Heights of rational fractions and interpolation

Jean Kieffer
Supervision: D. Robert, A. Page
Journées Nationales de Calcul Formel
Luminy, 2-6 March 2020
LFANT team, IMB (Univ. Bordeaux)

Heights over the rationals

- For $\alpha \in \mathbb{Q}$, write $\alpha=\frac{p}{q}$ with p, q coprime.

$$
h(\alpha)=\log \max \{|p|,|q|\} .
$$

- For $F \in \mathbb{Q}(X)$, write $F=\frac{P}{Q}$ with $P, Q \in \mathbb{Z}[X]$ coprime.

$$
h(F)=\max \{\log |c|: c \text { nonzero coefficient of } P \text { or } Q\} .
$$

- $\operatorname{deg} F=\max \{\operatorname{deg} P, \operatorname{deg} Q\}$.

Example

$$
h\left(\frac{103 X^{3}+653 X^{2}+383 X+175}{268 X^{3}+197 X^{2}+237 X+21}\right)=\log (653)=6.48 \cdots
$$

Posing the problem

If $h(F)$ and $h(x)$ are known, it is easy to bound $h(F(x))$.
Question
Let $F \in \mathbb{Q}(X)$ of degree d. Let $x_{1}, \ldots x_{N} \in \llbracket 0, D \rrbracket$ distinct that are not poles of F. Assume that

$$
h\left(F\left(x_{i}\right)\right) \leq H \quad \text { for every } i
$$

What can we say about $h(F)$?

- When N is minimal $(d+1$ or $2 d+1)$: analyze the interpolation algorithm (well known).
- Better bounds when N is larger?

Remarks

- Easier for polynomials.
- Generalized to $\llbracket A, B \rrbracket$, number fields.

1. The case of polynomials
2. Ideas of proof
3. The case of rational fractions

The case of polynomials

Lagrange interpolation

Proposition

Let $P \in \mathbb{Q}[X]$ of degree $d \geq 1$, and $x_{1}, \ldots, x_{d+1} \in \llbracket 0, D \rrbracket$ distinct.
Assume that $h\left(P\left(x_{i}\right)\right) \leq H$ for every i. Then

$$
h(P) \leq(d+1) H+D \log (D)+d \log (2 D)+\log (d+1)
$$

Height bound is multiplied by the degree.

Remarks on Lagrange interpolation

Height bound is multiplied by the degree.

- We cannot hope to do better in general:

x_{i}	1	2	3	4	5
$P\left(x_{i}\right)$	$\frac{261}{758}$	$\frac{496}{543}$	$\frac{16}{143}$	$\frac{683}{258}$	$\frac{278}{495}$

gives

$$
P(X)=-\frac{480830812799}{911120942160} X^{4}+\frac{552317768903}{91112094216} X^{3}+\cdots
$$

- However, we actually see the huge coefficients when we add an evaluation point:

$$
P(0)=-\frac{360058657852}{18981686295}
$$

Using more evaluation points

Proposition

Let $P \in \mathbb{Q}[X]$ of degree $d \geq 1$, and $x_{1}, \ldots, x_{2 d} \in \llbracket 0, D \rrbracket$ distinct.
Assume that $h\left(P\left(x_{i}\right)\right) \leq H$ for every i. Then

$$
h(P) \leq 2 H+D \log (D)+d \log (2 D)+\log (d+1)
$$

Using twice the number of points gives a linear bound on $h(P)$.

Ideas of proof

Alternative definition of heights

- Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Q}$ not all zero. The projective height of $\left(\alpha_{1}: \cdots: \alpha_{n}\right)$ is

$$
h\left(\alpha_{1}: \cdots: \alpha_{n}\right)=\sum_{v \in \mathcal{P} \cup\{\infty\}} \log \max \left\{\left|\alpha_{i}\right|_{v}: 1 \leq i \leq n\right\} .
$$

- For $F \in \mathbb{Q}(X)$, the height $h(F)$ is the projective height of the tuple formed by all the coefficients of F.

Examples

- For $\alpha=p / q \in \mathbb{Q}$,

$$
h(\alpha)=h(\alpha: 1)=h(p: q)=\log \max \{|p|,|q|\}
$$

- For $P=\sum_{i=0}^{d} c_{i} X^{i} \in \mathbb{Q}[X]$,

$$
h(P)=\sum_{v} \log \max \left\{1,|P|_{v}\right\}, \quad|P|_{v}=\max \left\{\left|c_{i}\right|_{v}: 0 \leq i \leq d\right\} .
$$

Lagrange interpolation

Proposition

Let $P \in \mathbb{Q}[X]$ of degree $d \geq 1$, and $x_{1}, \ldots, x_{d+1} \in \llbracket 0, D \rrbracket$ distinct. Assume that $h\left(P\left(x_{i}\right)\right) \leq H$ for every i. Then

$$
h(P) \leq(d+1) H+D \log (D)+d \log (2 D)+\log (d+1)
$$

Proof.

Lagrange: $P=\sum_{i=1}^{d+1} \frac{\prod_{k \neq i}\left(X-x_{k}\right)}{\prod_{k \neq i}\left(x_{i}-x_{k}\right)} P\left(x_{i}\right)$.

- v archimedean: $|P|_{v} \leq(d+1) 2^{d} D^{d} \prod_{i=1}^{d+1} \max \left\{1,\left|P\left(x_{i}\right)\right|_{v}\right\}$
- v nonarchimedean: $|P|_{v} \leq\left|\frac{1}{D!}\right|_{v} \prod_{i=1}^{d+1} \max \left\{1,\left|P\left(x_{i}\right)\right|_{v}\right\}$.

Sum all contributions to conclude.

Using more evaluation points

Proposition

Let $P \in \mathbb{Q}[X]$ of degree $d \geq 1$, and $x_{1}, \ldots, x_{2 d} \in \llbracket 0, D \rrbracket$ distinct. Assume that $h\left(P\left(x_{i}\right)\right) \leq H$ for every i. Then

$$
h(P) \leq 2 H+D \log (D)+d \log (2 D)+\log (d+1)
$$

Sketch of proof.
If v is nonarchimedean, then $\left|P\left(x_{i}\right)\right|_{v} \geq|D!\cdot P|_{v}$ for at least d values of i (Lagrange).
Therefore

$$
\log \max \left\{1,|P|_{v}\right\} \leq \log \left|\frac{1}{D!}\right|_{v}+\frac{1}{d} \sum_{i=1}^{2 d} \log \max \left\{1,\left|P\left(x_{i}\right)\right|_{v}\right\}
$$

The case of rational fractions

Fractional interpolation

Proposition

Let $F \in \mathbb{Q}(X)$ of degree $d \geq 1$, and let $x_{1}, \ldots, x_{2 d+1} \in \llbracket 0, D \rrbracket$ distinct that are not poles of F. Assume that $h\left(P\left(x_{i}\right)\right) \leq H$ for every i. Then

$$
\begin{aligned}
& h(F) \leq(d+1)(2 d+1) H+(d+1) D \log (D) \\
& \quad+\left(4 d^{2}+3 d\right) \log (2 D)+(2 d+2) \log (2 d+1)
\end{aligned}
$$

Remark

We cannot hope for better in general: when interpolating the same values as before by a fraction of degree 2 , we obtain

$$
F=\frac{22062125284572 X^{2}+\cdots}{57777551642321 X^{2}+\cdots}
$$

Fractional interpolation: sketch of proof

Proof.

- Let A be the polynomial interpolating the points $\left(x_{i}, F\left(x_{i}\right)\right)$:

$$
h(A) \leq(2 d+1) H+\cdots
$$

- Let $Z=\prod_{i=1}^{2 d+1}\left(X-x_{i}\right)$:

$$
h(Z) \leq(2 d+1) \log (2 D)
$$

- Write a Bézout relation for the d-th subresultant of A and Z :

$$
Q A+R Z=P .
$$

Height estimates on subresultants give

$$
\max \{h(P), h(Q)\} \leq(d+1)(2 d+1) H+\cdots
$$

- $F=P / Q$.

Better bounds using more evaluation points

Question

Can we obtain better height bounds on F when $h(F(x)) \leq H$ for more than $2 d+1$ evaluation points?

Problems

- No simple formula as was the case for Lagrange interpolation.
- Simplifications can occur: imagine the case where $F=P / Q$, with $P, Q \in \mathbb{Z}[X]$ coprime, has large height. Then $P\left(x_{i}\right)$ and $Q\left(x_{i}\right)$ are large (most of the time), but it could be that

$$
F\left(x_{i}\right)=\frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}
$$

is a very small rational number.

Main result

Proposition

Let $F \in \mathbb{Q}(X)$ of degree $d \geq 1$. Let $S \subset \llbracket 0, D \rrbracket$ containing at least $2 D / 3$ elements and no poles of F.
Let $H \geq \max \{3, \log (2 D)\}$, and assume that:

1. $h(F(x)) \leq H$ for every $x \in S$.
2. $D>\max \left\{d^{4} H \log (d H), 6 d\right\}$.

Then

$$
h(F) \leq 3 H+C \log (d H)+3 d \log (2 D)
$$

where C is an absolute constant.

Sketch of proof

Write $F=P / Q$ with $P, Q \in \mathbb{Z}[X]$ coprime, and

$$
F\left(x_{i}\right)=\frac{n_{i}}{d_{i}}, \quad P\left(x_{i}\right)=n_{i} s_{i}, \quad Q\left(x_{i}\right)=d_{i} s_{i}
$$

Idea: show that cancellations cannot happen too often, i.e. \boldsymbol{s}_{i} is (at least) sometimes small.

- The s_{i} must divide $r=\operatorname{Res}(P, Q)$. By fractional interpolation,

$$
\begin{aligned}
\max \{h(P), h(Q)\} & \leq C d^{2} H+\cdots, \quad \text { so } \\
h(r) & \leq C d^{3} H+\cdots
\end{aligned}
$$

- For each prime $p \mid r$, estimate carefully the number of times that $P($ or $Q)$ can vanish $\bmod p$. We obtain

$$
\log \left(\prod s_{i}\right) \leq C\left(d^{4} H \log (D)+D \log (d H)\right)
$$

- Since we have $d^{4} H$ evaluation points, we can conclude.

Conclusion

- Corollary: if $F \in \mathbb{Q}(X)$ of degree $d \geq 1$ has the property that

$$
h(F(x))=O(d h(x))
$$

for every x, then $h(F)=O(d \log (d))$.

- Application: height bounds for modular equations in a very general setting.
- The result about fractions seems suboptimal: would a smaller number of evaluation points, say $O(d)$, be sufficient?

Questions and remarks

Thank you!

