
Towards practical key exchange from ordinary
isogeny graphs

Luca De Feo 1,3 Jean Kieffer 2,3,4 Benjamin Smith 3

1UVSQ, Université Paris Saclay

2École normale supérieure, Paris

3Inria and École polytechnique, Université Paris Saclay

4Inria and IMB, Université de Bordeaux

December 6, 2018



Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g.
SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.

CRS characteristics w.r.t. SIDH

Pros
▸ Efficient key validation:
post-quantum NIKE

▸ More “natural” security
hypotheses

Cons
▸ Very slow (minutes)
▸ Subexponential quantum
attack

Both: small keys.



Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g.
SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.

CRS characteristics w.r.t. SIDH
Pros

▸ Efficient key validation:
post-quantum NIKE

▸ More “natural” security
hypotheses

Cons

▸ Very slow (minutes)
▸ Subexponential quantum
attack

Both: small keys.



Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g.
SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.

CRS characteristics w.r.t. SIDH
Pros

▸ Efficient key validation:
post-quantum NIKE

▸ More “natural” security
hypotheses

Cons
▸ Very slow (minutes)
▸ Subexponential quantum
attack

Both: small keys.



Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g.
SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.

CRS characteristics w.r.t. SIDH
Pros

▸ Efficient key validation:
post-quantum NIKE

▸ More “natural” security
hypotheses

Cons
▸ Very slow (minutes)
▸ Subexponential quantum
attack

Both: small keys.



Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g.
SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.

CRS characteristics w.r.t. SIDH
Pros

▸ Efficient key validation:
post-quantum NIKE

▸ More “natural” security
hypotheses

Cons
▸ Very slow (minutes)
▸ Subexponential quantum
attack

Both: small keys.



Goals

CRS is worth improving.

▸ Key validation
▸ Security analysis
▸ Pre- and post-quantum parameter proposals
▸ Algorithmic improvements.



Introduction

The CRS construction

Security analysis

Algorithmic improvements



Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G ,X ) where

▸ G finite commutative group
▸ G ⟳ X

▸ g ↦ g ⋅ x0 is a 1-to-1 correspondence between G and X .

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy
▸ Given x and g ⋅ x , computing g is hard.

Alice

a ←R G
xa ← a ⋅ x0
s ← a ⋅ xb

x0

xbxa

s

ba

b a

Bob

b ←R G
xb ← b ⋅ x0
s ← b ⋅ xa



Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G ,X ) where

▸ G finite commutative group
▸ G ⟳ X

▸ g ↦ g ⋅ x0 is a 1-to-1 correspondence between G and X .

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy
▸ Given x and g ⋅ x , computing g is hard.

Alice

a ←R G
xa ← a ⋅ x0
s ← a ⋅ xb

x0

xbxa

s

ba

b a

Bob

b ←R G
xb ← b ⋅ x0
s ← b ⋅ xa



Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G ,X ) where

▸ G finite commutative group
▸ G ⟳ X

▸ g ↦ g ⋅ x0 is a 1-to-1 correspondence between G and X .

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy
▸ Given x and g ⋅ x , computing g is hard.

Alice

a ←R G

xa ← a ⋅ x0
s ← a ⋅ xb

x0

xbxa

s

ba

b a

Bob

b ←R G

xb ← b ⋅ x0
s ← b ⋅ xa



Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G ,X ) where

▸ G finite commutative group
▸ G ⟳ X

▸ g ↦ g ⋅ x0 is a 1-to-1 correspondence between G and X .

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy
▸ Given x and g ⋅ x , computing g is hard.

Alice

a ←R G
xa ← a ⋅ x0

s ← a ⋅ xb

x0

xbxa

s

ba

b a

Bob

b ←R G
xb ← b ⋅ x0

s ← b ⋅ xa



Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G ,X ) where

▸ G finite commutative group
▸ G ⟳ X

▸ g ↦ g ⋅ x0 is a 1-to-1 correspondence between G and X .

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy
▸ Given x and g ⋅ x , computing g is hard.

Alice

a ←R G
xa ← a ⋅ x0
s ← a ⋅ xb

x0

xbxa

s

ba

b a

Bob

b ←R G
xb ← b ⋅ x0
s ← b ⋅ xa



Cryptography with a group action (2)

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy

where S is a small set of generators.

The same DH key exchange works:
▸ Sample a ← G directly as a product ∏ skii , si ∈ S
▸ Compute a ⋅ x as the sequence of actions of si .



Cryptography with a group action (2)

Hardness hypotheses:
▸ Given g and x , if g ∈ S , computing g ⋅ x is easy

where S is a small set of generators.

The same DH key exchange works:
▸ Sample a ← G directly as a product ∏ skii , si ∈ S
▸ Compute a ⋅ x as the sequence of actions of si .



Cryptography with a group action (2)

Hardness hypotheses:
▸ Given g and x , if g ∈ S , computing g ⋅ x is easy

where S is a small set of generators.

The same DH key exchange works:
▸ Sample a ← G directly as a product ∏ skii , si ∈ S
▸ Compute a ⋅ x as the sequence of actions of si .



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0

xa

xb

s

Bob

b = s1
−2s2

0s3
1



Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard
Homogeneous Space?

Use isogenies between ordinary elliptic curves:
▸ X is a set of ordinary elliptic curves
▸ G is an arithmetic group: class group
▸ S is a set of “small” elements in G

▸ Computing s ⋅ E means computing an isogeny.

Why ordinary? Supersingular and ordinary isogeny graphs do not
have the same structure.



Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard
Homogeneous Space?

Use isogenies between ordinary elliptic curves:
▸ X is a set of ordinary elliptic curves
▸ G is an arithmetic group: class group
▸ S is a set of “small” elements in G

▸ Computing s ⋅ E means computing an isogeny.

Why ordinary? Supersingular and ordinary isogeny graphs do not
have the same structure.



Elliptic curves and isogenies

▸ Fq finite field of large char. p and size q

▸ E ordinary elliptic curve (≠ supersingular) over Fq

▸ ` small prime.

`-isogeny
Algebraic morphism φ between two elliptic curves, of degree `:

▸ Given by rational fractions of degree `
▸ `-to-1, in particular #Kerφ = `.

Endomorphism = isogeny E → E (or 0).
Commutative endomorphism ring End(E).

Fix O and take X = {E ordinary ell. curve ∣ End(E) = O}.



Elliptic curves and isogenies

▸ Fq finite field of large char. p and size q

▸ E ordinary elliptic curve (≠ supersingular) over Fq

▸ ` small prime.

`-isogeny
Algebraic morphism φ between two elliptic curves, of degree `:

▸ Given by rational fractions of degree `
▸ `-to-1, in particular #Kerφ = `.

Endomorphism = isogeny E → E (or 0).
Commutative endomorphism ring End(E).

Fix O and take X = {E ordinary ell. curve ∣ End(E) = O}.



Elliptic curves and isogenies

▸ Fq finite field of large char. p and size q

▸ E ordinary elliptic curve (≠ supersingular) over Fq

▸ ` small prime.

`-isogeny
Algebraic morphism φ between two elliptic curves, of degree `:

▸ Given by rational fractions of degree `
▸ `-to-1, in particular #Kerφ = `.

Endomorphism = isogeny E → E (or 0).
Commutative endomorphism ring End(E).

Fix O and take X = {E ordinary ell. curve ∣ End(E) = O}.



Elliptic curves and isogenies

▸ Fq finite field of large char. p and size q

▸ E ordinary elliptic curve (≠ supersingular) over Fq

▸ ` small prime.

`-isogeny
Algebraic morphism φ between two elliptic curves, of degree `:

▸ Given by rational fractions of degree `
▸ `-to-1, in particular #Kerφ = `.

Endomorphism = isogeny E → E (or 0).
Commutative endomorphism ring End(E).

Fix O and take X = {E ordinary ell. curve ∣ End(E) = O}.



Isogenies/ideals correspondence

E ∈ X , i.e. End(E) = O.

Isogenies from E

`-isogeny φ ∶ E → E ′

x

Endomorphism α ∶ E → E

←→

x

←→

Ideals in O

Ideal l of norm ` in O
= {β vanishing on Kerφ}
Principal ideal (α)

Group action (complex multiplication)
Define l ⋅ E = E ′: codomain of the corresponding `-isogeny.

▸ G is the class group of O: ideals modulo principal ideals.
▸ S is a set of ideals with small prime norms `i .
When `i is nice (split), two ideals of norm `i : li and l−1

i .

Group action of G on X , which we use as a HHS.



Isogenies/ideals correspondence

E ∈ X , i.e. End(E) = O.

Isogenies from E

`-isogeny φ ∶ E → E ′

x

Endomorphism α ∶ E → E

←→

x

←→

Ideals in O

Ideal l of norm ` in O
= {β vanishing on Kerφ}
Principal ideal (α)

Group action (complex multiplication)
Define l ⋅ E = E ′: codomain of the corresponding `-isogeny.

▸ G is the class group of O: ideals modulo principal ideals.
▸ S is a set of ideals with small prime norms `i .
When `i is nice (split), two ideals of norm `i : li and l−1

i .

Group action of G on X , which we use as a HHS.



Isogenies/ideals correspondence

E ∈ X , i.e. End(E) = O.

Isogenies from E

`-isogeny φ ∶ E → E ′

x

Endomorphism α ∶ E → E

←→

x

←→

Ideals in O

Ideal l of norm ` in O
= {β vanishing on Kerφ}
Principal ideal (α)

Group action (complex multiplication)
Define l ⋅ E = E ′: codomain of the corresponding `-isogeny.

▸ G is the class group of O: ideals modulo principal ideals.
▸ S is a set of ideals with small prime norms `i .
When `i is nice (split), two ideals of norm `i : li and l−1

i .

Group action of G on X , which we use as a HHS.



Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1:

E = a ⋅ E0.

E0

E



Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1:

E = a ⋅ E0.

E0

E



Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1:

E = a ⋅ E0.

E0

E



Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1:

E = a ⋅ E0.

E0

E



Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1:

E = a ⋅ E0.

E0

E



Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1: E = a ⋅ E0.

E0

E



Key validation

E is valid protocol data iff End(E) = O.

This can be checked using
▸ a few scalar multiplications on E ,
▸ a few small-degree isogenies.

Key validation is easy and efficient.



Introduction

The CRS construction

Security analysis

Algorithmic improvements



Hardness assumptions

Isogeny DH-analogues:
▸ Class Group Action-DDH (CGA-DDH)
▸ CGA-CDH

Sampling in G using products of small ideals is a probability
distribution σ.

▸ Distinguish σ from the uniform distribution: Isogeny Walk
Distinguishing (IWD).



Security analysis

Theorem (assuming GRH, IWD, CGA-DDH)
The key exchange protocol is session-key secure in the
authenticated-links adversarial model of Canetti–Krawczyk.

Theorem (assuming IWD, CGA-CDH)
The derived hashed ElGamal protocol is IND-CPA secure in the
random oracle model.

Key validation gives CCA-secure encryption. In contrast, CCA
attack against SIKE.PKE (Galbraith et al., AsiaCrypt 2016).



Classical security

CGA-DDH
Compute an isogeny between two curves to recover the key.
Best classical algorithm: O(

√
N) where N = #G ≃ √

q.

▸ Choose log2(q) ≃ 4n.

IWD
Heuristic: it is enough to have keyspace size ≥ √

q.
We cannot prove this even under GRH.

▸ Keyspace size: isogeny degrees `i = O(log q).



Quantum security

Key recovery is an instance of the Hidden Shift Problem.

▸ Kuperberg’s algorithm solves HShP in subexponential time.

▸ This does not mean that CRS is broken.
▸ Estimates on query complexity alone:
log2(q) = 688, 1656, 3068 for NIST levels 1, 3, 5.



Quantum security

Key recovery is an instance of the Hidden Shift Problem.

▸ Kuperberg’s algorithm solves HShP in subexponential time.
▸ This does not mean that CRS is broken.
▸ Estimates on query complexity alone:
log2(q) = 688, 1656, 3068 for NIST levels 1, 3, 5.



Introduction

The CRS construction

Security analysis

Algorithmic improvements



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `) ≪

Modular equation

O(`2 log q)



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `) ≪

Modular equation

O(`2 log q)



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `) ≪

Modular equation

O(`2 log q)



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `) ≪

Modular equation

O(`2 log q)



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `)

≪

Modular equation

O(`2 log q)



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `)

≪

Modular equation

O(`2 log q)



Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `) ≪

Modular equation

O(`2 log q)



The twisting trick

Suppose P ∈ E of order `i allows to compute the action of li . Can
we also compute efficiently the action of l−1

i ?

The twisting trick
Suppose q = −1 mod `i . Then E t (quad. twist) also has a point of
order `i .

▸ We can efficiently compute the action of l−1
i by twisting back

and forth.

Why? The Frobenius on E [`i ] is (1 0
0 q

), so the Frobenius on

E t[`i ] is (−1 0
0 −q) and −q = 1.



The twisting trick

Suppose P ∈ E of order `i allows to compute the action of li . Can
we also compute efficiently the action of l−1

i ?

The twisting trick
Suppose q = −1 mod `i . Then E t (quad. twist) also has a point of
order `i .

▸ We can efficiently compute the action of l−1
i by twisting back

and forth.

Why? The Frobenius on E [`i ] is (1 0
0 q

), so the Frobenius on

E t[`i ] is (−1 0
0 −q) and −q = 1.



The twisting trick

Suppose P ∈ E of order `i allows to compute the action of li . Can
we also compute efficiently the action of l−1

i ?

The twisting trick
Suppose q = −1 mod `i . Then E t (quad. twist) also has a point of
order `i .

▸ We can efficiently compute the action of l−1
i by twisting back

and forth.

Why? The Frobenius on E [`i ] is (1 0
0 q

), so the Frobenius on

E t[`i ] is (−1 0
0 −q) and −q = 1.



Finding good initial curves

More small-order points on E0 = more efficient cryptosystem.

Only exponential algorithms are known to find ordinary curves with
smooth order (no CM method here).

We look for E0 using
▸ early-abort point counting
▸ curve selection with modular curves

but we cannot use our improvements in full even after 2 years CPU
time searching.



Finding good initial curves

More small-order points on E0 = more efficient cryptosystem.

Only exponential algorithms are known to find ordinary curves with
smooth order (no CM method here).

We look for E0 using
▸ early-abort point counting
▸ curve selection with modular curves

but we cannot use our improvements in full even after 2 years CPU
time searching.



Best results

512-bit prime q = 7∏ `i − 1, where the `i are all primes ≤ 380.

Best E0:

#E0(Fq) = 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 103 ⋅ 523 ⋅ 821 ⋅ R
#E t

0(Fq) = (same ≤ 103) ⋅ 947 ⋅ 1723 ⋅ R ′

Discriminant ∆ = −23⋅ squarefree.

Type Isogeny degrees #steps
Torsion (Fq) 11: see above 409
Torsion (Fqr ) 13: 19,661 (r = 3), . . . 81 down to 10
General 25: 73,89, . . . up to 359 6 down to 1

Not enough primes in the first two lines: walk ≃ 520 s.



Best results

512-bit prime q = 7∏ `i − 1, where the `i are all primes ≤ 380.

Best E0:

#E0(Fq) = 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 103 ⋅ 523 ⋅ 821 ⋅ R
#E t

0(Fq) = (same ≤ 103) ⋅ 947 ⋅ 1723 ⋅ R ′

Discriminant ∆ = −23⋅ squarefree.

Type Isogeny degrees #steps
Torsion (Fq) 11: see above 409
Torsion (Fqr ) 13: 19,661 (r = 3), . . . 81 down to 10
General 25: 73,89, . . . up to 359 6 down to 1

Not enough primes in the first two lines: walk ≃ 520 s.



Take away messages

▸ Isogeny graphs can be used to construct post-quantum key
exchange protocols, and post-quantum NIKE.

▸ Our improvements speed up CRS considerably, but we cannot
use them in full with ordinary curves (not enough torsion
points!)
See next talk on CSIDH.


	Introduction
	The CRS construction
	Security analysis
	Algorithmic improvements

