coefficient of $\operatorname{Im}(\tau)$ is $\Omega(N)$, then the ellipsoid to sum on contains $O(1)$ points \rightarrow complexity $O_{g}(\mathcal{M}(N) \log N)$.

The duplication formula relates theta values at τ and 2τ.

Main idea

Use the duplication formula $k \simeq \log _{2} N$ times starting from theta values at $2^{k} \tau$, computed in quasi-linear time with the naive algorithm.

The duplication formula

The typical duplication formula

The duplication formula is also used in the Newton approach to computing theta functions (Dupont '06, Labrande-Thomé '16).

We identify $\{0,1\}^{g}$ and $(\mathbb{Z} / 2 \mathbb{Z})^{g}$ (addition is xor).

Duplication formula

$$
\theta_{a, b}(0,2 \tau)^{2}=\frac{1}{2^{g}} \sum_{b^{\prime} \in(\mathbb{Z} / 2 \mathbb{Z})^{g}}(-1)^{a^{\top} b^{\prime}} \theta_{0, b^{\prime}}(0, \tau) \theta_{0, b+b^{\prime}}(0, \tau) .
$$

Note the particular role of $\theta_{0, b}$ compared to more general $\theta_{a, b}$.
For us, this goes in the wrong direction: we want to express theta values at τ in terms of theta values at 2τ.

A better formula

Cf. Koizumi, or Romain Cosset's thesis, or apply J_{g} to the previous formula:

Better duplication formula

$$
\theta_{a, b}(0, \tau)^{2}=\sum_{a^{\prime} \in(\mathbb{Z} / 2 \mathbb{Z})^{g}}(-1)^{a^{a^{\prime}} b} \theta_{a^{\prime}, 0}(0,2 \tau) \theta_{a+a^{\prime}, 0}(0,2 \tau) .
$$

This time, the 2^{g} "fundamental" theta values are the $\theta_{a, 0}(0, \tau)$. For now, we focus on computing those and put $z=0, b=0$.

To apply the duplication formula, we need to:

1. Make the 2^{g} sums on the right (one for each $a \in\{0,1\}^{g}$, with $b=0$). Do this in $O\left(2^{g}\right)$ operations with Hadamard transformations.
2. Extract square roots: get $\theta_{a, b}(0, \tau)$ from $\theta_{a, 0}(0, \tau)^{2}$.

The root problem

Problems when extracting square roots:

1. We need to know what the correct sign is \rightarrow need a low-precision approximation of $\theta_{a, 0}(0, \tau)$. Can compute it using the naive algorithm.
2. Taking square roots brings a precision loss, perhaps as much as half of the current precision since $\sqrt{2^{-N}}=2^{-N / 2}$.
Both problems get worse the closer $\theta_{a, 0}(0, \tau)$ gets to zero.

Dream Scenario

There exists $\varepsilon>0$ such that for all $k \geq 0$ and $a \in\{0,1\}^{g}$, we have $\left|\theta_{a, 0}\left(0,2^{k} \tau\right)\right| \geq \varepsilon$.
This is however just false, since $\theta_{a, 0}\left(0,2^{k} \tau\right) \underset{k \rightarrow \infty}{\longrightarrow} 0$ as soon as $a \neq 0$.
Need to quantify this to show that we're not killed by the naive algorithm and/or precision losses.

The absolute value of theta

Recall our previous analysis: the term corresponding to $n \in \mathbb{Z}^{g}+\frac{a}{2}$ in the series defining $\theta_{a, 0}(0, \tau)$ has absolute value $\exp \left(-\|n\|_{\tau}^{2}\right)$.

Dream Scenario 2

There exists $\varepsilon>0$ such that for each $k \geq 0$, we have

$$
\left|\theta_{a, 0}\left(0,2^{k} \tau\right)\right| \geq \varepsilon \exp \left(-2^{k} \operatorname{Dist}_{\tau}\left(0, \mathbb{Z}^{g}+\frac{a}{2}\right)\right)
$$

Here Dist_{τ} denotes the distance (between point and set) attached to the norm $\|\cdot\|_{\tau}$.
In other words $\left|\theta_{a, 0}(\tau)\right|$ is comparable to the absolute value of the largest term appearing in the sum - no crazy cancellation occurs.

We expect this to be true (with a reasonable ε) for almost every τ.

The dream world

Assume Dream Scenario 2. Then each time we apply the duplication formula:

- Computing an approximation of $\theta_{a, 0}(0, \tau)$ with the naive algorithm costs $O(1)$.
- We lose $O(1)$ bits of precision in square roots, provided that we think in terms of shifted absolute precision.

Convention

By "computing $\theta_{a, 0}\left(0,2^{k} \tau\right)$ to shifted absolute precision N ", we mean computing it to absolute precision $N+\left\lceil 2^{k} \operatorname{Dist}_{\tau}\left(0, \mathbb{Z}^{g}+\frac{a}{2}\right) / \log (2)\right\rceil$.

This accounts for the fact that $\left|\theta_{a, 0}\left(0,2^{k} \tau\right)\right|$ is known to be small. In Dream Scenario 2 , this is the same as relative precision.

- Small miracle: when summing in the duplication formula, we also lose only $O(1)$ bits of shifted absolute precision (parallelogram identity!)
- To initialize at $2^{k}=O(N)$, we use the naive algorithm and win.

The final algorithm

The real world

- For some special τ^{\prime} s, we might have unexpected vanishings of $\theta_{a, 0}\left(0,2^{k} \tau\right)$. Then the previous algorithm does not work.
- We also want to compute $\theta_{a, 0}(z, \tau)$ for nonzero z.

Observation

Let $t \in \mathbb{R}^{\boldsymbol{g}}$ be any vector. If, at each step, we compute $\theta_{a, 0}\left(2^{k} v, 2^{k} \tau\right)$ for all $a \in\{0,1\}^{g}$ and all $v \in\{0, t, 2 t, z, z+t, z+2 t\}$, then we can bootstrap using variants of the duplication formula.

This requires us to take square roots of $\theta_{a, 0}\left(2^{k} v, 2^{k} \tau\right)^{2}$ for $v \in\{t, 2 t, z+t, z+2 t\}$, but not $v=0$ and $v=z$ (get those by division).

Introducing the real vector t changes nothing to ellipsoids and distances, but can prevent unexpected cancellations. In practice, a random t does the trick.

Theoretical result

Proposition (writeup in progress)

Fix $g \geq 1$ and $m \geq 0$. Then there exists $\varepsilon>0$ such that for a proportion at least $1 / 2$ of vectors $t \in[0,1]^{g}$, the following holds:

For each reduced $(z, \tau) \in \mathbb{C}^{g} \times \mathcal{H}_{g}$, for each $a \in\{0,1\}^{g}$, for each $0 \leq k \leq m$, and for each $v \in\{t, 2 t\}$, we have

$$
\begin{aligned}
\left|\theta_{a, 0}\left(2^{k} v, 2^{k} \tau\right)\right| & \geq \varepsilon \exp \left(-2^{k} \operatorname{Dist}_{\tau}\left(0, \mathbb{Z}^{g}+\frac{a}{2}\right)\right), \\
\left|\theta_{a, 0}\left(2^{k}(z+v), 2^{k} \tau\right)\right| & \geq \varepsilon \exp \left(-2^{k} \operatorname{Dist}_{\tau}\left(x_{0}, \mathbb{Z}^{g}+\frac{a}{2}\right)\right)
\end{aligned}
$$

where x_{0} denotes the center of the ellipsoid attached to z and $\varepsilon=m^{-\operatorname{Poly}(g)}$.

Choosing t at random, precision losses are mild with a probability $\geq 1 / 2$.

Further comments

- If one of the diagonal coefficients γ_{i} is very large, the ellipsoids for $\|\cdot\|_{\tau}$ are thick in some directions and very thin in other directions. We leverage this by writing $\theta_{a, 0}(z, \tau)$ as a (short) sum of theta values for smaller g.
- This algorithm overcomes FLINT's implementation of the naive algorithm for $g=1$ between 10000 and 50000 bits of precision. I'm sure this can be improved.
- We also compute derivatives of theta functions in quasi-linear time using finite differences with rigorous error bounds.

Thank you!

https://flintlib.org/doc/acb_theta.html

