Software presentation: theta constants and modular equations in genus 2

Jean Kieffer

Friday 1 Oct. 2021

Simons Collaboration meeting

1. Mathematics

Siegel modular equations (1)

$$\mathcal{A}_g(\mathbb{C}) = \Gamma(1) \backslash \mathbb{H}_g$$
, with $\Gamma(1) = \operatorname{Sp}_{2g}(\mathbb{Z})$.
Let ℓ be a prime, $g = 2$.

Siegel modular equations describe the image in $\mathbb{C}^3 \times \mathbb{C}^3$.

$$\Psi_{\ell,m} \in \mathbb{Q}(J_1,J_2,J_3)[X]$$
 for $1 \leq m \leq 3$.

Siegel modular equations (2)

Theorem

Let k be a field of characteristic prime to ℓ , and let A, B be p.p. abelian surfaces over k that are sufficiently generic. TFAE:

1. There exists an ℓ -isogeny $\phi:A\to B$ (i.e. $\ker\phi\subset A[\ell]$ is maximal isotropic, $\deg\phi=\ell^2$) defined over \overline{k} (or even k);

2.
$$\begin{cases} \Psi_{\ell,1}\big(j_1(A),j_2(A),j_3(A),j_1(B)\big) = 0, \\ j_2(B) = \Psi_{\ell,2}\big(j_1(A),j_2(A),j_3(A),j_1(B)\big)/D, \\ j_3(B) = \Psi_{\ell,3}\big(j_1(A),j_2(A),j_3(A),j_1(B)\big)/D, \end{cases}$$
 where $D = \frac{\partial \Psi_{\ell,1}}{\partial X}\big(j_1(A),j_2(A),j_3(A),j_1(B)\big).$

The isogeny algorithm

If A, B satisfy the modular equations as above, and are sufficiently generic, then the data of

$$\frac{\partial \Psi_{\ell,m}}{\partial J_{\nu}} \big(j_1(A), j_2(A), j_3(A), j_1(B) \big) \quad \text{for } 1 \le k, m \le 3$$

is sufficient to recover an $\ell\text{-isogeny}\ \phi:A\to B$ as a rational map, using the algorithm of [K., Page, Robert].

The Goal

Given a smooth genus 2 curve \mathcal{C}/\mathbb{Q} , evaluate

$$\begin{split} & \Psi_{\ell,m}\big(j_1(\mathcal{C}),j_2(\mathcal{C}),j_3(\mathcal{C}),X\big) \in \mathbb{Q}[X], \text{ and} \\ & \frac{\partial \Psi_{\ell,m}}{\partial J_k}\big(j_1(\mathcal{C}),j_2(\mathcal{C}),j_3(\mathcal{C}),X\big) \in \mathbb{Q}[X] \end{split}$$

for $1 \le k, m \le 3$. Abbreviation: $j_k(\mathcal{C}) = j_k(\mathsf{Jac}(\mathcal{C}))$.

Theorem

Let $H = h(j_1, j_2, j_3)$ (logarithmic height). Then these polynomials have total size $O(\ell^6(H + \log \ell))$. Heuristically, they can be computed in quasi-linear time.

Remark: total size of $\Psi_{\ell,k} \in \mathbb{Q}(J_1,J_2,J_3,X)$ is $O(\ell^{15}\log \ell)$. Compare with elliptic modular polynomials: $O(\ell^3\log \ell)$.

Hilbert case

Same game with Hilbert modular equations describing cyclic isogenies of degree ℓ between p.p.a. surfaces with real multiplication by \mathbb{Z}_F , where F is a real quadratic field. Size is $O_F(\ell^2(H + \log \ell))$.

Method

Given a smooth genus 2 curve \mathcal{C}/\mathbb{Q} , evaluate

$$\Psi_{\ell,m}(j_1(\mathcal{C}),j_2(\mathcal{C}),j_3(\mathcal{C}),X)\in\mathbb{Q}[X].$$

Use complex approximations:

- 1. Compute a period matrix τ of $\mathcal C$ to high precision.
- 2. List all period matrices $\gamma(\ell\tau)$ for $\gamma \in \Gamma^0(\ell) \backslash \Gamma(1)$, and compute Igusa invariants to high precision.
- 3. Reconstruct the polynomials using product trees.
- 4. Recognize rational (or often integer) coefficients.

Complexity awareness

All this has to be done in quasi-linear time in the precision, with the implied O constants depending only on H in a controlled manner. Dupont's algorithms (2006) are a key tool, but proper convergence is unfortunately heuristic.

For instance: I suspect that Magma's AnalyticJacobian is not quasi-linear time even for a single \mathcal{C} , and has no guarantee on uniformity, or even "correctness" of the output.

2. Software

C library

Why C?

- 1. Modular equations are likely to be the bottleneck in many algorithms.
- Arb offers control on errors during the computation, allowing provably correct results.
- Fast evaluation of period matrices, Siegel modular forms and theta constants in genus 2 could make their way into Arb, for other applications.

Sage integration

I think the isogeny algorithm should be written in Sage inside the hyperelliptic curves module, or maybe in pari.

Contents

Examples (1)

```
int siegel_fundamental_domain(acb_mat_t w, sp2gz_t m,
const acb_mat_t z, const arb_t tol, slong prec);
int theta2_inverse(acb_mat_t tau, acb_srcptr th2,
slong prec);
int theta2_unif(acb_ptr th2, const acb_mat_t tau,
slong prec);
int mestre(acb_poly_t crv, acb_srcptr I, slong prec);
int tau_from_igusa(acb_mat_t tau, acb_srcptr I, slong
prec);
```

Examples (2)

```
int hilbert_inverse(acb_t t1, acb_t t2, sp2gz_t m,
const acb_mat_t tau, slong delta, slong prec);
int siegel_modeq_eval_Q(fmpz_poly_t num1, fmpz_poly_t
num2, fmpz_poly_t num3, fmpz_t den, fmpq* j, slong
ell):
int siegel_modeq_eval_Fp(fmpz_mod_poly_t pol1,
fmpz_mod_poly_t pol2, fmpz_mod_poly_t pol3, const
fmpz* j, slong ell, const fmpz_mod_ctx_t ctx);
```

theta2_naive.c

theta2_newton.c

theta2_unif.c

Siegel modular equations, level 2

Siegel modular equations, level 3

Work in progress

Current code is tested and has no memory leaks.

- 1. Implement derivatives of modular equations.
- 2. Improve naming scheme.
- 3. Write more tests and benchmarks.
- 4. Write detailed documentation.
- 5. Choose license and make the code public.
- 6. Access from Sage, and implement the isogeny algorithm.
- Try to "prove" correctness of heuristic steps (mathematical analysis, a posteriori certificates, use of Hilbert modular forms defined over Z, ...)

Questions

Questions, comments, feature requests?