Theta functions in FLINT

Jean Kieffer

FLINT workshop, Palaiseau, January 30, 2025

• In 2022, FLINT/Arb already had acb_modular.h. Numerical evaluation of Jacobi theta functions, and related computations with elliptic curves and (classical) modular forms.

- In 2022, FLINT/Arb already had acb_modular.h. Numerical evaluation of Jacobi theta functions, and related computations with elliptic curves and (classical) modular forms.
- I was interested in computations with higher-dimensional abelian varieties and (Siegel) modular forms. This requires evaluating the Riemann theta functions in any dimension g, a generalization of Jacobi's θ (g = 1), usually much more expensive to manipulate.

- In 2022, FLINT/Arb already had acb_modular.h. Numerical evaluation of Jacobi theta functions, and related computations with elliptic curves and (classical) modular forms.
- I was interested in computations with higher-dimensional abelian varieties and (Siegel) modular forms. This requires evaluating the Riemann theta functions in any dimension g, a generalization of Jacobi's θ (g = 1), usually much more expensive to manipulate.
- In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions in quasi-linear time in the required precision in a joint work with Noam D. Elkies. It should also be faster than existing methods in practice, including for g = 1.

- In 2022, FLINT/Arb already had acb_modular.h. Numerical evaluation of Jacobi theta functions, and related computations with elliptic curves and (classical) modular forms.
- I was interested in computations with higher-dimensional abelian varieties and (Siegel) modular forms. This requires evaluating the Riemann theta functions in any dimension g, a generalization of Jacobi's θ (g = 1), usually much more expensive to manipulate.
- In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions in quasi-linear time in the required precision in a joint work with Noam D. Elkies. It should also be faster than existing methods in practice, including for g = 1.
- Implemented in FLINT 3.1 as acb_theta.h. Big rewrite in draft PR #2182.

Mathematics

Arguments/parameters:

- τ ∈ H_g: a g × g symmetric complex matrix with Im(τ) positive definite. (If g = 1, this is just a complex number with Im(τ) > 0.)
- $z \in \mathbb{C}^{g}$
- $a, b \in \{0, 1\}^g$: theta characteristics.

$$\theta_{a,b}(z,\tau) = \sum_{n \in \mathbb{Z}^g + \frac{a}{2}} \exp\left(\pi i n^T \tau n + 2\pi i n^T \left(z + \frac{b}{2}\right)\right).$$

Evaluating Riemann theta functions

Input: τ , z, and a working precision N. **Output:** $\theta_{a,b}(z,\tau)$ as complex numbers to precision N for all a, b.

Summation

$$\theta_{a,b}(z,\tau) = \sum_{n \in \mathbb{Z}^g + \frac{a}{2}} \exp\left(\pi i n^T \tau n + 2\pi i n^T \left(z + \frac{b}{2}\right)\right).$$

Rough Algorithm 1: Summation

- 1. Collect all vectors $n \in \mathbb{Z}^g + \frac{a}{2}$ whose associated exponential term has absolute value $\geq 2^{-N}$. These lie in a certain ellipsoid *E*, more precisely a ball for the quadratic form $\text{Im}(\tau)$ of radius $\approx \sqrt{N}$.
- 2. Compute a partial sum of the series defining $\theta_{a,b}$ over this ellipsoid.
- 3. Add an error bound from the tail of the series.

Complexity is $\widetilde{O}(N \cdot \#E)$, i.e. $\widetilde{O}(N^{1+g/2})$ in general (depends on τ). This strategy is used and carefully optimized in acb_modular.h.

Duplication

This uses duplication formulas, the main one being

$$heta_{a,b}(z, au)^2 = \sum_{a' \in \{0,1\}^g} (-1)^{a'^T b} heta_{a',0}(0,2 au) heta_{a+a',0}(2z,2 au).$$

Rough Algorithm 2: Duplication

- 1. Compute $\theta_{a,0}(0, 2\tau)$ and $\theta_{a,0}(2z, 2\tau)$ to precision N using an algorithm of your choice.
- 2. Evaluate $\theta_{a,b}(z,\tau)$ at low precision using the summation algorithm.
- 3. Use the duplication formula to get $\theta_{a,b}(z,\tau)^2$ to precision N, and extract the correct square root using the low-precision approximation as a guide.

Complexity (apart from step 1) is $\tilde{O}(N)$, outside of unlucky cases where $\theta_{a,b}(z,\tau)$ is very close to zero (we can deal with those too). We only lose $O_g(1)$ bits of precision.

Reduction

The Siegel modular group $\operatorname{Sp}_{2g}(\mathbb{Z})$ acts on \mathcal{H}_g (and more generally on $\mathbb{C}^g \times \mathcal{H}_g$), much as the classical modular group $\operatorname{SL}_2(\mathbb{Z})$ acts on \mathcal{H}_1 . Given $\tau \in \mathcal{H}_g$, one can always find $\gamma \in \operatorname{Sp}_{2g}(\mathbb{Z})$ such that $\gamma \tau$ is reduced, in particular:

- $Im(\tau)$ is LLL-reduced, (HKZ would be even better),
- $Im(\tau_{1,1}) \ge \sqrt{3}/2.$

Rough algorithm 3: Reduction

- 1. Compute γ . Let $(z', \tau') = \gamma(z, \tau)$.
- 2. Further reduce z' modulo the lattice $\mathbb{Z}^g + \tau' \mathbb{Z}^g$ to obtain z''.
- 3. Compute $\theta_{a,b}(z'', \tau')$ to precision N using an algorithm of your choice.
- 4. Apply the theta transformation formulas to recover $\theta_{a,b}(z,\tau)$.

The cost of reduction is negligible in practice.

Input: τ , z, and a working precision N.

Output: $\theta_{a,b}(z,\tau)$ as complex numbers to precision N for all a, b.

The quasi-linear algorithm

- 1. Start applying **Reduction** to obtain a reduced pair (z'', τ') .
- 2. Choose an integer m such that $2^m \operatorname{Im}(\tau'_{1,1}) \approx N$. We have $m = O(\log N)$.
- 3. Compute $\theta_{a,0}(0, 2^m \tau')$ and $\theta_{a,0}(2^m z'', 2^m \tau')$ using **Summation**. The ellipsoids we compute contain O(1) points, so this costs $\widetilde{O}(N)$.
- 4. Apply **Duplication** *m* times to get $\theta_{a,b}(z'', \tau')$. This costs $\widetilde{O}(N)$ too.
- 5. Finish applying **Reduction** to get $\theta_{a,b}(z,\tau)$.

The previous algorithm is inefficient on reduced matrices $\tau \in \mathcal{H}_g$ whose imaginary part is skewed, such as

$$\mathsf{m}(au) = egin{pmatrix} 1 & 0 \ 0 & 100 \end{pmatrix}.$$

In that case, after just a few duplication steps, the ellipsoids containing the points $n = (n_1, n_2) \in \mathbb{Z}^g + \frac{a}{2}$ we would consider in a partial sum become very thin in the direction of n_2 .

Can we leverage this?

In that case, when writing

$$\tau = \begin{pmatrix} \tau_1 & x \\ x & \tau_2 \end{pmatrix},$$

we have

$$\theta_{a,b}(z,\tau) = \sum_{n_2 \in \mathbb{Z} + rac{a_2}{2}} e^{\pi i (\cdots)} \theta_{a_1,b_1}(z_1 + xn_2,\tau_1).$$

In order to get $\theta_{a,b}(z,\tau)$ to precision N, we only need very few values of n_2 : we reduced our evaluation in dimension 2 to O(1) evaluations of theta functions in dimension 1.

Depending on the shape of τ , applying this dimension-lowering strategy at well-chosen spots between duplication steps can be very beneficial.

Implementation in FLINT 3.1

Key features (1)

- Manipulate matrices in $\operatorname{Sp}_{2g}(\mathbb{Z})$ (type fmpz_mat_t).
- Manipulate elements in $\mathbb{C}^g \times \mathcal{H}_g$. The reduction algorithm is implemented as:

• Manipulate (integer points in) ellipsoids defined by positive-definite quadratic forms. We introduce a type acb_theta_eld_t, and construct ellipsoids with

where C is the upper-triangular Cholesky matrix, R2 is the squared radius, and v is the center in \mathbb{R}^{g} .

This acb_theta_eld_t structure doesn't contain all the points (but we can ask for them), and is directly input to the summation methods.

Key features (2)

• Run the summation algorithms. For instance:

I implemented most optimizations I could think of (exponential terms are computed by multiplications rather than exponentiations, the precision varies for each term, etc.)

• Run the whole quasi-linear algorithm (with reduction and dimension-lowering):

One can somewhat tune how many duplication steps are performed, and when dimension-lowering is applied, by modifying acb_theta_ql_a0_nb_steps.

• Also compute derivatives of Riemann theta functions, either by direct summation or from finite differences on the output of acb_theta_all:

• Evaluate Siegel modular forms for g = 2 at a given point $\tau \in \mathcal{H}_g$ by writing them in terms of theta functions, in the spirit of acb_modular_delta: e.g.

void acb_theta_g2_chi10(acb_t res, acb_srcptr th2, slong prec)

Performance comparison

Time to evaluate $\theta_{a,b}(z,\tau)$ with z = 0.1 + 0.2i and $\tau = 0.3 + 0.8i$:

Proposed changes in PR #2182

We introduce context structures attached to $\tau \in \mathcal{H}_g$ and $z \in \mathbb{C}^g$ in summation algorithms, of type acb_theta_ctx_tau_t and acb_theta_ctx_z_t respectively.

They store things like $\exp(\pi i \tau_{1,1})$, etc. that would otherwise get recomputed at each call to summation algorithms. We can also duplicate $\tau \mapsto 2\tau$ directly (using squarings): void acb_theta_ctx_tau_dupl(acb_theta_ctx_tau_t ctx, slong prec)

This removes some overhead when computing the required low-precision approximations in the duplication formula.

The signatures (and names) of summation functions have changed.

acb_theta_all and similar functions have a different signature to allow for several
values of z:

Recall that using the duplication formulas at any z requires computing theta values at z = 0 anyway. We now mutualize them.

This also greatly improves the efficiency of dimension-lowering, which almost always leads to several evaluations for the same matrix τ .

The new function

completely determines how many duplication steps will be applied, and when to use the dimension-lowering strategy, through the whole algorithm.

The output **pattern** is then used as input to the function running the quasi-linear algorithm (acb_theta_ql_exact). I spent most of this week profiling that function with varying patterns to see what the best choices are depending on the shape of τ .

- Introduce functions like acb_theta_all_notransform in the spirit of acb_modular_theta_notransform.
- Simplify the management of error bounds by assuming that some internal functions always get exact input.
- Introduce functions acb_theta_ql_lower_dim and acb_theta_ql_recombine to implement the dimension-lowering strategy that we test independently.
- In the g = 1 summation functions, rely on acb_modular_theta_sum instead of acb_modular_theta. This is to allow acb_modular_theta to possibly point to acb_theta_all in the future.

- Make sure there are no regressions compared to the previous version. As of now it seems there are: apparently acb_modular_theta got slower (?) for g = 1, and we sometimes get NaN results.
- Use quasi-linear algorithms in some functions that don't use them yet (e.g. acb_theta_00)