Towards practical key exchange from ordinary isogeny graphs

Luca De Feo 1,3 Jean Kieffer 2,3,4 Benjamin Smith 3

1 UVSQ, Université Paris Saclay

2 École normale supérieure, Paris

3 Inria and École polytechnique, Université Paris Saclay

4 Inria and IMB, Université de Bordeaux

December 6, 2018
Isogeny-based protocols

Post-quantum candidates for key exchange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov:
CRS key exchange construction.
Isogeny-based protocols

Post-quantum candidates for key exchange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction*.

CRS characteristics w.r.t. SIDH

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient key validation: post-quantum NIKE</td>
<td>Very slow (minutes)</td>
</tr>
<tr>
<td>More "natural" security hypotheses</td>
<td>Subexponential quantum attack</td>
</tr>
</tbody>
</table>
Isogeny-based protocols

Post-quantum candidates for key exchange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: \textit{CRS key exchange construction}.

\textbf{CRS characteristics w.r.t. SIDH}

\begin{itemize}
 \item \textbf{Pros}
 \item \textbf{Cons}
 \begin{itemize}
 \item Very slow (minutes)
 \item Subexponential quantum attack
 \end{itemize}
\end{itemize}
Isogeny-based protocols

Post-quantum candidates for key exchange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction.*

CRS characteristics w.r.t. SIDH

Pros
- Efficient key validation: post-quantum NIKE
- More “natural” security hypotheses

Cons
- Very slow (minutes)
- Subexponential quantum attack
Isogeny-based protocols

Post-quantum candidates for key exchange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction.*

CRS characteristics w.r.t. SIDH

Pros
- Efficient key validation: post-quantum NIKE
- More “natural” security hypotheses

Cons
- Very slow (minutes)
- Subexponential quantum attack

Both: small keys.
Goals

CRS is worth improving.

- Key validation
- Security analysis
- Pre- and post-quantum parameter proposals
- Algorithmic improvements.
Introduction

The CRS construction

Security analysis

Algorithmic improvements
Cryptography with a group action

Hard Homogeneous Space (Couveignes): \((G, X)\) where

- \(G\) finite commutative group
- \(G \triangleleft X\)
- \(g \mapsto g \cdot x_0\) is a 1-to-1 correspondence between \(G\) and \(X\).

Hardness hypotheses:

- Given \(g\) and \(x\), computing \(g \cdot x\) is easy
- Given \(x\) and \(g \cdot x\), computing \(g\) is hard.
Cryptography with a group action

Hard Homogeneous Space (Couveignes): \((G, X)\) where

- \(G\) finite commutative group
- \(G \subseteq X\)
- \(g \mapsto g \cdot x_0\) is a 1-to-1 correspondence between \(G\) and \(X\).

Hardness hypotheses:

- Given \(g\) and \(x\), computing \(g \cdot x\) is easy
- Given \(x\) and \(g \cdot x\), computing \(g\) is hard.

Alice

\[x_0 \]

Bob

\[x_0 \]
Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \curvearrowright X$
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Alice

1. $a \leftarrow^R G$
2. x_0

Bob

1. $b \leftarrow^R G$
Cryptography with a group action

Hard Homogeneous Space (Couveignes): \((G, X)\) where

- \(G\) finite commutative group
- \(G \trianglelefteq X\)
- \(g \mapsto g \cdot x_0\) is a 1-to-1 correspondence between \(G\) and \(X\).

Hardness hypotheses:

- Given \(g\) and \(x\), computing \(g \cdot x\) is easy
- Given \(x\) and \(g \cdot x\), computing \(g\) is hard.

Alice

\[
\begin{align*}
 a & \leftarrow_R G \\
 x_a & \leftarrow a \cdot x_0
\end{align*}
\]

Bob

\[
\begin{align*}
 b & \leftarrow_R G \\
 x_b & \leftarrow b \cdot x_0
\end{align*}
\]
Cryptography with a group action

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- $G \trianglelefteq X$
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Alice

$a \leftarrow_R G$

$x_a \leftarrow a \cdot x_0$

$s \leftarrow a \cdot x_b$

Bob

$b \leftarrow_R G$

$x_b \leftarrow b \cdot x_0$

$s \leftarrow b \cdot x_a$
Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
Hardness hypotheses:

- Given g and x, if $g \in S$, computing $g \cdot x$ is easy where S is a small set of generators.
Hardness hypotheses:
 ▸ Given g and x, if $g \in S$, computing $g \cdot x$ is easy where S is a small set of generators.

The same DH key exchange works:
 ▸ Sample $a \leftarrow G$ directly as a product $\prod s_i^{k_i}$, $s_i \in S$
 ▸ Compute $a \cdot x$ as the sequence of actions of s_i.
The Cayley graph

Computing the group action = walking in the *Cayley graph*:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

$$a = s_1^2 s_2^{-1} s_3^{-1}$$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- \(V = X \)
- Edge labelled by \(s \in S \) between \(x \) and \(s \cdot x \).

If \(S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\} \):

\[
\begin{align*}
Alice & \quad a = s_1^2 s_2^{-1} s_3^{-1} \\
Bob & \quad b = s_1^{-2} s_2 s_3^{-1}
\end{align*}
\]
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$a = s_1^2 s_2^1 s_3^{-1}$
The Cayley graph

Computing the group action = walking in the *Cayley graph*:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$$a = s_1^2 s_2^{-1} s_3^{-1}$$

Bob

$$b = s_1^{-2} s_2^0 s_3^1$$
The Cayley graph

Computing the group action \(= \) walking in the Cayley graph:

- \(V = X \)
- Edge labelled by \(s \in S \) between \(x \) and \(s \cdot x \).

If \(S = \{ s_1, s_2, s_3 \} \cup \{ s_1^{-1}, s_2^{-1}, s_3^{-1} \} \):

\[
\begin{align*}
A_{lice} \quad a &= s_1^2 s_2 s_3^{-1} \\
\end{align*}
\]
The Cayley graph

Computing the group action = walking in the *Cayley graph*:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_{-1}^1, s_{-1}^2, s_{-1}^3\}$:

Alice

$$a = s_1^2 s_2^{-1} s_3^{-1}$$

Bob

$$b = s_1^{-2} s_2^0 s_3^1$$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

$$a = s_1^2 s_2^{-1} s_3^{-1}$$

Alice

$$b = s_1^{-2} s_2^0 s_3^1$$

Bob
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$$a = s_1^2 s_2 s_3^{-1}$$

Bob

$$b = s_1^{-2} s_2^0 s_3^1$$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$$a = s_1^2 s_2^{-1} s_3^{-1}$$

Bob

$$b = s_1^{-2} s_2^0 s_3^1$$
The Cayley graph

Computing the group action = walking in the *Cayley graph*:

- \(V = X \)
- Edge labelled by \(s \in S \) between \(x \) and \(s \cdot x \).

If \(S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\} \):

Alice

\[a = s_1^2 s_2^{-1} s_3^{-1} \]

Bob

\[b = s_1^{-2} s_2^0 s_3^1 \]
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$a = s_1^2 s_2^{-1} s_3^{-1}$

Bob

$b = s_1^{-2} s_2^0 s_3^1$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$a = s_1^2 s_2^{-1} s_3^{-1}$

Bob

$b = s_1^{-2} s_2^0 s_3^1$
The Cayley graph

Computing the group action = walking in the *Cayley graph*:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$a = s_1^2 s_2^{-1} s_3^{-1}$

Bob

$b = s_1^{-2} s_2^0 s_3^1$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$a = s_1^2 s_2^{-1} s_3^{-1}$

Bob

$b = s_1^{-2} s_2^0 s_3^1$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice\[a = s_1^2 s_2^{-1} s_3^{-1}\]

Bob\[b = s_1^{-2} s_2^0 s_3^1\]
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

$a = s_1^2 s_2^{-1} s_3^{-1}$

Bob

$b = s_1^{-2} s_2^0 s_3^1$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

$$a = s_1^2 s_2^{-1} s_3^{-1}$$

$$b = s_1^{-2} s_2^0 s_3^1$$
The Cayley graph

Computing the group action = walking in the Cayley graph:

- $V = X$
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

\[a = s_1^2 s_2^1 s_3^{-1} \]

Bob

\[b = s_1^{-2} s_2^0 s_3^1 \]
Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard Homogeneous Space?
Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard Homogeneous Space?

Use isogenies between ordinary elliptic curves:

- \(X \) is a set of ordinary elliptic curves
- \(G \) is an arithmetic group: class group
- \(S \) is a set of “small” elements in \(G \)
- Computing \(s \cdot E \) means computing an isogeny.

Why ordinary? Supersingular and ordinary isogeny graphs do not have the same structure.
Elliptic curves and isogenies

- \mathbb{F}_q finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q
- ℓ small prime.
Elliptic curves and isogenies

- \(\mathbb{F}_q \) finite field of large char. \(p \) and size \(q \)
- \(E \) ordinary elliptic curve (≠ supersingular) over \(\mathbb{F}_q \)
- \(\ell \) small prime.

\(\ell \)-isogeny

Algebraic morphism \(\phi \) between two elliptic curves, of degree \(\ell \):
- Given by rational fractions of degree \(\ell \)
- \(\ell \)-to-1, in particular \(\# \text{Ker} \phi = \ell \).
Elliptic curves and isogenies

- \mathbb{F}_q finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q
- ℓ small prime.

\(\ell\)-isogeny

Algebraic morphism \(\phi\) between two elliptic curves, of degree \(\ell\):

- Given by rational fractions of degree \(\ell\)
- \(\ell\)-to-1, in particular \(\# \text{Ker } \phi = \ell\).

Endomorphism = isogeny \(E \rightarrow E\) (or 0).

Commutative endomorphism ring \(\text{End}(E)\).
Elliptic curves and isogenies

- \mathbb{F}_q finite field of large char. p and size q
- E ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q
- ℓ small prime.

ℓ-isogeny

Algebraic morphism ϕ between two elliptic curves, of degree ℓ:
- Given by rational fractions of degree ℓ
- ℓ-to-1, in particular $\# \text{Ker } \phi = \ell$.

$\text{Endomorphism} = \text{isogeny } E \rightarrow E$ (or 0).
Commutative endomorphism ring $\text{End}(E)$.

Fix \mathcal{O} and take $X = \{ E \text{ ordinary ell. curve} \mid \text{End}(E) = \mathcal{O} \}$.
Isogenies/ideals correspondence

\[E \in X, \text{ i.e. } \text{End}(E) = \mathcal{O}. \]

Isogenies from \(E \)

\(\ell \)-isogeny \(\phi : E \to E' \) \iff Ideal \(\mathfrak{l} \) of norm \(\ell \) in \(\mathcal{O} \) = \(\{ \beta \text{ vanishing on Ker } \phi \} \)

Endomorphism \(\alpha : E \to E \) \iff Principal ideal \((\alpha) \)
Isogenies/ideals correspondence

\[\mathcal{I} \cdot E, \text{ i.e. } \text{End}(E) = \mathcal{O}. \]

Isogenies from \(E \) \hspace{1cm} **Ideals in** \(\mathcal{O} \)

\(\ell \)-isogeny \(\phi : E \to E' \) \hspace{1cm} Ideal \(\mathfrak{l} \) of norm \(\ell \) in \(\mathcal{O} \)

\hspace{1cm} = \{ \beta \text{ vanishing on Ker } \phi \} \\

Endomorphism \(\alpha : E \to E \) \hspace{1cm} Principal ideal \((\alpha) \)

Group action (complex multiplication)

Define \(\mathfrak{l} \cdot E = E' \): codomain of the corresponding \(\ell \)-isogeny.
Isogenies/ideals correspondence

\[E \in X, \text{ i.e. } \text{End}(E) = \mathcal{O}. \]

Isogenies from \(E \)
\(\ell \)-isogeny \(\phi : E \to E' \)
Endomorphism \(\alpha : E \to E \)

Ideals in \(\mathcal{O} \)
Ideal \(\mathfrak{l} \) of norm \(\ell \) in \(\mathcal{O} \)
= \{ \beta \text{ vanishing on Ker } \phi \}
Principal ideal \((\alpha) \)

Group action (complex multiplication)
Define \(\mathfrak{l} \cdot E = E' \): codomain of the corresponding \(\ell \)-isogeny.

- \(G \) is the class group of \(\mathcal{O} \): ideals modulo principal ideals.
- \(S \) is a set of ideals with small prime norms \(\ell_i \).
 When \(\ell_i \) is nice (split), two ideals of norm \(\ell_i \): \(\mathfrak{l}_i \) and \(\mathfrak{l}_i^{-1} \).

Group action of \(G \) on \(X \), which we use as a HHS.
Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_i (arrows give the action of ℓ_i).

$a = (2, 1, -1)$ represents the ideal $a = \ell_1^2 \ell_2^1 \ell_3^{-1}$:
Isogeny walks

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_i (arrows give the action of ℓ_i).

$a = (2, 1, -1)$ represents the ideal $a = \ell_1^2 \ell_2^{-1} \ell_3^{-1}$:
Isogeny walks

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_i (arrows give the action of ℓ_i).

$a = (2, 1, -1)$ represents the ideal $a = l_1^2 l_2^{-1} l_3^{-1}$:
Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree \(\ell_i \) (arrows give the action of \(\ell_i \)).

\[a = (2, 1, -1) \] represents the ideal \(a = \ell_1^2 \ell_2^1 \ell_3^{-1} \):
Isogeny walks

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_i (arrows give the action of ℓ_i).

$a = (2, 1, -1)$ represents the ideal $a = \ell_1^2 \ell_2^{-1} \ell_3^{-1}$:
Isogeny walks

Computing the group action = walking in the isogeny graph:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree ℓ_i (arrows give the action of ℓ_i).

$a = (2, 1, -1)$ represents the ideal $a = l_1^2 l_2^1 l_3^{-1}$: $E = a \cdot E_0$.

![Diagram of isogeny graph with elliptic curves and arrows indicating the action of ideals.](image-url)
Key validation

E is valid protocol data iff $\text{End}(E) = \mathcal{O}$.

This can be checked using
- a few scalar multiplications on E,
- a few small-degree isogenies.

Key validation is easy and efficient.
Introduction

The CRS construction

Security analysis

Algorithmic improvements
Hardness assumptions

Isogeny DH-analogues:

- Class Group Action-DDH (CGA-DDH)
- CGA-CDH

Sampling in G using products of small ideals is a probability distribution σ.

- Distinguish σ from the uniform distribution: Isogeny Walk Distinguishing (IWD).
Security analysis

Theorem (assuming GRH, IWD, CGA-DDH)
The key exchange protocol is session-key secure in the authenticated-links adversarial model of Canetti–Krawczyk.

Theorem (assuming IWD, CGA-CDH)
The derived hashed ElGamal protocol is IND-CPA secure in the random oracle model.

Key validation gives CCA-secure encryption. In contrast, CCA attack against SIKE.PKE (Galbraith et al., AsiaCrypt 2016).
Classical security

CGA-DDH
Compute an isogeny between two curves to recover the key.
Best classical algorithm: $O(\sqrt{N})$ where $N = \#G \simeq \sqrt{q}$.

- Choose $\log_2(q) \approx 4n$.

IWD
Heuristic: it is enough to have keyspace size $\geq \sqrt{q}$.
We cannot prove this even under GRH.

- Keyspace size: isogeny degrees $\ell_i = O(\log q)$.
Quantum security

Key recovery is an instance of the Hidden Shift Problem.

- Kuperberg’s algorithm solves HShP in subexponential time.
Quantum security

Key recovery is an instance of the Hidden Shift Problem.

- Kuperberg’s algorithm solves HShP in subexponential time.
- This does not mean that CRS is broken.
- Estimates on query complexity alone:
 \(\log_2(q) = 688, 1656, 3068 \) for NIST levels 1, 3, 5.
Introduction

The CRS construction

Security analysis

Algorithmic improvements
Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.
Computing small-degree isogenies

The basic building block of CRS is computing \(\ell\)-isogenies.

The CRS approach

Use *modular equations* linking \(E\) and \(E'\).

- Find the roots of a degree \(\ell + 1\) polynomial over \(\mathbb{F}_q\).
Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.

The CRS approach
Use modular equations linking E and E'.
- Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q.

Our contribution
Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ.
- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.
Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.

The CRS approach
Use *modular equations* linking E and E'.
- Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q.

Our contribution
Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ.
- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

ℓ-torsion point Modular equation
Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.

The CRS approach
Use modular equations linking E and E'.

- Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q.

Our contribution
Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ.

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

ℓ-torsion point

$O(\log(q) + \ell)$

Modular equation

$O(\ell^2 \log(q))$
Computing small-degree isogenies

The basic building block of CRS is computing \(\ell \)-isogenies.

The CRS approach

Use *modular equations* linking \(E \) and \(E' \).
- Find the roots of a degree \(\ell + 1 \) polynomial over \(\mathbb{F}_q \).

Our contribution

Suppose there is some \(P \in E(\mathbb{F}_q) \) of order \(\ell \).
- Find one such \(P \) using a scalar multiplication on \(E \),
- Compute the image curve knowing the kernel \(\langle P \rangle \).

Cost analysis

\(\ell \)-torsion point \hspace{2cm} \text{Modular equation}

\[O(\log(q) + \ell) \hspace{3cm} O(\ell^2 \log q) \]
Computing small-degree isogenies

The basic building block of CRS is computing ℓ-isogenies.

The CRS approach
Use modular equations linking E and E'.
- Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q.

Our contribution
Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ.
- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

<table>
<thead>
<tr>
<th>ℓ-torsion point</th>
<th>Modular equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(\log(q) + \ell)$</td>
<td>$O(\ell^2 \log q)$</td>
</tr>
</tbody>
</table>
The twisting trick

Suppose $P \in E$ of order ℓ_i allows to compute the action of ℓ_i. Can we also compute efficiently the action of ℓ_i^{-1}?
The twisting trick

Suppose $P \in E$ of order ℓ_i allows to compute the action of l_i. Can we also compute efficiently the action of l_i^{-1}?

The twisting trick

Suppose $q = -1 \mod \ell_i$. Then E^t (quad. twist) also has a point of order ℓ_i.

- We can efficiently compute the action of l_i^{-1} by twisting back and forth.
The twisting trick

Suppose \(P \in E \) of order \(\ell_i \) allows to compute the action of \(\ell_i \). Can we also compute efficiently the action of \(\ell_i^{-1} \)?

The twisting trick

Suppose \(q = -1 \mod \ell_i \). Then \(E^t \) (quad. twist) also has a point of order \(\ell_i \).

- We can efficiently compute the action of \(\ell_i^{-1} \) by twisting back and forth.

Why? The Frobenius on \(E[\ell_i] \) is \(\begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \), so the Frobenius on \(E^t[\ell_i] \) is \(\begin{pmatrix} -1 & 0 \\ 0 & -q \end{pmatrix} \) and \(-q = 1 \).
Finding good initial curves

More small-order points on $E_0 = \text{more efficient cryptosystem.}$
Finding good initial curves

More small-order points on E_0 = more efficient cryptosystem.

Only exponential algorithms are known to find ordinary curves with smooth order (no CM method here).

We look for E_0 using

- early-abort point counting
- curve selection with modular curves

but we cannot use our improvements in full even after 2 years CPU time searching.
Best results

512-bit prime $q = 7 \prod \ell_i - 1$, where the ℓ_i are all primes ≤ 380.

Best E_0:

\[
\#E_0(\mathbb{F}_q) = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 103 \cdot 523 \cdot 821 \cdot R \\
\#E_0^t(\mathbb{F}_q) = (\text{same } \leq 103) \cdot 947 \cdot 1723 \cdot R'
\]

Discriminant $\Delta = -2^3 \cdot \text{squarefree}$.
512-bit prime $q = 7 \prod \ell_i - 1$, where the ℓ_i are all primes ≤ 380.

Best E_0:

$$\#E_0(F_q) = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 103 \cdot 523 \cdot 821 \cdot R$$

$$\#E_0^t(F_q) = (\text{same } \leq 103) \cdot 947 \cdot 1723 \cdot R'$$

Discriminant $\Delta = -2^3 \cdot \text{squarefree}$.

<table>
<thead>
<tr>
<th>Type</th>
<th>Isogeny degrees</th>
<th>#steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torsion (F_q)</td>
<td>11: see above</td>
<td>409</td>
</tr>
<tr>
<td>Torsion (F_{q^r})</td>
<td>13: 19, 661 ($r = 3$), ...</td>
<td>81 down to 10</td>
</tr>
<tr>
<td>General</td>
<td>25: 73, 89, ... up to 359</td>
<td>6 down to 1</td>
</tr>
</tbody>
</table>

Not enough primes in the first two lines: walk ≈ 520 s.
Take away messages

- Isogeny graphs can be used to construct post-quantum key exchange protocols, and post-quantum NIKE.
- Our improvements speed up CRS considerably, but we cannot use them in full with ordinary curves (not enough torsion points!)
 See next talk on CSIDH.