Towards practical key exchange from ordinary isogeny graphs

Luca De Feo^{1,3} Jean Kieffer^{2,3,4} Benjamin Smith³

¹UVSQ, Université Paris Saclay

²École normale supérieure, Paris

³Inria and École polytechnique, Université Paris Saclay

⁴Inria and IMB, Université de Bordeaux

December 6, 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction*.

CRS characteristics w.r.t. SIDH Pros

Cons

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction*.

CRS characteristics w.r.t. SIDH Pros

Cons

- Very slow (minutes)
- Subexponential quantum attack

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction*.

CRS characteristics w.r.t. SIDH

Pros

- Efficient key validation: post-quantum NIKE
- More "natural" security hypotheses

Cons

- Very slow (minutes)
- Subexponential quantum attack

・ロット 本語 と 本語 と 本語 と キロ と

Post-quantum candidates for key echange/encapsulation: e.g. SIDH/SIKE.

Inspired by earlier ideas of Couveignes and Rostovtsev–Stolbunov: *CRS key exchange construction*.

CRS characteristics w.r.t. SIDH

Pros

- Efficient key validation: post-quantum NIKE
- More "natural" security hypotheses

Cons

- Very slow (minutes)
- Subexponential quantum attack

Both: small keys.

Goals

CRS is worth improving.

- Key validation
- Security analysis
- Pre- and post-quantum parameter proposals

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithmic improvements.

Introduction

The CRS construction

Security analysis

Algorithmic improvements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hard Homogeneous Space (Couveignes): (G, X) where

- *G* finite commutative group
- G C X
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Hard Homogeneous Space (Couveignes): (G, X) where

- *G* finite commutative group
- G C X
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Alice

*x*0

Bob

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Hard Homogeneous Space (Couveignes): (G, X) where

- *G* finite commutative group
- G C X
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

Hard Homogeneous Space (Couveignes): (G, X) where

- *G* finite commutative group
- G C X
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Hard Homogeneous Space (Couveignes): (G, X) where

- G finite commutative group
- G (C) X
- $g \mapsto g \cdot x_0$ is a 1-to-1 correspondence between G and X.

Hardness hypotheses:

- Given g and x, computing $g \cdot x$ is easy
- Given x and $g \cdot x$, computing g is hard.

▲ロト ▲撮 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q ()

Hardness hypotheses:

• Given g and x, computing $g \cdot x$ is easy

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Hardness hypotheses:

• Given g and x, if $g \in S$, computing $g \cdot x$ is easy where S is a small set of generators.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Hardness hypotheses:

• Given g and x, if $g \in S$, computing $g \cdot x$ is easy where S is a small set of generators.

The same DH key exchange works:

• Sample $a \leftarrow G$ directly as a product $\prod s_i^{k_i}$, $s_i \in S$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Compute $a \cdot x$ as the sequence of actions of s_i .

Computing the group action = walking in the *Cayley graph*:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- ► V = X
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Computing the group action = walking in the *Cayley graph*:

- ► V = X
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Computing the group action = walking in the *Cayley graph*:

- ► *V* = *X*
- Edge labelled by $s \in S$ between x and $s \cdot x$.

If $S = \{s_1, s_2, s_3\} \cup \{s_1^{-1}, s_2^{-1}, s_3^{-1}\}$:

Alice

Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard Homogeneous Space?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Which HHS could we use?

Where can we find such a (potentially quantum-resistant) Hard Homogeneous Space?

Use isogenies between ordinary elliptic curves:

- X is a set of ordinary elliptic curves
- *G* is an arithmetic group: *class group*
- S is a set of "small" elements in G
- Computing $s \cdot E$ means computing an *isogeny*.

Why ordinary? Supersingular and ordinary isogeny graphs do not have the same structure.

- \mathbb{F}_q finite field of large char. p and size q
- *E* ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• ℓ small prime.

- \mathbb{F}_q finite field of large char. p and size q
- *E* ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q
- ℓ small prime.

ℓ-isogeny

Algebraic morphism ϕ between two elliptic curves, of degree ℓ :

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- \blacktriangleright Given by rational fractions of degree ℓ
- ℓ -to-1, in particular $\# \operatorname{Ker} \phi = \ell$.

- \mathbb{F}_q finite field of large char. p and size q
- *E* ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q
- ℓ small prime.

ℓ-isogeny

Algebraic morphism ϕ between two elliptic curves, of *degree* ℓ :

ション ふゆ く 山 マ チャット しょうくしゃ

- \blacktriangleright Given by rational fractions of degree ℓ
- ℓ -to-1, in particular $\# \operatorname{Ker} \phi = \ell$.

Endomorphism = isogeny $E \rightarrow E$ (or 0). Commutative endomorphism ring End(E).

- \mathbb{F}_q finite field of large char. p and size q
- *E* ordinary elliptic curve (\neq supersingular) over \mathbb{F}_q
- *l* small prime.

ℓ -isogeny

Algebraic morphism ϕ between two elliptic curves, of *degree* ℓ :

- \blacktriangleright Given by rational fractions of degree ℓ
- ℓ -to-1, in particular $\# \operatorname{Ker} \phi = \ell$.

Endomorphism = isogeny $E \rightarrow E$ (or 0). Commutative endomorphism ring End(E).

Fix \mathcal{O} and take $X = \{E \text{ ordinary ell. curve } | \text{ End}(E) = \mathcal{O}\}.$

Isogenies/ideals correspondence

$$E \in X$$
, i.e. $End(E) = O$.

Isogenies from E

 $\ell\text{-isogeny }\phi: \ E \to E' \qquad \longleftrightarrow$

Endomorphism $\alpha: E \to E \longleftrightarrow$

 $\mathsf{Ideals} \mathsf{ in } \mathcal{O}$

Ideal I of norm ℓ in \mathcal{O} = { β vanishing on Ker ϕ } Principal ideal (α)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Isogenies/ideals correspondence

 $E \in X$, i.e. $End(E) = \mathcal{O}$.Isogenies from E ℓ -isogeny $\phi: E \rightarrow E'$ $\leftarrow \rightarrow$ Ideal I of norm ℓ in \mathcal{O} $= \{\beta \text{ vanishing on Ker } \phi\}$ Endomorphism $\alpha: E \rightarrow E$ $\leftarrow \rightarrow$ Principal ideal (α)

ション ふゆ く 山 マ チャット しょうくしゃ

Group action (*complex multiplication*) Define $[\cdot E = E'$: codomain of the corresponding ℓ -isogeny. Isogenies/ideals correspondence

 $E \in X, \text{ i.e. } End(E) = \mathcal{O}.$ Isogenies from E $\ell\text{-isogeny } \phi: E \to E' \qquad \longleftrightarrow \qquad \text{Ideals in } \mathcal{O}$ $\ell\text{-isogeny } \phi: E \to E' \qquad \longleftrightarrow \qquad \text{Ideal I of norm } \ell \text{ in } \mathcal{O}$ $= \{\beta \text{ vanishing on } \text{Ker } \phi\}$ Endomorphism $\alpha: E \to E \qquad \longleftrightarrow \qquad \text{Principal ideal } (\alpha)$

Group action (complex multiplication) Define $l \cdot E = E'$: codomain of the corresponding l-isogeny.

- G is the *class group* of \mathcal{O} : ideals modulo principal ideals.
- S is a set of ideals with small prime norms *l_i*.
 When *l_i* is nice (*split*), two ideals of norm *l_i*: *ι_i* and *ι_i⁻¹*.

Group action of G on X, which we use as a HHS.

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree l_i (arrows give the action of l_i).
- a = (2, 1, -1) represents the ideal $\mathfrak{a} = \mathfrak{l}_1^2 \mathfrak{l}_2^1 \mathfrak{l}_3^{-1}$:

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree l_i (arrows give the action of l_i).
- a = (2, 1, -1) represents the ideal $\mathfrak{a} = \mathfrak{l}_1^2 \mathfrak{l}_2^1 \mathfrak{l}_3^{-1}$:

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree l_i (arrows give the action of l_i).
- a = (2, 1, -1) represents the ideal $\mathfrak{a} = \mathfrak{l}_1^2 \mathfrak{l}_2^1 \mathfrak{l}_3^{-1}$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree l_i (arrows give the action of l_i).
- a = (2, 1, -1) represents the ideal $\mathfrak{a} = \mathfrak{l}_1^2 \mathfrak{l}_2^1 \mathfrak{l}_3^{-1}$:

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree l_i (arrows give the action of l_i).
- a = (2, 1, -1) represents the ideal $\mathfrak{a} = \mathfrak{l}_1^2 \mathfrak{l}_2^1 \mathfrak{l}_3^{-1}$:

Computing the group action = walking in the *isogeny graph*:

- Vertices are elliptic curves,
- Edges are isogenies labelled per degree l_i (arrows give the action of l_i).
- a = (2, 1, -1) represents the ideal $\mathfrak{a} = \mathfrak{l}_1^2 \mathfrak{l}_2^1 \mathfrak{l}_3^{-1}$: $E = \mathfrak{a} \cdot E_0$.

E is valid protocol data iff End(E) = O.

This can be checked using

▶ a few scalar multiplications on E,

ション ふゆ く 山 マ チャット しょうくしゃ

• a few small-degree isogenies.

Key validation is easy and efficient.

Introduction

The CRS construction

Security analysis

Algorithmic improvements

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Isogeny DH-analogues:

- Class Group Action-DDH (CGA-DDH)
- CGA-CDH

Sampling in G using products of small ideals is a probability distribution σ .

- Distinguish σ from the uniform distribution: Isogeny Walk Distinguishing (IWD).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Security analysis

Theorem (assuming GRH, IWD, CGA-DDH)

The key exchange protocol is session-key secure in the authenticated-links adversarial model of Canetti–Krawczyk.

Theorem (assuming IWD, CGA-CDH)

The derived hashed ElGamal protocol is IND-CPA secure in the random oracle model.

Key validation gives CCA-secure encryption. In contrast, CCA attack against SIKE.PKE (Galbraith et al., AsiaCrypt 2016).

Classical security

CGA-DDH

Compute an isogeny between two curves to recover the key. Best classical algorithm: $O(\sqrt{N})$ where $N = \#G \simeq \sqrt{q}$.

• Choose $\log_2(q) \simeq 4n$.

IWD

Heuristic: it is enough to have keyspace size $\geq \sqrt{q}$. We cannot prove this even under GRH.

• Keyspace size: isogeny degrees $\ell_i = O(\log q)$.

Key recovery is an instance of the Hidden Shift Problem.

• Kuperberg's algorithm solves HShP in subexponential time.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Key recovery is an instance of the Hidden Shift Problem.

• Kuperberg's algorithm solves HShP in subexponential time.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- This does not mean that CRS is broken.
- Estimates on query complexity alone: log₂(q) = 688, 1656, 3068 for NIST levels 1, 3, 5.

Introduction

The CRS construction

Security analysis

Algorithmic improvements

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

The basic building block of CRS is computing ℓ -isogenies.

The basic building block of CRS is computing $\ell\text{-isogenies}.$

The CRS approach

Use modular equations linking E and E'.

• Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q .

The basic building block of CRS is computing ℓ -isogenies.

The CRS approach

Use modular equations linking E and E'.

• Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q .

Our contribution

Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ .

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

The basic building block of CRS is computing $\ell\text{-isogenies}.$

The CRS approach

Use modular equations linking E and E'.

Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q .

Our contribution

Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ .

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

 ℓ -torsion point

Modular equation

The basic building block of CRS is computing $\ell\text{-isogenies}.$

The CRS approach

Use modular equations linking E and E'.

Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q .

Our contribution

Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ .

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

 $\ell\text{-torsion}$ point

 $O(\log(q) + \ell)$

Modular equation

The basic building block of CRS is computing $\ell\text{-isogenies}.$

The CRS approach

Use modular equations linking E and E'.

• Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q .

Our contribution

Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ .

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

 $\ell\text{-torsion}$ point

 $O(\log(q) + \ell)$

Modular equation $O(\ell^2 \log q)$

The basic building block of CRS is computing $\ell\text{-isogenies}.$

The CRS approach

Use modular equations linking E and E'.

• Find the roots of a degree $\ell + 1$ polynomial over \mathbb{F}_q .

Our contribution

Suppose there is some $P \in E(\mathbb{F}_q)$ of order ℓ .

- Find one such P using a scalar multiplication on E,
- Compute the image curve knowing the kernel $\langle P \rangle$.

Cost analysis

 $\begin{array}{ll} \ell \mbox{-torsion point} & \mbox{Modular equation} \\ O(\log(q) + \ell) & <\!\!\!< & O(\ell^2 \log q) \end{array} \end{array}$

The twisting trick

Suppose $P \in E$ of order ℓ_i allows to compute the action of l_i . Can we also compute efficiently the action of l_i^{-1} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The twisting trick

Suppose $P \in E$ of order ℓ_i allows to compute the action of l_i . Can we also compute efficiently the action of l_i^{-1} ?

The twisting trick

Suppose $q = -1 \mod \ell_i$. Then E^t (quad. twist) also has a point of order ℓ_i .

• We can efficiently compute the action of l_i^{-1} by twisting back and forth.

ション ふゆ アメリア メリア しょうくの

The twisting trick

Suppose $P \in E$ of order ℓ_i allows to compute the action of l_i . Can we also compute efficiently the action of l_i^{-1} ?

The twisting trick

Suppose $q = -1 \mod \ell_i$. Then E^t (quad. twist) also has a point of order ℓ_i .

• We can efficiently compute the action of l_i^{-1} by twisting back and forth.

Why? The Frobenius on $E[\ell_i]$ is $\begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix}$, so the Frobenius on $E^t[\ell_i]$ is $\begin{pmatrix} -1 & 0 \\ 0 & -q \end{pmatrix}$ and -q = 1.

Finding good initial curves

More small-order points on E_0 = more efficient cryptosystem.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

More small-order points on E_0 = more efficient cryptosystem.

Only exponential algorithms are known to find ordinary curves with smooth order (no CM method here).

We look for E_0 using

- early-abort point counting
- curve selection with modular curves

but we cannot use our improvements in full even after 2 years CPU time searching.

Best results

512-bit prime $q = 7 \prod \ell_i - 1$, where the ℓ_i are all primes ≤ 380 . Best E_0 :

$$#E_0(\mathbb{F}_q) = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 103 \cdot 523 \cdot 821 \cdot R$$
$$#E_0^t(\mathbb{F}_q) = (\text{same } \le 103) \cdot 947 \cdot 1723 \cdot R'$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Discriminant $\Delta = -2^3 \cdot \text{squarefree}$.

Best results

512-bit prime $q = 7 \prod \ell_i - 1$, where the ℓ_i are all primes ≤ 380 . Best E_0 :

$$#E_0(\mathbb{F}_q) = 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 103 \cdot 523 \cdot 821 \cdot R$$
$$#E_0^t(\mathbb{F}_q) = (\text{same } \le 103) \cdot 947 \cdot 1723 \cdot R'$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Discriminant $\Delta = -2^3 \cdot \text{squarefree}$.

Туре	Isogeny degrees	#steps
Torsion (\mathbb{F}_q)	11: see above	409
Torsion (\mathbb{F}_{q^r})	13: 19,661 $(r = 3), \ldots$	81 down to 10
General	25: 73,89, up to 359	6 down to 1

Not enough primes in the first two lines: walk \simeq 520 s.

- Isogeny graphs can be used to construct post-quantum key exchange protocols, and post-quantum NIKE.
- Our improvements speed up CRS considerably, but we cannot use them in full with ordinary curves (not enough torsion points!)

ション ふゆ く 山 マ チャット しょうくしゃ

See next talk on CSIDH.