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History and motivation

• In 2022, FLINT/Arb already had acb modular.h. Numerical evaluation of Jacobi

theta functions, and related computations with elliptic curves and (classical)

modular forms.

• I was interested in computations with higher-dimensional abelian varieties and

(Siegel) modular forms. This requires evaluating the Riemann theta functions in

any dimension g , a generalization of Jacobi’s θ (g = 1), usually much more

expensive to manipulate.

• In 2022-2023, we discovered a new algorithm to evaluate Riemann theta functions

in quasi-linear time in the required precision in a joint work with Noam D. Elkies.

It should also be faster than existing methods in practice, including for g = 1.

• Implemented in FLINT 3.1 as acb theta.h. Big rewrite in draft PR #2182.
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Mathematics



Riemann theta functions

Arguments/parameters:

• τ ∈ Hg : a g × g symmetric complex matrix with Im(τ) positive definite.

(If g = 1, this is just a complex number with Im(τ) > 0.)

• z ∈ Cg

• a, b ∈ {0, 1}g : theta characteristics.

θa,b(z , τ) =
∑

n∈Zg+
a
2

exp
(
πinT τn + 2πinT

(
z + b

2

))
.

Evaluating Riemann theta functions

Input: τ , z , and a working precision N.

Output: θa,b(z , τ) as complex numbers to precision N for all a, b.

3 / 18



Summation

θa,b(z , τ) =
∑

n∈Zg+
a
2

exp
(
πinT τn + 2πinT

(
z + b

2

))
.

Rough Algorithm 1: Summation

1. Collect all vectors n ∈ Zg + a
2 whose associated exponential term has absolute

value ≥ 2−N . These lie in a certain ellipsoid E , more precisely a ball for the

quadratic form Im(τ) of radius ≈
√
N.

2. Compute a partial sum of the series defining θa,b over this ellipsoid.

3. Add an error bound from the tail of the series.

Complexity is Õ(N ·#E ), i.e. Õ(N1+g/2) in general (depends on τ).

This strategy is used and carefully optimized in acb modular.h.
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Duplication

This uses duplication formulas, the main one being

θa,b(z , τ)
2 =

∑
a′∈{0,1}g

(−1)a
′Tbθa′,0(0, 2τ)θa+a′,0(2z , 2τ).

Rough Algorithm 2: Duplication

1. Compute θa,0(0, 2τ) and θa,0(2z , 2τ) to precision N using an algorithm of your

choice.

2. Evaluate θa,b(z , τ) at low precision using the summation algorithm.

3. Use the duplication formula to get θa,b(z , τ)
2 to precision N, and extract the

correct square root using the low-precision approximation as a guide.

Complexity (apart from step 1) is Õ(N), outside of unlucky cases where θa,b(z , τ) is

very close to zero (we can deal with those too). We only lose Og (1) bits of precision.
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Reduction

The Siegel modular group Sp2g (Z) acts on Hg (and more generally on Cg ×Hg ),

much as the classical modular group SL2(Z) acts on H1.

Given τ ∈ Hg , one can always find γ ∈ Sp2g (Z) such that γτ is reduced, in particular:

• Im(τ) is LLL-reduced, (HKZ would be even better),

• Im(τ1,1) ≥
√
3/2.

Rough algorithm 3: Reduction

1. Compute γ. Let (z ′, τ ′) = γ(z , τ).

2. Further reduce z ′ modulo the lattice Zg + τ ′Zg to obtain z ′′.

3. Compute θa,b(z
′′, τ ′) to precision N using an algorithm of your choice.

4. Apply the theta transformation formulas to recover θa,b(z , τ).

The cost of reduction is negligible in practice.
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Assembling the quasi-linear algorithm

Input: τ , z , and a working precision N.

Output: θa,b(z , τ) as complex numbers to precision N for all a, b.

The quasi-linear algorithm

1. Start applying Reduction to obtain a reduced pair (z ′′, τ ′).

2. Choose an integer m such that 2m Im(τ ′1,1) ≈ N. We have m = O(logN).

3. Compute θa,0(0, 2
mτ ′) and θa,0(2

mz ′′, 2mτ ′) using Summation. The ellipsoids we

compute contain O(1) points, so this costs Õ(N).

4. Apply Duplication m times to get θa,b(z
′′, τ ′). This costs Õ(N) too.

5. Finish applying Reduction to get θa,b(z , τ).
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Dimension-lowering (1)

The previous algorithm is inefficient on reduced matrices τ ∈ Hg whose imaginary part

is skewed, such as

Im(τ) =

(
1 0

0 100

)
.

In that case, after just a few duplication steps, the ellipsoids containing the points

n = (n1, n2) ∈ Zg + a
2 we would consider in a partial sum become very thin in the

direction of n2.

Can we leverage this?
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Dimension-lowering (2)

In that case, when writing

τ =

(
τ1 x

x τ2

)
,

we have

θa,b(z , τ) =
∑

n2∈Z+
a2
2

eπi(··· )θa1,b1(z1 + xn2, τ1).

In order to get θa,b(z , τ) to precision N, we only need very few values of n2: we

reduced our evaluation in dimension 2 to O(1) evaluations of theta functions in

dimension 1.

Depending on the shape of τ , applying this dimension-lowering strategy at well-chosen

spots between duplication steps can be very beneficial.
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Implementation in FLINT 3.1



Key features (1)

• Manipulate matrices in Sp2g (Z) (type fmpz mat t).

• Manipulate elements in Cg ×Hg . The reduction algorithm is implemented as:

void acb_siegel_reduce(fmpz_mat_t mat , const acb_mat_t tau ,

slong prec)

• Manipulate (integer points in) ellipsoids defined by positive-definite quadratic

forms. We introduce a type acb theta eld t, and construct ellipsoids with

int acb_theta_eld_set(acb_theta_eld_t E, const arb_mat_t C,

const arf_t R2, arb_srcptr v)

where C is the upper-triangular Cholesky matrix, R2 is the squared radius, and v is

the center in Rg .

This acb theta eld t structure doesn’t contain all the points (but we can ask

for them), and is directly input to the summation methods.
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Key features (2)

• Run the summation algorithms. For instance:

void acb_theta_naive_all(acb_ptr th , acb_srcptr zs , slong nb ,

const acb_mat_t tau , slong prec)

I implemented most optimizations I could think of (exponential terms are

computed by multiplications rather than exponentiations, the precision varies for

each term, etc.)

• Run the whole quasi-linear algorithm (with reduction and dimension-lowering):

void acb_theta_all(acb_ptr th , acb_srcptr z,

const acb_mat_t tau , int sqr , slong prec)

One can somewhat tune how many duplication steps are performed, and when

dimension-lowering is applied, by modifying acb theta ql a0 nb steps.
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Key features (3)

• Also compute derivatives of Riemann theta functions, either by direct summation

or from finite differences on the output of acb theta all:

void acb_theta_jet_naive_all(acb_ptr dth , acb_srcptr z,

const acb_mat_t tau , slong ord , slong prec)

void acb_theta_jet_all(acb_ptr dth , acb_srcptr z,

const acb_mat_t tau , slong ord , slong prec)

• Evaluate Siegel modular forms for g = 2 at a given point τ ∈ Hg by writing them

in terms of theta functions, in the spirit of acb modular delta: e.g.

void acb_theta_g2_chi10(acb_t res , acb_srcptr th2 , slong prec)
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Performance comparison

Time to evaluate θa,b(z , τ) with z = 0.1 + 0.2i and τ = 0.3 + 0.8i :
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Proposed changes in PR #2182

https://github.com/flintlib/flint/pull/2182


Context structures in summation algorithms

We introduce context structures attached to τ ∈ Hg and z ∈ Cg in summation

algorithms, of type acb theta ctx tau t and acb theta ctx z t respectively.

void acb_theta_ctx_tau_set(acb_theta_ctx_tau_t ctx ,

const acb_mat_t tau , slong prec)

They store things like exp(πiτ1,1), etc. that would otherwise get recomputed at each

call to summation algorithms. We can also duplicate τ 7→ 2τ directly (using squarings):

void acb_theta_ctx_tau_dupl(acb_theta_ctx_tau_t ctx , slong prec)

This removes some overhead when computing the required low-precision

approximations in the duplication formula.

The signatures (and names) of summation functions have changed.
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Supporting several vectors z in the quasi-linear algorithm

acb theta all and similar functions have a different signature to allow for several

values of z :

void acb_theta_all(acb_ptr th , acb_srcptr zs , slong nb ,

const acb_mat_t tau , int sqr , slong prec);

Recall that using the duplication formulas at any z requires computing theta values at

z = 0 anyway. We now mutualize them.

This also greatly improves the efficiency of dimension-lowering, which almost always

leads to several evaluations for the same matrix τ .
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Better control on the algorithm structure

The new function

int acb_theta_ql_nb_steps(slong * pattern , const acb_mat_t tau ,

int cst , slong prec)

completely determines how many duplication steps will be applied, and when to use

the dimension-lowering strategy, through the whole algorithm.

The output pattern is then used as input to the function running the quasi-linear

algorithm (acb theta ql exact). I spent most of this week profiling that function

with varying patterns to see what the best choices are depending on the shape of τ .
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Further changes

• Introduce functions like acb theta all notransform in the spirit of

acb modular theta notransform.

• Simplify the management of error bounds by assuming that some internal

functions always get exact input.

• Introduce functions acb theta ql lower dim and acb theta ql recombine to

implement the dimension-lowering strategy that we test independently.

• In the g = 1 summation functions, rely on acb modular theta sum instead of

acb modular theta. This is to allow acb modular theta to possibly point to

acb theta all in the future.
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To Do

• Make sure there are no regressions compared to the previous version. As of now it

seems there are: apparently acb modular theta got slower (?) for g = 1, and we

sometimes get NaN results.

• Use quasi-linear algorithms in some functions that don’t use them yet

(e.g. acb theta 00)
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