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Heights over the rationals

• For α ∈ Q, write α =
p

q
with p, q coprime.

h(α) = logmax{|p|, |q|}.

• For F ∈ Q(X ), write F =
P

Q
with P,Q ∈ Z[X ] coprime.

h(F ) = max{log |c | : c nonzero coefficient of P or Q}.

• deg F = max{degP, degQ}.

Example

h

(
103X 3 + 653X 2 + 383X + 175
268X 3 + 197X 2 + 237X + 21

)
= log(653) = 6.48 · · ·
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Posing the problem

If h(F ) and h(x) are known, it is easy to bound h(F (x)).

Question
Let F ∈ Q(X ) of degree d . Let x1, . . . xN ∈ J0,DK distinct that are
not poles of F . Assume that

h(F (xi )) ≤ H for every i .

What can we say about h(F )?

• When N is minimal (d + 1 or 2d + 1): analyze the
interpolation algorithm (well known).

• Better bounds when N is larger?

Remarks
• Easier for polynomials.

• Generalized to JA,BK, number fields.
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Plan

1. The case of polynomials

2. Ideas of proof

3. The case of rational fractions
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The case of polynomials



Lagrange interpolation

Proposition
Let P ∈ Q[X ] of degree d ≥ 1, and x1, . . . , xd+1 ∈ J0,DK distinct.
Assume that h(P(xi )) ≤ H for every i . Then

h(P) ≤ (d + 1)H + D log(D) + d log(2D) + log(d + 1).

Height bound is multiplied by the degree.
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Remarks on Lagrange interpolation

Height bound is multiplied by the degree.

• We cannot hope to do better in general:

xi 1 2 3 4 5

P(xi )
261
758

496
543

16
143

683
258

278
495

gives

P(X ) = −480830812799
911120942160

X 4 +
552317768903
91112094216

X 3 + · · ·

• However, we actually see the huge coefficients when we add an
evaluation point:

P(0) = −360058657852
18981686295

.
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Using more evaluation points

Proposition
Let P ∈ Q[X ] of degree d ≥ 1, and x1, . . . , x2d ∈ J0,DK distinct.
Assume that h(P(xi )) ≤ H for every i . Then

h(P) ≤ 2H + D log(D) + d log(2D) + log(d + 1)

Using twice the number of points gives a linear bound on h(P).
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Ideas of proof



Alternative definition of heights

• Let α1, . . . , αn ∈ Q not all zero. The projective height of
(α1 : · · · : αn) is

h(α1 : · · · : αn) =
∑

v∈P∪{∞}

logmax{|αi |v : 1 ≤ i ≤ n}.

• For F ∈ Q(X ), the height h(F ) is the projective height of the
tuple formed by all the coefficients of F .

Examples
• For α = p/q ∈ Q,

h(α) = h(α : 1) = h(p : q) = logmax{|p|, |q|}.

• For P =
∑d

i=0 ciX
i ∈ Q[X ],

h(P) =
∑
v

logmax{1, |P|v}, |P|v = max{|ci |v : 0 ≤ i ≤ d}.
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Lagrange interpolation

Proposition
Let P ∈ Q[X ] of degree d ≥ 1, and x1, . . . , xd+1 ∈ J0,DK distinct.
Assume that h(P(xi )) ≤ H for every i . Then

h(P) ≤ (d + 1)H + D log(D) + d log(2D) + log(d + 1).

Proof.

Lagrange: P =
d+1∑
i=1

∏
k 6=i (X − xk)∏
k 6=i (xi − xk)

P(xi ).

• v archimedean: |P|v ≤ (d + 1)2dDd
∏d+1

i=1 max{1, |P(xi )|v}

• v nonarchimedean: |P|v ≤
∣∣∣∣ 1D!

∣∣∣∣
v

∏d+1
i=1 max{1, |P(xi )|v}.

Sum all contributions to conclude.
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Using more evaluation points

Proposition
Let P ∈ Q[X ] of degree d ≥ 1, and x1, . . . , x2d ∈ J0,DK distinct.
Assume that h(P(xi )) ≤ H for every i . Then

h(P) ≤ 2H + D log(D) + d log(2D) + log(d + 1)

Sketch of proof.
If v is nonarchimedean, then |P(xi )|v ≥ |D! · P|v for at least d
values of i (Lagrange).
Therefore

logmax{1, |P|v} ≤ log

∣∣∣∣ 1D!

∣∣∣∣
v

+
1
d

2d∑
i=1

logmax{1, |P(xi )|v}.
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The case of rational fractions



Fractional interpolation

Proposition
Let F ∈ Q(X ) of degree d ≥ 1, and let x1, . . . , x2d+1 ∈ J0,DK
distinct that are not poles of F . Assume that h(P(xi )) ≤ H for
every i . Then

h(F ) ≤ (d + 1)(2d + 1)H + (d + 1)D log(D)

+ (4d2 + 3d) log(2D) + (2d + 2) log(2d + 1)

Remark
We cannot hope for better in general: when interpolating the same
values as before by a fraction of degree 2, we obtain

F =
22062125284572X 2 + · · ·
57777551642321X 2 + · · ·
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Fractional interpolation: sketch of proof

Proof.
• Let A be the polynomial interpolating the points (xi ,F (xi )):

h(A) ≤ (2d + 1)H + · · ·

• Let Z =
∏2d+1

i=1 (X − xi ):

h(Z ) ≤ (2d + 1) log(2D).

• Write a Bézout relation for the d-th subresultant of A and Z :

QA+ RZ = P.

Height estimates on subresultants give

max{h(P), h(Q)} ≤ (d + 1)(2d + 1)H + · · ·

• F = P/Q.
12 / 17



Better bounds using more evaluation points

Question
Can we obtain better height bounds on F when h(F (x)) ≤ H for
more than 2d + 1 evaluation points?

Problems
• No simple formula as was the case for Lagrange interpolation.

• Simplifications can occur: imagine the case where F = P/Q,
with P,Q ∈ Z[X ] coprime, has large height. Then P(xi ) and
Q(xi ) are large (most of the time), but it could be that

F (xi ) =
P(xi )

Q(xi )

is a very small rational number.
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Main result

Proposition
Let F ∈ Q(X ) of degree d ≥ 1. Let S ⊂ J0,DK containing at least
2D/3 elements and no poles of F .
Let H ≥ max{3, log(2D)}, and assume that:

1. h(F (x)) ≤ H for every x ∈ S .

2. D > max{d4H log(dH), 6d}.
Then

h(F ) ≤ 3H + C log(dH) + 3d log(2D)

where C is an absolute constant.
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Sketch of proof

Write F = P/Q with P,Q ∈ Z[X ] coprime, and

F (xi ) =
ni
di
, P(xi ) = ni si , Q(xi ) = di si .

Idea: show that cancellations cannot happen too often, i.e. si is (at
least) sometimes small.

• The si must divide r = Res(P,Q). By fractional interpolation,

max{h(P), h(Q)} ≤ Cd2H + · · · , so

h(r) ≤ Cd3H + · · ·

• For each prime p|r , estimate carefully the number of times
that P (or Q) can vanish mod p. We obtain

log
(∏

si

)
≤ C (d4H log(D) + D log(dH)).

• Since we have d4H evaluation points, we can conclude.
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Conclusion

• Corollary: if F ∈ Q(X ) of degree d ≥ 1 has the property that

h(F (x)) = O(d h(x))

for every x , then h(F ) = O(d log(d)).

• Application: height bounds for modular equations in a very
general setting.

• The result about fractions seems suboptimal: would a smaller
number of evaluation points, say O(d), be sufficient?
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Questions and remarks

Thank you!
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