
Theta functions in FLINT

Jean Kieffer

FLINT workshop, Palaiseau, January 30, 2025

1 / 18

https://flintlib.github.io/workshop2025.html


History and motivation

• In 2022, FLINT/Arb already had acb modular.h. Numerical evaluation of Jacobi

theta functions, and related computations with elliptic curves and (classical)

modular forms.

• I was interested in computations with higher-dimensional abelian varieties and

(Siegel) modular forms. This requires evaluating the Riemann theta functions in

any dimension g , a generalization of Jacobi’s θ (g = 1), usually much more

expensive to manipulate.

• In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions

in quasi-linear time in the required precision in a joint work with Noam D. Elkies.

It should also be faster than existing methods in practice, including for g = 1.

• Implemented in FLINT 3.1 as acb theta.h. Big rewrite in draft PR #2182.

2 / 18

https://flintlib.org/doc/acb_modular.html
https://flintlib.org/doc/acb_theta.html
https://github.com/flintlib/flint/pull/2182


History and motivation

• In 2022, FLINT/Arb already had acb modular.h. Numerical evaluation of Jacobi

theta functions, and related computations with elliptic curves and (classical)

modular forms.

• I was interested in computations with higher-dimensional abelian varieties and

(Siegel) modular forms. This requires evaluating the Riemann theta functions in

any dimension g , a generalization of Jacobi’s θ (g = 1), usually much more

expensive to manipulate.

• In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions

in quasi-linear time in the required precision in a joint work with Noam D. Elkies.

It should also be faster than existing methods in practice, including for g = 1.

• Implemented in FLINT 3.1 as acb theta.h. Big rewrite in draft PR #2182.

2 / 18

https://flintlib.org/doc/acb_modular.html
https://flintlib.org/doc/acb_theta.html
https://github.com/flintlib/flint/pull/2182


History and motivation

• In 2022, FLINT/Arb already had acb modular.h. Numerical evaluation of Jacobi

theta functions, and related computations with elliptic curves and (classical)

modular forms.

• I was interested in computations with higher-dimensional abelian varieties and

(Siegel) modular forms. This requires evaluating the Riemann theta functions in

any dimension g , a generalization of Jacobi’s θ (g = 1), usually much more

expensive to manipulate.

• In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions

in quasi-linear time in the required precision in a joint work with Noam D. Elkies.

It should also be faster than existing methods in practice, including for g = 1.

• Implemented in FLINT 3.1 as acb theta.h. Big rewrite in draft PR #2182.

2 / 18

https://flintlib.org/doc/acb_modular.html
https://flintlib.org/doc/acb_theta.html
https://github.com/flintlib/flint/pull/2182


History and motivation

• In 2022, FLINT/Arb already had acb modular.h. Numerical evaluation of Jacobi

theta functions, and related computations with elliptic curves and (classical)

modular forms.

• I was interested in computations with higher-dimensional abelian varieties and

(Siegel) modular forms. This requires evaluating the Riemann theta functions in

any dimension g , a generalization of Jacobi’s θ (g = 1), usually much more

expensive to manipulate.

• In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions

in quasi-linear time in the required precision in a joint work with Noam D. Elkies.

It should also be faster than existing methods in practice, including for g = 1.

• Implemented in FLINT 3.1 as acb theta.h. Big rewrite in draft PR #2182.

2 / 18

https://flintlib.org/doc/acb_modular.html
https://flintlib.org/doc/acb_theta.html
https://github.com/flintlib/flint/pull/2182


Mathematics



Riemann theta functions

Arguments/parameters:

• τ ∈ Hg : a g × g symmetric complex matrix with Im(τ) positive definite.

(If g = 1, this is just a complex number with Im(τ) > 0.)

• z ∈ Cg

• a, b ∈ {0, 1}g : theta characteristics.

θa,b(z , τ) =
∑

n∈Zg+
a
2

exp
(
πinT τn + 2πinT

(
z + b

2

))
.

Evaluating Riemann theta functions

Input: τ , z , and a working precision N.

Output: θa,b(z , τ) as complex numbers to precision N for all a, b.

3 / 18



Summation

θa,b(z , τ) =
∑

n∈Zg+
a
2

exp
(
πinT τn + 2πinT

(
z + b

2

))
.

Rough Algorithm 1: Summation

1. Collect all vectors n ∈ Zg + a
2 whose associated exponential term has absolute

value ≥ 2−N . These lie in a certain ellipsoid E , more precisely a ball for the

quadratic form Im(τ) of radius ≈
√
N.

2. Compute a partial sum of the series defining θa,b over this ellipsoid.

3. Add an error bound from the tail of the series.

Complexity is Õ(N ·#E ), i.e. Õ(N1+g/2) in general (depends on τ).

This strategy is used and carefully optimized in acb modular.h.

4 / 18

https://flintlib.org/doc/acb_modular.html


Duplication

This uses duplication formulas, the main one being

θa,b(z , τ)
2 =

∑
a′∈{0,1}g

(−1)a
′Tbθa′,0(0, 2τ)θa+a′,0(2z , 2τ).

Rough Algorithm 2: Duplication

1. Compute θa,0(0, 2τ) and θa,0(2z , 2τ) to precision N using an algorithm of your

choice.

2. Evaluate θa,b(z , τ) at low precision using the summation algorithm.

3. Use the duplication formula to get θa,b(z , τ)
2 to precision N, and extract the

correct square root using the low-precision approximation as a guide.

Complexity (apart from step 1) is Õ(N), outside of unlucky cases where θa,b(z , τ) is

very close to zero (we can deal with those too). We only lose Og (1) bits of precision.
5 / 18



Reduction

The Siegel modular group Sp2g (Z) acts on Hg (and more generally on Cg ×Hg ),

much as the classical modular group SL2(Z) acts on H1.

Given τ ∈ Hg , one can always find γ ∈ Sp2g (Z) such that γτ is reduced, in particular:

• Im(τ) is LLL-reduced, (HKZ would be even better),

• Im(τ1,1) ≥
√
3/2.

Rough algorithm 3: Reduction

1. Compute γ. Let (z ′, τ ′) = γ(z , τ).

2. Further reduce z ′ modulo the lattice Zg + τ ′Zg to obtain z ′′.

3. Compute θa,b(z
′′, τ ′) to precision N using an algorithm of your choice.

4. Apply the theta transformation formulas to recover θa,b(z , τ).

The cost of reduction is negligible in practice.
6 / 18



Assembling the quasi-linear algorithm

Input: τ , z , and a working precision N.

Output: θa,b(z , τ) as complex numbers to precision N for all a, b.

The quasi-linear algorithm

1. Start applying Reduction to obtain a reduced pair (z ′′, τ ′).

2. Choose an integer m such that 2m Im(τ ′1,1) ≈ N. We have m = O(logN).

3. Compute θa,0(0, 2
mτ ′) and θa,0(2

mz ′′, 2mτ ′) using Summation. The ellipsoids we

compute contain O(1) points, so this costs Õ(N).

4. Apply Duplication m times to get θa,b(z
′′, τ ′). This costs Õ(N) too.

5. Finish applying Reduction to get θa,b(z , τ).

7 / 18



Dimension-lowering (1)

The previous algorithm is inefficient on reduced matrices τ ∈ Hg whose imaginary part

is skewed, such as

Im(τ) =

(
1 0

0 100

)
.

In that case, after just a few duplication steps, the ellipsoids containing the points

n = (n1, n2) ∈ Zg + a
2 we would consider in a partial sum become very thin in the

direction of n2.

Can we leverage this?

8 / 18



Dimension-lowering (2)

In that case, when writing

τ =

(
τ1 x

x τ2

)
,

we have

θa,b(z , τ) =
∑

n2∈Z+
a2
2

eπi(··· )θa1,b1(z1 + xn2, τ1).

In order to get θa,b(z , τ) to precision N, we only need very few values of n2: we

reduced our evaluation in dimension 2 to O(1) evaluations of theta functions in

dimension 1.

Depending on the shape of τ , applying this dimension-lowering strategy at well-chosen

spots between duplication steps can be very beneficial.

9 / 18



Implementation in FLINT 3.1



Key features (1)

• Manipulate matrices in Sp2g (Z) (type fmpz mat t).

• Manipulate elements in Cg ×Hg . The reduction algorithm is implemented as:

void acb_siegel_reduce(fmpz_mat_t mat , const acb_mat_t tau ,

slong prec)

• Manipulate (integer points in) ellipsoids defined by positive-definite quadratic

forms. We introduce a type acb theta eld t, and construct ellipsoids with

int acb_theta_eld_set(acb_theta_eld_t E, const arb_mat_t C,

const arf_t R2, arb_srcptr v)

where C is the upper-triangular Cholesky matrix, R2 is the squared radius, and v is

the center in Rg .

This acb theta eld t structure doesn’t contain all the points (but we can ask

for them), and is directly input to the summation methods.

10 / 18



Key features (2)

• Run the summation algorithms. For instance:

void acb_theta_naive_all(acb_ptr th , acb_srcptr zs , slong nb ,

const acb_mat_t tau , slong prec)

I implemented most optimizations I could think of (exponential terms are

computed by multiplications rather than exponentiations, the precision varies for

each term, etc.)

• Run the whole quasi-linear algorithm (with reduction and dimension-lowering):

void acb_theta_all(acb_ptr th , acb_srcptr z,

const acb_mat_t tau , int sqr , slong prec)

One can somewhat tune how many duplication steps are performed, and when

dimension-lowering is applied, by modifying acb theta ql a0 nb steps.

11 / 18



Key features (3)

• Also compute derivatives of Riemann theta functions, either by direct summation

or from finite differences on the output of acb theta all:

void acb_theta_jet_naive_all(acb_ptr dth , acb_srcptr z,

const acb_mat_t tau , slong ord , slong prec)

void acb_theta_jet_all(acb_ptr dth , acb_srcptr z,

const acb_mat_t tau , slong ord , slong prec)

• Evaluate Siegel modular forms for g = 2 at a given point τ ∈ Hg by writing them

in terms of theta functions, in the spirit of acb modular delta: e.g.

void acb_theta_g2_chi10(acb_t res , acb_srcptr th2 , slong prec)

12 / 18



Performance comparison

Time to evaluate θa,b(z , τ) with z = 0.1 + 0.2i and τ = 0.3 + 0.8i :

102 103 104 105 106 107
10−2

10−1

100

101

102

103

Working binary precision (log scale)

T
im

in
g
in

s
(l
og

sc
al
e)

acb modular theta
acb theta all

13 / 18



Proposed changes in PR #2182

https://github.com/flintlib/flint/pull/2182


Context structures in summation algorithms

We introduce context structures attached to τ ∈ Hg and z ∈ Cg in summation

algorithms, of type acb theta ctx tau t and acb theta ctx z t respectively.

void acb_theta_ctx_tau_set(acb_theta_ctx_tau_t ctx ,

const acb_mat_t tau , slong prec)

They store things like exp(πiτ1,1), etc. that would otherwise get recomputed at each

call to summation algorithms. We can also duplicate τ 7→ 2τ directly (using squarings):

void acb_theta_ctx_tau_dupl(acb_theta_ctx_tau_t ctx , slong prec)

This removes some overhead when computing the required low-precision

approximations in the duplication formula.

The signatures (and names) of summation functions have changed.

14 / 18



Supporting several vectors z in the quasi-linear algorithm

acb theta all and similar functions have a different signature to allow for several

values of z :

void acb_theta_all(acb_ptr th , acb_srcptr zs , slong nb ,

const acb_mat_t tau , int sqr , slong prec);

Recall that using the duplication formulas at any z requires computing theta values at

z = 0 anyway. We now mutualize them.

This also greatly improves the efficiency of dimension-lowering, which almost always

leads to several evaluations for the same matrix τ .

15 / 18



Better control on the algorithm structure

The new function

int acb_theta_ql_nb_steps(slong * pattern , const acb_mat_t tau ,

int cst , slong prec)

completely determines how many duplication steps will be applied, and when to use

the dimension-lowering strategy, through the whole algorithm.

The output pattern is then used as input to the function running the quasi-linear

algorithm (acb theta ql exact). I spent most of this week profiling that function

with varying patterns to see what the best choices are depending on the shape of τ .

16 / 18



Further changes

• Introduce functions like acb theta all notransform in the spirit of

acb modular theta notransform.

• Simplify the management of error bounds by assuming that some internal

functions always get exact input.

• Introduce functions acb theta ql lower dim and acb theta ql recombine to

implement the dimension-lowering strategy that we test independently.

• In the g = 1 summation functions, rely on acb modular theta sum instead of

acb modular theta. This is to allow acb modular theta to possibly point to

acb theta all in the future.

17 / 18



To Do

• Make sure there are no regressions compared to the previous version. As of now it

seems there are: apparently acb modular theta got slower (?) for g = 1, and we

sometimes get NaN results.

• Use quasi-linear algorithms in some functions that don’t use them yet

(e.g. acb theta 00)

18 / 18


	Mathematics
	Implementation in FLINT 3.1
	Proposed changes in PR #2182

