Towards practical key exchange from ordinary isogeny graphs

Luca De Feo ${ }^{1,3}$ Jean Kieffer 2,3,4 Benjamin Smith ${ }^{3}$
${ }^{1}$ UVSQ，Université Paris Saclay
${ }^{2}$ École normale supérieure，Paris
${ }^{3}$ Inria and École polytechnique，Université Paris Saclay
${ }^{4}$ Inria and IMB，Université de Bordeaux
December 6， 2018

Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev-Stolbunov:
CRS key exchange construction.

Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev-Stolbunov: CRS key exchange construction.

CRS characteristics w.r.t. SIDH
Pros
Cons

Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev-Stolbunov: CRS key exchange construction.

CRS characteristics w.r.t. SIDH
Pros

Cons

- Very slow (minutes)
- Subexponential quantum attack

Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev-Stolbunov:
CRS key exchange construction.
CRS characteristics w.r.t. SIDH

Pros

- Efficient key validation: post-quantum NIKE
- More "natural" security hypotheses

Cons

- Very slow (minutes)
- Subexponential quantum attack

Isogeny-based protocols

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev-Stolbunov:
CRS key exchange construction.
CRS characteristics w.r.t. SIDH

Pros

- Efficient key validation: post-quantum NIKE
- More "natural" security hypotheses

Cons

- Very slow (minutes)
- Subexponential quantum attack

Both: small keys.

Goals

CRS is worth improving.

- Key validation
- Security analysis
- Pre- and post-quantum parameter proposals
- Algorithmic improvements.

Introduction

The CRS construction

Security analysis

Algorithmic improvements

Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \subset X$
- $g \mapsto g \cdot x_{0}$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \subset X$
- $g \mapsto g \cdot x_{0}$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Alice

Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \subset X$
- $g \mapsto g \cdot x_{0}$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Alice	x_{0}	Bob
$a \leftarrow^{R} G$		$b \leftarrow^{R} G$

Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \subset X$
- $g \mapsto g \cdot x_{0}$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

$$
\begin{aligned}
& \text { Alice } \\
& a \leftarrow^{R} G \\
& x_{a} \leftarrow a \cdot x_{0} \\
& \text { Bob } \\
& b \leftarrow^{R} G \\
& x_{b} \leftarrow b \cdot x_{0}
\end{aligned}
$$

Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \subset X$
- $g \mapsto g \cdot x_{0}$ is a 1-to- 1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

$$
\begin{aligned}
& \text { Alice } \\
& a \leftarrow^{R} G \\
& x_{a} \leftarrow a \cdot x_{0} \\
& s \leftarrow a \cdot x_{b} \\
& \text { Bob } \\
& b \leftarrow^{R} G \\
& x_{b} \leftarrow b \cdot x_{0} \\
& s \leftarrow b \cdot x_{a}
\end{aligned}
$$

Cryptography with a group action (2)

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy

Cryptography with a group action (2)

Hardness hypotheses:

- Given g and x, if $g \in S$, computing $g \cdot x$ is easy where S is a small set of generators.

Cryptography with a group action (2)

Hardness hypotheses:

- Given g and x, if $g \in S$, computing $g \cdot x$ is easy where S is a small set of generators.

The same DH key exchange works:

- Sample $a \leftarrow G$ directly as a product $\Pi s_{i}^{k_{i}}, s_{i} \in S$
- Compute $a \cdot x$ as the sequence of actions of s_{i}.

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}^{1} s_{3}-1
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}^{1} s_{3}-1
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}^{1} s_{3}-1
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice
$a=s_{1}^{2} s_{2}^{1} s_{3}-1$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice $a=s_{1}^{2} s_{2}^{1} s_{3}-1$

Bob

$$
b=s_{1}{ }^{-2} s_{2}^{0} s_{3}^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice
$a=s_{1}^{2} s_{2}^{1} s_{3}-1$

Bob

$$
b=s_{1}{ }^{-2} s_{2}^{0} s_{3}^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}^{-2} s_{2}{ }^{0} s_{3}^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice
$a=s_{1}{ }^{2} s_{2}{ }^{1} s_{3}{ }^{-1}$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice
$a=s_{1}{ }^{2} s_{2}{ }^{1} s_{3}{ }^{-1}$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$. If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice

$$
a=s_{1}^{2} s_{2}{ }^{1} s_{3}{ }^{-1}
$$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

The Cayley graph

Computing the group action $=$ walking in the Cayley graph:

- $V=X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S=\left\{s_{1}, s_{2}, s_{3}\right\} \cup\left\{s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}\right\}$:

Alice
$a=s_{1}{ }^{2} s_{2}{ }^{1} s_{3}{ }^{-1}$

Bob

$$
b=s_{1}{ }^{-2} s_{2}{ }^{0} s_{3}{ }^{1}
$$

Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard Homogeneous Space?

Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard Homogeneous Space?

Use isogenies between ordinary elliptic curves:

- X is a set of ordinary elliptic curves
- G is an arithmetic group: class group
- S is a set of "small" elements in G
- Computing $s \cdot E$ means computing an isogeny.

Why ordinary? Supersingular and ordinary isogeny graphs do not have the same structure.

Elliptic curves and isogenies

- \mathbb{F}_{q} finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_{q}
- ℓ small prime.

Elliptic curves and isogenies

- \mathbb{F}_{q} finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_{q}
- ℓ small prime.
ℓ-isogeny
Algebraic morphism ϕ between two elliptic curves, of degree ℓ :
- Given by rational fractions of degree ℓ
- ℓ-to-1, in particular $\# \operatorname{Ker} \phi=\ell$.

Elliptic curves and isogenies

- \mathbb{F}_{q} finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_{q}
- ℓ small prime.

ℓ-isogeny

Algebraic morphism ϕ between two elliptic curves, of degree ℓ :

- Given by rational fractions of degree ℓ
- ℓ-to-1, in particular $\# \operatorname{Ker} \phi=\ell$.

Endomorphism $=$ isogeny $E \rightarrow E$ (or 0).
Commutative endomorphism ring End (E).

Elliptic curves and isogenies

- \mathbb{F}_{q} finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_{q}
- ℓ small prime.

ℓ-isogeny

Algebraic morphism ϕ between two elliptic curves, of degree ℓ :

- Given by rational fractions of degree ℓ
- ℓ-to-1, in particular $\# \operatorname{Ker} \phi=\ell$.

Endomorphism $=$ isogeny $E \rightarrow E$ (or 0).
Commutative endomorphism ring End (E).
Fix \mathcal{O} and take $X=\{E$ ordinary ell. curve $\mid \operatorname{End}(E)=\mathcal{O}\}$.

Isogenies/ideals correspondence

$E \in X$, i.e. $\operatorname{End}(E)=\mathcal{O}$.

Isogenies from E
ℓ-isogeny $\phi: E \rightarrow E^{\prime}$
Endomorphism $\alpha: E \rightarrow E$

Ideals in \mathcal{O}
$\longleftrightarrow \quad$ Ideal \mathfrak{l} of norm ℓ in \mathcal{O}
$=\{\beta$ vanishing on $\operatorname{Ker} \phi\}$
$\longleftrightarrow \quad$ Principal ideal (α)

Isogenies/ideals correspondence

$$
E \in X \text {, i.e. } \operatorname{End}(E)=\mathcal{O}
$$

Isogenies from E
ℓ-isogeny $\phi: E \rightarrow E^{\prime}$
Endomorphism $\alpha: E \rightarrow E$

Ideals in \mathcal{O}
$\longleftrightarrow \quad$ Ideal \mathfrak{l} of norm ℓ in \mathcal{O}
$=\{\beta$ vanishing on $\operatorname{Ker} \phi\}$
$\longleftrightarrow \quad$ Principal ideal (α)

Group action (complex multiplication)
Define $\mathfrak{l} \cdot E=E^{\prime}$: codomain of the corresponding ℓ-isogeny.

Isogenies/ideals correspondence

$$
E \in X \text {, i.e. } \operatorname{End}(E)=\mathcal{O}
$$

Isogenies from E
ℓ-isogeny $\phi: E \rightarrow E^{\prime}$
Endomorphism $\alpha: E \rightarrow E$

Ideals in \mathcal{O}

$\leftrightarrow \quad$ Ideal \mathfrak{l} of norm ℓ in \mathcal{O}
$=\{\beta$ vanishing on $\operatorname{Ker} \phi\}$
$\leftrightarrow \quad$ Principal ideal (α)

Group action (complex multiplication)
Define $\mathfrak{l} \cdot E=E^{\prime}$: codomain of the corresponding ℓ-isogeny.

- G is the class group of \mathcal{O} : ideals modulo principal ideals.
- S is a set of ideals with small prime norms ℓ_{i}. When ℓ_{i} is nice (split), two ideals of norm $\ell_{i}: \mathfrak{l}_{i}$ and \mathfrak{l}_{i}^{-1}.

Group action of G on X, which we use as a HHS.

Isogeny walks

Computing the group action $=$ walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_{i} (arrows give the action of \mathfrak{l}_{i}).
$a=(2,1,-1)$ represents the ideal $\mathfrak{a}=\mathfrak{l}_{1}{ }^{2} \mathfrak{l}_{2}{ }^{1} \mathfrak{l}_{3}{ }^{-1}$:

Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_{i} (arrows give the action of \mathfrak{l}_{i}).
$a=(2,1,-1)$ represents the ideal $\mathfrak{a}=\mathfrak{l}_{1}{ }^{2} \mathfrak{l}_{2}{ }^{1} \mathfrak{l}_{3}{ }^{-1}$:

Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_{i} (arrows give the action of \mathfrak{l}_{i}).
$a=(2,1,-1)$ represents the ideal $\mathfrak{a}=\mathfrak{l}_{1}{ }^{2} \mathfrak{l}_{2}{ }^{1} \mathfrak{l}_{3}{ }^{-1}$:

Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_{i} (arrows give the action of \mathfrak{l}_{i}).
$a=(2,1,-1)$ represents the ideal $\mathfrak{a}=\mathfrak{l}_{1}{ }^{2} \mathfrak{l}_{2}{ }^{1} \mathfrak{l}_{3}{ }^{-1}$:

Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_{i} (arrows give the action of \mathfrak{l}_{i}).
$a=(2,1,-1)$ represents the ideal $\mathfrak{a}=\mathfrak{l}_{1}{ }^{2} \mathfrak{l}_{2}{ }^{1} \mathfrak{l}_{3}{ }^{-1}$:

Isogeny walks

Computing the group action $=$ walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_{i} (arrows give the action of \mathfrak{l}_{i}).
$a=(2,1,-1)$ represents the ideal $\mathfrak{a}=\mathfrak{l}_{1}{ }^{2} \mathfrak{l}_{2}{ }^{1} \mathfrak{l}_{3}{ }^{-1}: \quad E=\mathfrak{a} \cdot E_{0}$.

Key validation

E is valid protocol data iff $\operatorname{End}(E)=\mathcal{O}$.
This can be checked using

- a few scalar multiplications on E,
- a few small-degree isogenies.

Key validation is easy and efficient.

Introduction

The CRS construction

Security analysis

Algorithmic improvements

Hardness assumptions

Isogeny DH-analogues:

- Class Group Action-DDH (CGA-DDH)
- CGA-CDH

Sampling in G using products of small ideals is a probability distribution σ.

- Distinguish σ from the uniform distribution: Isogeny Walk Distinguishing (IWD).

Security analysis

Theorem (assuming GRH, IWD, CGA-DDH)
The key exchange protocol is session-key secure in the authenticated-links adversarial model of Canetti-Krawczyk.

Theorem (assuming IWD, CGA-CDH)
The derived hashed EIGamal protocol is IND-CPA secure in the random oracle model.

Key validation gives CCA-secure encryption. In contrast, CCA attack against SIKE.PKE (Galbraith et al., AsiaCrypt 2016).

Classical security

CGA-DDH

Compute an isogeny between two curves to recover the key. Best classical algorithm: $O(\sqrt{N})$ where $N=\# G \simeq \sqrt{q}$.

- Choose $\log _{2}(q) \simeq 4 n$.

IWD
Heuristic: it is enough to have keyspace size $\geq \sqrt{q}$.
We cannot prove this even under GRH.

- Keyspace size: isogeny degrees $\ell_{i}=O(\log q)$.

Quantum security

Key recovery is an instance of the Hidden Shift Problem.

- Kuperberg's algorithm solves HShP in subexponential time.

Quantum security

Key recovery is an instance of the Hidden Shift Problem.

- Kuperberg's algorithm solves HShP in subexponential time.
- This does not mean that CRS is broken.
- Estimates on query complexity alone: $\log _{2}(q)=688,1656,3068$ for NIST levels 1, 3, 5.

Introduction

The CRS construction

Security analysis

Algorithmic improvements

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
The CRS approach
Use modular equations linking E and E^{\prime}.

- Find the roots of a degree $\ell+1$ polynomial over $\mathbb{F}_{\boldsymbol{q}}$.

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
The CRS approach
Use modular equations linking E and E^{\prime}.

- Find the roots of a degree $\ell+1$ polynomial over \mathbb{F}_{q}.

Our contribution

Suppose there is some $P \in E\left(\mathbb{F}_{q}\right)$ of order ℓ.

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P\rangle$.

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
The CRS approach
Use modular equations linking E and E^{\prime}.

- Find the roots of a degree $\ell+1$ polynomial over \mathbb{F}_{q}.

Our contribution
Suppose there is some $P \in E\left(\mathbb{F}_{q}\right)$ of order ℓ.

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P\rangle$.

Cost analysis
ℓ-torsion point
Modular equation

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
The CRS approach
Use modular equations linking E and E^{\prime}.

- Find the roots of a degree $\ell+1$ polynomial over \mathbb{F}_{q}.

Our contribution
Suppose there is some $P \in E\left(\mathbb{F}_{q}\right)$ of order ℓ.

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P\rangle$.

Cost analysis
ℓ-torsion point
Modular equation

$$
O(\log (q)+\ell)
$$

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
The CRS approach
Use modular equations linking E and E^{\prime}.

- Find the roots of a degree $\ell+1$ polynomial over \mathbb{F}_{q}.

Our contribution

Suppose there is some $P \in E\left(\mathbb{F}_{q}\right)$ of order ℓ.

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P\rangle$.

Cost analysis
ℓ-torsion point

$$
O(\log (q)+\ell)
$$

Modular equation $O\left(\ell^{2} \log q\right)$

Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
The CRS approach
Use modular equations linking E and E^{\prime}.

- Find the roots of a degree $\ell+1$ polynomial over \mathbb{F}_{q}.

Our contribution
Suppose there is some $P \in E\left(\mathbb{F}_{q}\right)$ of order ℓ.

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P\rangle$.

Cost analysis
ℓ-torsion point

$$
O(\log (q)+\ell)
$$

<

Modular equation
$O\left(\ell^{2} \log q\right)$

The twisting trick

Suppose $P \in E$ of order ℓ_{i} allows to compute the action of \mathfrak{l}_{i}. Can we also compute efficiently the action of \mathfrak{l}_{i}^{-1} ?

The twisting trick

Suppose $P \in E$ of order ℓ_{i} allows to compute the action of \mathfrak{l}_{i}. Can we also compute efficiently the action of \mathfrak{l}_{i}^{-1} ?

The twisting trick
Suppose $q=-1 \bmod \ell_{i}$. Then E^{t} (quad. twist) also has a point of order ℓ_{i}.

- We can efficiently compute the action of \mathfrak{r}_{i}^{-1} by twisting back and forth.

The twisting trick

Suppose $P \in E$ of order ℓ_{i} allows to compute the action of \mathfrak{l}_{i}. Can we also compute efficiently the action of \mathfrak{l}_{i}^{-1} ?

The twisting trick
Suppose $q=-1 \bmod \ell_{i}$. Then E^{t} (quad. twist) also has a point of order ℓ_{i}.

- We can efficiently compute the action of \mathfrak{l}_{i}^{-1} by twisting back and forth.

Why? The Frobenius on $E\left[\ell_{i}\right]$ is $\left(\begin{array}{ll}1 & 0 \\ 0 & q\end{array}\right)$, so the Frobenius on $E^{t}\left[\ell_{i}\right]$ is $\left(\begin{array}{cc}-1 & 0 \\ 0 & -q\end{array}\right)$ and $-q=1$.

Finding good initial curves

More small-order points on $E_{0}=$ more efficient cryptosystem.

Finding good initial curves

More small-order points on $E_{0}=$ more efficient cryptosystem.
Only exponential algorithms are known to find ordinary curves with smooth order (no CM method here).

We look for E_{0} using

- early-abort point counting
- curve selection with modular curves
but we cannot use our improvements in full even after 2 years CPU time searching.

Best results

512-bit prime $q=7 \Pi \ell_{i}-1$, where the ℓ_{i} are all primes ≤ 380.
Best E_{0} :

$$
\begin{aligned}
& \# E_{0}\left(\mathbb{F}_{q}\right)=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 103 \cdot 523 \cdot 821 \cdot R \\
& \# E_{0}^{t}\left(\mathbb{F}_{q}\right)=(\text { same } \leq 103) \cdot 947 \cdot 1723 \cdot R^{\prime}
\end{aligned}
$$

Discriminant $\Delta=-2^{3}$. squarefree.

Best results

512-bit prime $q=7 \Pi \ell_{i}-1$, where the ℓ_{i} are all primes ≤ 380.
Best E_{0} :

$$
\begin{aligned}
& \# E_{0}\left(\mathbb{F}_{q}\right)=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 103 \cdot 523 \cdot 821 \cdot R \\
& \# E_{0}^{t}\left(\mathbb{F}_{q}\right)=(\text { same } \leq 103) \cdot 947 \cdot 1723 \cdot R^{\prime}
\end{aligned}
$$

Discriminant $\Delta=-2^{3}$. squarefree.

Type	Isogeny degrees	\#steps
Torsion $\left(\mathbb{F}_{q}\right)$	$11:$ see above	409
Torsion $\left(\mathbb{F}_{q^{r}}\right)$	$13: \quad 19,661(r=3), \ldots$	81 down to 10
General	$25: \quad 73,89, \ldots$ up to 359	6 down to 1

Not enough primes in the first two lines: walk $\simeq 520 \mathrm{~s}$.

Take away messages

- Isogeny graphs can be used to construct post-quantum key exchange protocols, and post-quantum NIKE.
- Our improvements speed up CRS considerably, but we cannot use them in full with ordinary curves (not enough torsion points!)
See next talk on CSIDH.

