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Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g.
SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.

CRS characteristics w.r.t. SIDH

Pros
▸ Efficient key validation:
post-quantum NIKE

▸ More “natural” security
hypotheses

Cons
▸ Very slow (minutes)
▸ Subexponential quantum
attack

Both: small keys.
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Goals

CRS is worth improving.

▸ Key validation
▸ Security analysis
▸ Pre- and post-quantum parameter proposals
▸ Algorithmic improvements.



Introduction

The CRS construction

Security analysis

Algorithmic improvements



Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G ,X ) where

▸ G finite commutative group
▸ G ⟳ X

▸ g ↦ g ⋅ x0 is a 1-to-1 correspondence between G and X .

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy
▸ Given x and g ⋅ x , computing g is hard.

Alice

a ←R G
xa ← a ⋅ x0
s ← a ⋅ xb

x0

xbxa

s

ba

b a

Bob

b ←R G
xb ← b ⋅ x0
s ← b ⋅ xa
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Cryptography with a group action (2)

Hardness hypotheses:
▸ Given g and x , computing g ⋅ x is easy

where S is a small set of generators.

The same DH key exchange works:
▸ Sample a ← G directly as a product ∏ skii , si ∈ S
▸ Compute a ⋅ x as the sequence of actions of si .
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The Cayley graph

Computing the group action = walking in the Cayley graph:

▸ V = X

▸ Edge labelled by s ∈ S between x and s ⋅ x .

If S = {s1, s2, s3} ∪ {s−1
1 , s−1

2 , s−1
3 }:

Alice

a = s1
2s2

1s3
−1

x0
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xb

s

Bob

b = s1
−2s2

0s3
1
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Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard
Homogeneous Space?

Use isogenies between ordinary elliptic curves:
▸ X is a set of ordinary elliptic curves
▸ G is an arithmetic group: class group
▸ S is a set of “small” elements in G

▸ Computing s ⋅ E means computing an isogeny.

Why ordinary? Supersingular and ordinary isogeny graphs do not
have the same structure.
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Elliptic curves and isogenies

▸ Fq finite field of large char. p and size q

▸ E ordinary elliptic curve (≠ supersingular) over Fq

▸ ` small prime.

`-isogeny
Algebraic morphism φ between two elliptic curves, of degree `:

▸ Given by rational fractions of degree `
▸ `-to-1, in particular #Kerφ = `.

Endomorphism = isogeny E → E (or 0).
Commutative endomorphism ring End(E).

Fix O and take X = {E ordinary ell. curve ∣ End(E) = O}.
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Isogenies/ideals correspondence

E ∈ X , i.e. End(E) = O.

Isogenies from E

`-isogeny φ ∶ E → E ′

x

Endomorphism α ∶ E → E

←→

x

←→

Ideals in O

Ideal l of norm ` in O
= {β vanishing on Kerφ}
Principal ideal (α)

Group action (complex multiplication)
Define l ⋅ E = E ′: codomain of the corresponding `-isogeny.

▸ G is the class group of O: ideals modulo principal ideals.
▸ S is a set of ideals with small prime norms `i .
When `i is nice (split), two ideals of norm `i : li and l−1

i .

Group action of G on X , which we use as a HHS.
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Isogeny walks
Computing the group action = walking in the isogeny graph:

▸ Vertices are elliptic curves,
▸ Edges are isogenies labelled per degree `i (arrows give the
action of li ).

a = (2,1,−1) represents the ideal a = l1
2l2

1l3
−1:

E = a ⋅ E0.

E0

E
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Key validation

E is valid protocol data iff End(E) = O.

This can be checked using
▸ a few scalar multiplications on E ,
▸ a few small-degree isogenies.

Key validation is easy and efficient.



Introduction

The CRS construction

Security analysis

Algorithmic improvements



Hardness assumptions

Isogeny DH-analogues:
▸ Class Group Action-DDH (CGA-DDH)
▸ CGA-CDH

Sampling in G using products of small ideals is a probability
distribution σ.

▸ Distinguish σ from the uniform distribution: Isogeny Walk
Distinguishing (IWD).



Security analysis

Theorem (assuming GRH, IWD, CGA-DDH)
The key exchange protocol is session-key secure in the
authenticated-links adversarial model of Canetti–Krawczyk.

Theorem (assuming IWD, CGA-CDH)
The derived hashed ElGamal protocol is IND-CPA secure in the
random oracle model.

Key validation gives CCA-secure encryption. In contrast, CCA
attack against SIKE.PKE (Galbraith et al., AsiaCrypt 2016).



Classical security

CGA-DDH
Compute an isogeny between two curves to recover the key.
Best classical algorithm: O(

√
N) where N = #G ≃ √

q.

▸ Choose log2(q) ≃ 4n.

IWD
Heuristic: it is enough to have keyspace size ≥ √

q.
We cannot prove this even under GRH.

▸ Keyspace size: isogeny degrees `i = O(log q).



Quantum security

Key recovery is an instance of the Hidden Shift Problem.

▸ Kuperberg’s algorithm solves HShP in subexponential time.

▸ This does not mean that CRS is broken.
▸ Estimates on query complexity alone:
log2(q) = 688, 1656, 3068 for NIST levels 1, 3, 5.
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Computing small-degree isogenies

The basic building block of CRS is computing `-isogenies.

The CRS approach
Use modular equations linking E and E ′.

▸ Find the roots of a degree ` + 1 polynomial over Fq.

Our contribution
Suppose there is some P ∈ E(Fq) of order `.

▸ Find one such P using a scalar multiplication on E ,
▸ Compute the image curve knowing the kernel ⟨P⟩.

Cost analysis

`-torsion point

O(log(q) + `) ≪

Modular equation

O(`2 log q)
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The twisting trick

Suppose P ∈ E of order `i allows to compute the action of li . Can
we also compute efficiently the action of l−1

i ?

The twisting trick
Suppose q = −1 mod `i . Then E t (quad. twist) also has a point of
order `i .

▸ We can efficiently compute the action of l−1
i by twisting back

and forth.

Why? The Frobenius on E [`i ] is (1 0
0 q

), so the Frobenius on

E t[`i ] is (−1 0
0 −q) and −q = 1.
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Finding good initial curves

More small-order points on E0 = more efficient cryptosystem.

Only exponential algorithms are known to find ordinary curves with
smooth order (no CM method here).

We look for E0 using
▸ early-abort point counting
▸ curve selection with modular curves

but we cannot use our improvements in full even after 2 years CPU
time searching.
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Best results

512-bit prime q = 7∏ `i − 1, where the `i are all primes ≤ 380.

Best E0:

#E0(Fq) = 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 103 ⋅ 523 ⋅ 821 ⋅ R
#E t

0(Fq) = (same ≤ 103) ⋅ 947 ⋅ 1723 ⋅ R ′

Discriminant ∆ = −23⋅ squarefree.

Type Isogeny degrees #steps
Torsion (Fq) 11: see above 409
Torsion (Fqr ) 13: 19,661 (r = 3), . . . 81 down to 10
General 25: 73,89, . . . up to 359 6 down to 1

Not enough primes in the first two lines: walk ≃ 520 s.
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Take away messages

▸ Isogeny graphs can be used to construct post-quantum key
exchange protocols, and post-quantum NIKE.

▸ Our improvements speed up CRS considerably, but we cannot
use them in full with ordinary curves (not enough torsion
points!)
See next talk on CSIDH.
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