
Voting: You Can’t Have Privacy without Individual Verifiability
Véronique Cortier

CNRS, Loria
Nancy, France

veronique.cortier@loria.fr

Joseph Lallemand
Inria, Loria

Nancy, France
joseph.lallemand@loria.fr

ABSTRACT
Electronic voting typically aims at two main security goals: vote
privacy and verifiability. These two goals are often seen as antago-
nistic and some national agencies even impose a hierarchy between
them: first privacy, and then verifiability as an additional feature.
Verifiability typically includes individual verifiability (a voter can
check that her ballot is counted); universal verifiability (anyone
can check that the result corresponds to the published ballots); and
eligibility verifiability (only legitimate voters may vote).

We show that actually, privacy implies individual verifiability. In
other words, systemswithout individual verifiability cannot achieve
privacy (under the same trust assumptions). To demonstrate the
generality of our result, we show this implication in two different
settings, namely cryptographic and symbolic models, for standard
notions of privacy and individual verifiability. Our findings also
highlight limitations in existing privacy definitions in cryptographic
settings.

1 INTRODUCTION
Electronic voting is often seen as a convenient way for running
elections as it allows voters to vote from any place. Moreover, it
eases the tally and it can therefore often be used for non trivial
counting procedures such as Single Transferable Vote or Condorcet.
Numerous voting systems have been proposed so far, like Helios [4],
Belenios [15], Civitas [14], Prêt-à-voter [30], or the protocols de-
ployed in Estonia [24] or in Australia [11] to cite a few. On the other
hand, many weaknesses or even attacks have been unveiled [31, 32],
from voting machines [23] to Internet voting [33].

In order to carefully analyse voting systems, security require-
ments have been defined. The two main security properties are:
• privacy: no one should know how I voted;
• verifiability is typically described through the three follow-
ing sub-properties.
– individual verifiability: a voter can check that her ballot is
counted;

– universal verifiability: anyone can check that the results
corresponds to the published ballots;

– eligibility verifiability: only legitimate voters may vote.
These two main properties seem antagonistic and an impossibility
result has even been established between verifiability and uncondi-
tional privacy [13], that is, a notion of privacy that is independent
of the power of the attacker.

The main contribution of this paper is to establish that, in fact,
(computational) privacy implies individual verifiability, that is, guar-
antees that all the honest votes will be counted. This result holds
for arbitrary primitives and voting protocols without anonymous
channels. To show that this implication is not due to a choice of a
very particular definition, we prove this implication in two very

distinct contexts, namely symbolic and cryptographic models. In
symbolic models, messages are represented by terms and the at-
tacker’s behaviour is typically axiomatised through a set of logical
formulas or rewrite rules. Cryptographic models are more precise.
They represent messages as bitstrings and consider attackers that
can be any probabilistic polynomial time Turing machines. Proofs
of security are made by reduction to well accepted security assump-
tions such as hardness of factorisation or discrete logarithm. In
both models, we consider a standard notion of privacy, already
used to analyse several protocols. In both cases, we establish that
privacy implies individual verifiability for a (standard) basic notion
of individual verifiability, namely that the result of the election
must contain the votes of all honest voters.

We now describe the main idea of the result. Actually, we show
the contrapositive implication: if there is an attack against individ-
ual verifiability, then there is an attack against privacy. To explain
the idea, let’s consider a very simple protocol, not at all verifiable.
In this simple protocol, voters simply encrypt their votes with the
public key of the election. The ballot box stores the ballots and, at
the end of the election, it provides the list of recorded ballots to the
talliers, who detain the private key, possibly split in shares. The
talliers compute and publish the result of the election. The ballot
box is not public and no proof of correct decryption is provided
so voters have no control over the correctness of the result. Such
a system is of course not satisfactory but it is often viewed as a
“basic” system that can be used in contexts where only privacy is a
concern. Indeed, it is typically believed that such a system guaran-
tees privacy provided that the attacker does not have access to the
private key of the election. In particular, the ballot box (that is, the
voting server) seems powerless. This is actually not the case. If the
ballot box aims at knowing how a particular voter, say Alice, voted,
he may simply keep Alice’s ballot in the list of recorded ballots and
then replace all the other ballots by encryptions of valid votes of
his choice, possibly following a plausible distribution, to make the
attack undetected. When the result of the election is published, the
ballot box will know all the votes but Alice’s vote, and will therefore
be able to deduce how Alice voted.

One may argue that such an attack is not realistic: the ballot box
needs to be able to change all ballots but one. Note however that
elections are often split in many small voting stations (sometimes as
small as 20 voters in total [18]). Therefore changing a few ballots can
be sufficient to learn howAlice voted. Maybe more importantly, this
attack highlights the fact that it is not possible to require privacy
without verifiability as sometimes specified by national agencies.
For example, in France, only privacy is required [1]. In Switzerland,
privacy is a pre-requisite and the level of verifiability depend on the
percentage of voters that can vote electronically [2]. Our findings
point out that if voters cannot trust some authorities w.r.t. the fact
that their votewill be counted they cannot trust the same authorities

1

w.r.t. their privacy, even for entities that do not have access to the
secret keys. Beyond the attack explained on a simple (and naive)
protocol, our proof that privacy implies individual verifiability
shows that as soon as a protocol is not verifiable, then the adversary
can take advantage of the fact that he may modify a vote without
being detected in order to break privacy. Individual verifiability is
only one part of verifiability. It does not account for universal nor
eligibility verifiability. So our result cannot be used to conclude that
a private voting scheme ensures all desirable verifiability properties.
Instead, it demonstrates that there is no hope to design a private
voting system if it does not include some degree of verifiability,
namely individual verifiability at least.

Our results also emphasise issues in existing privacy definitions.
Indeed, if privacy implies individual verifiability, how is it possible
to prove Helios [8] or Civitas [5] without even modelling the verifi-
cation aspects? How can a system that is not fully verifiable like
the Neuchâtel protocol be proved private [22]? As already pointed
out in [9], existing cryptographic definitions of privacy (see [7] for
a survey) implicitly assume an honest voting ballot box: honest bal-
lots are assumed to be properly stored and then tallied. Actually, we
notice that the same situation occurs in symbolic models. Although
the well adopted definition of privacy [21] does not specify how the
ballot box should be modelled, most symbolic proofs of privacy (see
e.g. [5, 18, 19, 21]) actually assume that the votes of honest voters
always reach the ballot box without being modified and that they
are properly tallied. The reason is that the authors were aware of
the fact that if the adversary may block all ballots but Alice’s ballot,
he can obviously break privacy. However, to avoid this apparently
systematic attack, they make a very strong assumption: the ballot
box needs to be honest. This means that previous cryptographic
and symbolic privacy analyses only hold assuming an honest ballot
box while the corresponding voting systems aim at privacy without
trusting the ballot box. This seriously weakens the security analysis
and attacks may be missed, like the attack of P. Roenne [29] on
Helios, for which there is no easy fix.

Why is it so hard to define vote privacy w.r.t. a dishonest ballot
box? Intuitively, vote privacy tries to capture the idea that, no
matter how voters vote, the attacker should not be able to see any
difference. The key issue is that the result of the election does leak
some information (typically the sum of the votes) and the adversary
may notice a difference based on this. This particularity makes vote
privacy differ from privacy in other contexts, where the adversary
really should learn no information. Therefore, most definitions
of vote privacy (roughly) say that, no matter how honest voters
voted, provided that the aggregation of the corresponding votes
remains the same, then the attacker should not see any difference.
However, as soon as the ballot box is dishonest, it may discard
some honest ballots and break privacy, as already discussed. The
first definition of privacy w.r.t. a dishonest ballot box [9] weakens
privacy by requiring that among the ballots that are ready to be
tallied, the (sub-)tally of the honest ones does not change. This
preliminary definition has two limitations. First, it assumes that the
tallied ballots are exactly the same as the cast ones, which is not
the case of all protocols (e.g. in ThreeBallots [28], only a part of the
ballot is published; in BeleniosRF [12], ballots are re-randomised).
Second, it does not model re-voting: the tally process cannot discard
ballots due to some revote policy.

We propose here another approach. Instead of changing the pri-
vacy definition, we now include a model of the verification process:
the ballots should be tallied only if the honest voters have success-
fully performed the tests specified by the protocol. We compare
our definition with [9] and an original definition of privacy [6] on
a selection of well-studied protocols, that have different levels of
verifiability (Helios, Civitas, Belenios, Neuchâtel, and our simple -
non verifiable - protocol). We show again that our notion of privacy,
w.r.t. a dishonest ballot box, implies individual verifiability. We do
not consider our new definition of privacy as final but it opens the
way to a better understanding of privacy in the context of fully
dishonest authorities.

Threat model.We show that privacy implies individual verifia-
bility, under the same trust assumptions, that is, trusting the same
group of authorities, channels, etc. In symbolic models, the pri-
vacy definition does not make prior assumptions on the threat
model. Instead, the encoding of the protocol defines which parties
are trusted. In particular, as already discussed, existing proofs of
privacy [5, 18, 19, 21] often implicitly assume that honest ballots
reach the ballot box without any modification. We show that when-
ever privacy holds then individual verifiability holds, for the same
encoding, hence the same assumptions. In contrast, most crypto-
graphic definitions of privacy implicitly assume an honest ballot
box. Therefore, we first show that privacy implies individual veri-
fiability, assuming an honest ballot box, considering the standard
definition of privacy by Benaloh [6]. Then we show that privacy
still implies individual verifiability, assuming a dishonest ballot box,
considering our novel definition of privacy, that explicitly models
the verification steps.

Related work. As already mentioned, [13] shows an impossibility
result between universal verifiability and unconditional privacy.
We show in contrast that the commonly used (computational) def-
initions of privacy actually imply verifiability. The discrepancy
between the two results comes from the fact that [13] considers
unconditional privacy while most protocols achieve only computa-
tional privacy, that is against a polynomially bounded adversary.
Interestingly, the impossibility result still holds between uncondi-
tional privacy and our notion of individual verifiability. [20] estab-
lishes a hierarchy between privacy, receipt-freeness, and coercion
resistance, while in a quantitative setting, [27] shows that this hi-
erarchy does not hold anymore. [16] recasts several definition of
verifiability in a common setting, providing a framework to com-
pare them. Besides [13], none of these approaches relates privacy
with verifiability. Many privacy definitions have been proposed as
surveyed in [7]. However, they all assume an honest ballot box. To
our knowledge, [9] is the only exception, as already discussed in
details. [18] shows how to break privacy by replaying a ballot. If an
attacker may replay Alice’s ballot and cast it in his own name (or
cast a related ballot), then he introduces a bias in the result, that
leaks some information on Alice’s vote. Note that this replay attack
does not break individual verifiability: honest votes are correctly
counted. We show here another breach for privacy: if an attacker
may remove some honest votes, then he breaks privacy as well.

Roadmap. We first prove that privacy implies individual verifia-
bility in symbolic models, in Section 3, and then in cryptographic
models, in Section 4. These two parts are rather independent. In Sec-
tion 6, we examine a selection of well-studied voting protocols and

2

compare the effect of different (cryptographic) notions of privacy
when the ballot box is dishonest.

2 PRELIMINARIES
Notations: The multiset of elements a,a,b, c is denoted {|a,a,b, c |}.
The union of two multisets S1 and S2 is denoted S1 ⊎ S2.

In both cryptographic and symbolic models, we assume a setV
of votes and a set R of possible results, equipped with an associative
and commutative operator ∗ (e.g. addition of vectors). A counting
function is a function ρ that associates a result r ∈ R to a multiset
of votes. We assume that counting functions have a partial tally
property: it is always possible to count the votes in two distinct
multisets and then combine the results.

∀V ,V ′ ρ(V ⊎V ′) = ρ(V) ∗ ρ(V ′)

A vote v is said to be neutral if ρ(v) is neutral w.r.t. ∗.

Example 2.1. Consider a finite set of candidates C = {a1, . . . ,ak }.
In case voters should select between k1 and k2 candidates or vote
blank, we can represent valid votes by vectors representing the
selection of candidates

Vk1,k2 =

{
v ∈ {0, 1}k | k1 ≤

k∑
i=0

vi ≤ k2

}
∪ {vblank}

where vblank is the null vector (0, . . . , 0), representing a blank vote.
In a mixnet-based tally, all the individual votes are revealed. Thus
R is the set of multisets of votes in Vk1,k2 and ∗ is the union of
multisets. The corresponding counting function is ρmix (V) = V ,
where V is a multiset of elements ofVk1,k2 .

In an homomorphic-based tally, the votes are added together.
Thus R = Nk , the set of vectors of k elements, and ∗ is the addition
of vectors. The corresponding counting function is ρhom (V) =∑
v ∈V v .
Both ρmix and ρhom have the partial tally property. The vote

vblank is a neutral vote w.r.t. ρhom but not ρmix .

The result of the election r may have several representations. For
example, a multiset may be represented by several lists (where the
order changes). In symbolic models, the result will be represented
by abstract terms and we wish our result to be independent of a
particular choice of representation. Therefore, we will simply say
that a representation R is a function that associates to a result r ∈ R
a set of possible representations with an injectivity property:

∀r , r ′. R(r) ∩ R(r ′) = ∅

Intuitively, a result can be associated to several representations but
a given representation can correspond to at most one result.

For our proofs in a cryptographic setting, we will also assume
that given an election result r and a set of votes V , one can decide
efficiently (in polynomial time) whether r includes all the votes of
V , that is, whether there exists V ′ such that r = ρ(V ⊎ V ′). This
condition is satisfied by ρmix and ρhom and all standard counting
functions.

3 SYMBOLIC MODEL
3.1 Model
In symbolic models, security protocols are often modelled through a
process algebra, in the spirit of the applied pi-calculus [3], that offers
a small, abstract language for specifying communications, where
messages are represented as terms. We present here a calculus
inspired from the calculus underlying the ProVerif tool [10].

3.1.1 Terms. We consider an infinite set of names N that model
fresh values such as nonces and keys. We distinguish the set FN
of free nonces (generated by the attacker) and the set BN of bound
nonces (generated by the protocol agents). We also assume an infi-
nite set of variablesV = X ⊎AX where X contains variables used
in processes (agent’s memory) while AX contains variables used
to store messages (adversary’s memory). Cryptographic primitives
are represented through a set of function symbols, called signa-
ture F . Each function symbol has an arity, that is, the number of its
arguments. We assume an infinite set C ⊆ F of public constants,
which are functions of arity 0.

Example 3.1. The standard primitives, public keys, symmetric
and asymmetric encryption, concatenation, as well as addition, can
be modelled by the following signature.

Fc = {pk/1, enc/2, aenc/2, ⟨·, ·⟩/2,+/2}

The companion primitives (symmetric and asymmetric decryp-
tion, projections) are then represented by the following signature:

Fd = {dec/2, adec/2, π1/1, π2/1}

Given a signature F , a set of names N , a set of variablesV , the
set of terms T(F ,V,N) is the set inductively defined by applying
functions to variables in V and names in N . The set of names
resp. variables) occurring in t is denoted names(t) (resp. vars(t)). A
term is ground if it does not contain any variable. The set of terms
T(F ,AX, FN) represents the attacker terms, that is, terms built
from the messages sent on the network and stored thanks to the
variables in AX.

A substitution σ = {M1/x1, . . . ,Mk/xk } maps variables x1, . . . ,
xk ∈ V to messagesM1, . . . ,Mk . Its domain is denoted dom(σ) =
{x1, . . . , xk }. The application of σ to a term t is denoted tσ and is de-
fined as usual. A substitutionσ is ground if its messagesM1, . . . ,Mk
are ground.

The properties of the cryptographic primitives are modelled
through an equational theory E, which is a finite set of equations of
the form M = N where M,N ∈ T (F ,X, ∅) are messages without
names. Equality modulo E, denoted by =E, is defined as the smallest
equivalence relation on terms that is closed under context and
substitution. We denote disequalities modulo E byM ,E N .

Example 3.2. Considering the signature Fc ∪ Fd ∪ C from Ex-
ample 3.1, the following equational theory describes the ability to
decrypt symmetrically, asymmetrically, and to project pairs. It also

3

Processes:
P,Q ::=

0
| ν n.P for n ∈ BN (n bound in P)
| out(c,M).P
| in(c, x).P for x ∈ X (x bound in P)
| event(M1, . . . ,Mn).P for event ∈ Ev of arity n
| P | Q
| let x = M in P for x ∈ X (x bound in P)
| if M = N then P else Q
| !P

whereM,N ,M1, . . . ,Mn are messages and c ∈ Ch is a channel.

Figure 1: Syntax for processes.

characterises + as an associative and commutative operator.

dec(enc(x,y),y) = x
adec(aenc(x, pk(y)),y) = x

π1(⟨x,y⟩) = x
π2(⟨x,y⟩) = y
x + (y + z) = (x + y) + z

x + y = y + x

3.1.2 Processes. The behaviour of protocol parties is described
through processes. Let Ch be an infinite set of channel names, rep-
resenting the channels on which the messages are exchanged. All
channels will be public. We consider different channels nevertheless
to model the fact that an attacker can identify the provenance of a
message. We also consider a finite set Ev of event symbols, given
together with their arity. Events are used to record that partici-
pants have reached a certain step, with some associated knowledge.
Protocols are modelled through a process algebra, whose syntax is
displayed in Figure 1.

As usual, we identify processes up to α-renaming, to avoid cap-
ture of bound names and variables.

A configuration of the system is a triple (E;P;ϕ) where:
• P is a multiset of processes that represents the current active
processes;
• E is a set of names, which represents the private names of
the processes;
• ϕ is a substitution with dom(ϕ) ⊆ AX that represents the
messages sent on the network. We assume ϕ to be ground,
that is for any x ∈ dom(ϕ), ϕ(x) is a ground term.

The semantics of processes is given through a transition relation
α
−−→ provided in Figure 2, where α is the action associated to the
transition. τ denotes a silent action. Events are recorded but will
be invisible to the attacker. Intuitively, process ν n.P creates a fresh
nonce, stored in E, and behaves like P . Process out(c,M).P emitsM
on c and behaves like P . Process in(c, x).P inputs a term computed
by the attacker (that is a term built from ϕ using an attacker term)
on channel c and then behaves like P . Process event(M1, . . . ,Mn).P
triggers the event event(M1, . . . ,Mn), and then behaves like P . Pro-
cess P | Q corresponds to the parallel composition of P and Q .
Process let x = M in P behaves like P in which x is replaced with
M . Process if M = N then P else Q behaves like P if M and N

are equal modulo E, and behaves like Q otherwise. The replicated
process !P behaves as an unbounded number of copies of P .

We denote by w
−−−→∗ the reflexive transitive closure of

α
−−→, where

w is the concatenation of all actions. We also write equality up to
silent actions and events =τ .

A trace of a process P is any possible sequence of transitions
starting from P . Traces correspond to all possible executions in the
presence of an attacker that may read, forge, and send messages.
Formally, the set of traces trace(P) is defined as follows.

trace(P) = {(w, new E .ϕ)|(∅; {P}; ∅) w
−−−→∗ (E;P;ϕ)}

A sequence of actions t is blocking in a process P if it cannot be
executed.

blocking(t, P)
def
= ∀ϕ . (t,ϕ) < trace(P).

Example 3.3. Helios [4] is a simple voting protocol used in several
elections, like the election of the recteur of the university of Louvain-
la-Neuve. A voter simply encrypts her vote with the public key of
the election. This encrypted vote forms the ballot, which is sent
to the ballot box. The voter may check that her ballot is on the
ballot box since the ballot box is public. There are two ways for
tallying, either homomorphic tally or mixnet-based tally. We model
here the two options in an abstract way: given the ballots, the
talliers output the aggregation of the decryption of the ballot. This
aggregation could be the addition or just the votes in a random
order. For simplicity, we describe here a simple version with only
two honest voters A and B, a dishonest voterC , and a voting server
S . This protocol can be modelled by the following process.

PHelios(va,vb) =
ν kas ,kbs ,kcs ,ke .
(out(c,kcs).out(c, pk(ke)) |
Voter(A,va, ca, c ′a,kas ,ke) | Voter(B,vb , cb , c

′
b ,kbs ,ke) |

TallyHelios(ca, cb , cc , cs ,kas ,kbs ,kcs ,ke))

where Voter(a,v, c, c ′,k,ke) represents voter a willing to vote for v
using the channels c and c ′, the election key ke and the credential k
to authenticate to the server, while TallyHelios represents the voting
server.

Voter(a,v, c, c ′,k,ke) simply sends an encrypted vote. To model
the fact that voters communicate with the ballot box through an
authenticated channel, we assume that a voter first sends her ballot
privately to the server (using the encryption with k) and then
sends the ballot on a public channel. Note that the key k is just a
modelling artefact to abstract away the underlying password-based
authenticated channel.

Voter(a,v, c, c ′,k,ke) =
ν r . out(c, enc(aenc(⟨v, r ⟩, pk(ke)),k)). Voted(a,v).

out(c ′, aenc(⟨v, r ⟩, pk(ke)))

The voting server receives ballots from voters A, B, and C and
then outputs the decrypted ballots, after some mixing, modelled

4

(E; {P1 | P2} ∪ P;ϕ)
τ
−−→ (E; {P1, P2} ∪ P;ϕ) Par

(E; {0} ∪ P;ϕ) τ
−−→ (E;P;ϕ) Zero

(E; {ν n.P} ∪ P;ϕ) τ
−−→ (E ∪ {n}; {P} ∪ P;ϕ) New

(E; {out(c,M).P} ∪ P;ϕ)
ν axn .out(c ,axn)
−−−−−−−−−−−−−−−−→ (E; {P} ∪ P;ϕ ∪ {M/axn }) Out
ifM is a ground term, axn ∈ AX and n = |ϕ | + 1

(E; {in(c, x).P} ∪ P;ϕ)
in(c ,R)
−−−−−−−→ (E; {P[Rϕ/x]} ∪ P;ϕ) In

if R is an attacker term such that vars(R) ⊆ dom(ϕ)

(E; {event(M1, . . . ,Mn).P} ∪ P;ϕ)
event(M1, ...,Mn)
−−−−−−−−−−−−−−−−→ (E; {P} ∪ P;ϕ) Event

if ∀i . Mi is a ground message
(E; {let x = M in P} ∪ P;ϕ) τ

−−→ (E; {P[M/x]} ∪ P;ϕ) Let-In
ifM is ground

(E; {if M = N then P else Q} ∪ P;ϕ) τ
−−→ (E; {P} ∪ P;ϕ) If-Then

ifM , N are ground messages such thatM =E N

(E; {if M = N then P else Q} ∪ P;ϕ) τ
−−→ (E; {Q} ∪ P;ϕ) If-Else

ifM , N are ground messages such thatM ,E N

(E; {!P} ∪ P;ϕ) τ
−−→ (E; {P, !P} ∪ P;ϕ) Repl

Figure 2: Semantics

through the + operator.
TallyHelios(ca, cb , cc , cs ,kas ,kbs ,kcs ,ke) =
in(ca, x1).in(cb , x2).in(cc , x3).
let y1 = dec(x1,kas) in
let y2 = dec(x2,kbs) in
let y3 = dec(x3,kcs) in
if x1 , x2 ∧ x1 , x3 ∧ x2 , x3 then

out(cs , π1(adec(y1,ke)) + π1(adec(y2,ke))
+ π1(adec(y3,ke)))

where we omit the null else-branches. ∧ is syntactic sugar for a
succession of tests and if M , N then P is syntactic sugar for
if M = N then 0 else P .

3.1.3 Equivalence. Sent messages are stored in a substitution ϕ
while private names are stored in E. A frame is simply an expres-
sion of the form new E .ϕ where dom(ϕ) ⊆ AX. It represents the
knowledge of an attacker. We define dom(new E .ϕ) as dom(ϕ).

Intuitively, two sequences of messages are indistinguishable to
an attacker if he cannot perform any test that could distinguish
them. This is typically modelled as static equivalence [3].

Definition 3.4 (Static Equivalence). Two ground frames new E .ϕ
and new E ′.ϕ ′ are statically equivalent if and only if they have
the same domain, and for all attacker terms R, S with variables in
dom(ϕ) = dom(ϕ ′), we have

(Rϕ =E Sϕ) ⇐⇒ (Rϕ ′ =E Sϕ ′)

Two processes P and Q are in equivalence if no matter how the
adversary interacts with P , a similar interaction may happen with
Q , with equivalent resulting frames.

Definition 3.5 (Trace Equivalence). Let P , Q be two processes.
We write P ⊑t Q if for all (s,ψ) ∈ trace(P), there exists (s ′,ψ ′) ∈
trace(Q) such that s =τ s ′ and ψ and ψ ′ are statically equivalent.
We say that P and Q are trace equivalent, and we write P ≈t Q , if
P ⊑t Q and Q ⊑t P .

Note that this definition already includes the attacker’s behaviour,
since processes may input any message forged by the attacker.

Example 3.6. Ballot privacy is typically modelled as an equiva-
lence property [21] that requires that an attacker cannot distinguish
when Alice is voting 0 and Bob is voting 1 from the scenario where
the two votes are swapped.

Continuing Example 3.3, ballot privacy of Helios can be ex-
pressed as follows:

PHelios(0, 1) ≈t PHelios(1, 0)

3.2 Voting protocols
We consider two disjoint, infinite subsets of C: a set A of agent
names or identities, and a setV of votes. We assume given a repre-
sentation R of the result.

A voting protocol is modelled as a process. It is composed of:
• processes that represent honest voters;
• a process modelling the tally;
• possibly other processes, modelling other authorities.

Formally, we define a voting process as follows.
Definition 3.7. A voting process is a process of the form

P = ν
„

cred.ν cred1 . . . ν credp . (
Voter(a1,va1 ,

#„c1,
„

cred, cred1) | · · · |
Voter(an,van ,

#„cn,
„

cred, credn)
| Tallyp (

#„c ,
„

cred, cred1, . . . , credp)
| Othersp (#„c ′,

„

cred, cred1, . . . , credp))

where ai ∈ A, vai ∈ V , #„ci , #„c , #„c ′ are (distinct) channels, # „

cred and
credi are (distinct) names.

A voting process may be instantiated by various voters and vote
selections. Given A = {b1, . . . ,bn } ⊆ A a finite set of voters, and
α : A → V that associates a vote to each voter, we define Pα by
replacing ai by bi and vi by α(bi) in P .

5

Moreover, P must satisfy the following properties.
• Process Voter(a,va, #„c ,

„

cred, cred) models an honest voter a
willing to vote for va , using the channels #„c , credentials
cred (e.g. a signing key) and election credentials # „

cred. It is
assumed to contain an event Voted(a,v) that models that a
has voted for v . This event is typically placed at the end of
process Voter(a,va, #„c ,

„

cred, cred). This event cannot appear
in process Tallyp nor Othersp .
• Process Tallyp (#„c ,

„

cred, cred1, . . . , credp) models the tally. It
is parametrised by the total number of voters p (honest and
dishonest), with p ≥ n. It is assumed to contain exactly one
output action on a reserved channel cr . The term output on
this channel is assumed to represent the final result of the
election.

∀α . ∀(tr ,ϕ) ∈ trace(Pα). out(cr , r) ∈ tr ⇒ ∃V . ϕ(r) ∈ R(ρ(V))

Tallyp may of course contain input/output actions on other
channels.
• Process Othersp (#„c ′,

„

cred, cred1, . . . , credp) is an arbitrary
process, also parametrised by p. It models the remaining
of the voting protocol, for example the behaviour of other
authorities. It also models the initial knowledge of the at-
tacker by sending appropriate data (e.g. the public key of the
election or dishonest credentials). We simply assume that
it uses a set of channels disjoint from the channels used in
Voter and Tallyp .

The channel cr used in Tallyp to publish the result is called the
result channel of P .

Example 3.8. The process modelling the Helios protocol, as de-
fined in Example 3.3 is a voting process, where process Othersp
consists in the output of the keys: out(c,kcs).out(c, pk(ke)).

We can read which voters voted from a trace. Formally, given a
sequence tr of actions, the set of voters Voters(tr) who did vote in
tr is defined as follows.

Voters(tr) = {a ∈ A | ∃v ∈ V . Voted(a,v) ∈ tr }.

The result of the election is emitted on a special channel cr . It
should correspond to the tally of a multiset of votes. Formally, given
a trace (t,ϕ) and a multiset of votes V , the predicate result(t,ϕ,V)
holds if the election result in (t,ϕ) corresponds to V .

result(t,ϕ,V)
def
= ∃x, t ′. t = t ′.out(cr , x) ∧ ϕ(x) ∈ R(ρ(V)).

3.3 Security properties
Several definitions of verifiability have been proposed. In the lines
of [15, 26], we consider a very basic notion, that says that the result
should at least contain the votes from honest voters.

Definition 3.9 (symbolic individual verifiability). Let P be a voting
process with result channel cr . P satisfies symbolic individual verifi-
ability if, for any trace (t,ϕ) ∈ trace(Pα) of the form t ′.out(cr , x)),
there existsVc such that the result in t corresponds toVa ⊎Vc , that
is result(t,ϕ,Va ⊎Vc), where

Va = {|v | ∃a. Voted(a,v) ∈ t |}

Individual verifiability typically guarantees that voters can check
that their ballot will be counted. Our notion of individual verifia-
bility goes one step further, ensuring that the corresponding votes
will appear in the result, even if the tally is dishonest. One of the
first definitions of verifiability was given in [25], distinguishing be-
tween individual, universal, and eligibility verifiability. Intuitively,
our own notion of individual verifiability sits somewhere between
individual verifiability and individual plus universal verifiability as
defined in [25]. A precise comparison is difficult as individual and
universal verifiability are strongly tight together in [25]. Moreover,
[25] only considers the case where all voters are honest and they
all vote.

We consider the privacy definition proposed in [21] and widely
adopted in symbolic models: an attacker cannot distinguish when
Alice is voting v1 and Bob is voting v1 from the scenario where the
two votes are swapped.

Definition 3.10 (Privacy [21]). Let P be a voting process. P satisfies
privacy if, for any subtitution α from voters to votes, for any two
voters a,b ∈ A\dom(α) and any two votes v1,v2 ∈ V , we have

Pα∪{a 7→v1,b 7→v2 } ≈ Pα∪{a 7→v2,b 7→v1 }

3.4 Privacy implies verifiability
We show that privacy implies verifiability under a couple of as-
sumptions, typically satisfied in practice.

First, we assume a light form of determinacy: two traces with the
same observable actions yield the same election result. This excludes
for example cases for voters chose non deterministically how they
vote. Formally, we say that a voting process P with election channel
cr is election determinate if, for any substitution α from voters to
votes, for any two traces t, t ′ such that t =τ t ′, (t .out(cr , x),ϕ) ∈
trace(Pα), and (t ′.out(cr , x),ϕ ′) ∈ trace(Pα), then

ϕ(x) ∈ R(ρ(V))) ⇒ ϕ ′(x) ∈ R(ρ(V))

This assumption still supports some form of non determinism but
may not hold for example in the case where voters use anonymous
channels that even hide who participated in the election.

Second, we assume that it is always possible for a new voter to
vote (before the tally started) without modifying the behaviour of
the protocol.

Formally, a voting proces P is voting friendly if for all voter
a ∈ A, there exists t ′′ (the honest voting trace) such that for all α
satisfying a < dom(α),
• for all (t,ϕ) ∈ trace(Pα), such that t = t ′.out(cr , x) for
some t ′, x , for all v , there exists tr , ψ such that tr =τ t ′′,
Voted(a,v) ∈ tr , (t ′.tr .out(cr , x),ψ) ∈ trace(Pα∪{a 7→v }),
and∀V . ϕ(x) ∈ R(ρ(V)) ⇒ ψ (x) ∈ R(ρ(V ∪{v})). Intuitively,
if a votes normally, her vote will be counted as expected, no
matter how the adversary interfered with the other voters.
• for all t ′, x such that blocking(t ′.out(cr , x), Pα), for all v ,
tr , ψ such that tr =τ t ′′, we have blocking(t ′.tr .out(cr , x),
Pα∪{a 7→v }). Intuitively, the fact that a voted does not sud-
denly unlock the tally.

In practice, most voting systems are voting friendly since voters vote
independently. In particular, process PHelios modelling Helios, as
defined in Example 3.3, is voting friendly (assuming an honest tally).
The voting friendly property prevents a fully dishonest tally since

6

the first item requires that unmodified honest ballots are correctly
counted. However, we can still consider a partially dishonest tally
that, for example, discards or modifies ballots that have been flagged
by the attacker.

Moreover, we assume that there exists a neutral vote, which is
often the case in practice. Actually, this is a simplified (sufficient)
condition. Our result also holds as soon as there is a vote that can
be counted separately from the other votes (as formally defined in
appendix).

Theorem 3.11 (Privacy implies individual verifiability). Let
P be a voting friendly, election determinate voting process.

If P satisfies privacy then P satisfies individual verifiability.

The proof of this result intuitively relies on the fact that in order
to satisfy privacy w.r.t. two voters Alice and Bob, a voting process
has to guarantee that the vote of Alice is, if not correctly counted,
at least taken into account to some extent. Indeed, if an attacker,
trying to distinguish whether Alice voted for 0 and Bob for 1, or
Alice voted for 1 and Bob for 0, is able to make the tally ignore
completely the vote of Alice, the result of the election is then Bob’s
choice. Hence the attacker learns how Bob voted, which breaks
privacy.

Therefore, we first we prove that if a protocol satisfies privacy,
then if we compare an execution (i.e. a trace) where Alice votes 0
with the corresponding execution where Alice votes 1, the resulting
election results must differ by exactly a vote for 0 and a vote for 1.
Formally, we show the following property.

Lemma 3.12. If a voting friendly, election determinate voting pro-
cess P satisfies privacy, then it satisfies

[t =τ t ′ ∧ (t,ϕ) ∈ trace(Pα∪{a 7→v1 }) ∧

(t ′,ϕ ′) ∈ trace(Pα∪{a 7→v2 }) ∧

result(t,ϕ,V) ∧ result(t ′,ϕ ′,V ′)] =⇒

ρ(V ′ ⊎ {|v1 |}) = ρ(V ⊎ {|v2 |}).

This lemma is used as a central property to prove the theorem.
Intuitively, we apply this lemma repeatedly, changing one by one
all the votes from honest voters into neutral votes. Let r denote the
result before this operation, and r ′ the result after. Let Va denote
the multiset of honest votes, and Vb the multiset containing the
same number of neutral votes. Thanks to Lemma 3.12, we can show
that r ∗ ρ(Vb) = r ′ ∗ ρ(Va). Since Vb only contains neutral votes,
we have r = r ′ ∗ ρ(Va). This means that r contains all honest votes,
hence the voting process satisfies individual verifiability.

The detailed proof of this theorem can be found in appendix.

4 COMPUTATIONAL MODEL
Computational models define protocols and adversaries as proba-
bilistic polynomial-time algorithms.

Notation: We may write (id, ∗) ∈ L as a shorthand, meaning that
there exists an element of the form (id, x) in L. If V is a multiset of
elements of the form (id,v), we define ρ(V) = ρ({|v | (id,v) ∈ V |}).

4.1 Voting system
We assume that the ballot box displays a board BB, that is a list
of ballots. The nature of the ballots depend on the protocol we
consider.

Definition 4.1. A voting scheme consists in six algorithms

(Setup,Credential,Vote,VerifVoter, Tally,Valid)

• Setup(1λ), given a security parameter λ, returns a pair of
election keys (pk, sk).
• Credential(1λ, id) creates a credential cred for voter id, for
example a signing key. The credential may be empty as well.
Registered voters are stored in a list U.
• Vote(id, cred, pk,v) constructs a ballot containing the vote
v for voter id with credential cred, using the election public
key pk.
• VerifVoter(id, cred, L,BB) checks whether the local knowl-
edge L of voter id is consistent with the board BB. For exam-
ple, a voter may check that her (last) ballot appears on the
bulletin board.
• Tally(BB, sk,U) computes the tally of the ballots on the board
BB, using the election secret key sk, assuming a list of reg-
istered voter identities and credentials U. The Tally algo-
rithm first runs some test ValidTally(BB, sk,U) that typically
checks that the ballots of BB are valid. Tally may return
⊥ if the tally procedure fails (invalid board or decryption
failure for example). If Tally(BB, sk,U) , ⊥ then it must cor-
respond to a valid result, that is, there exists V such that
Tally(BB, sk,U) = ρ(V).
• Valid(id,b,BB, pk) checks that a ballot b cast by a voter id is
valid with respect to the board BB using the election public
key pk. For example, the ballot b should have a valid signa-
ture or valid proofs of knowledge. The ballot b will be added
to BB only if Valid(id,b,BB, pk) succeeds.

We will always assume a correct voting scheme, that is, tal-
lying honestly generated ballots yields the expected result. For-
mally, for all distinct identities U = id1, . . . , idn , and credentials
cred1, . . . , credn , for all votesv1, . . . ,vn , for all election keys (pk, sk),
if BB = [Vote(idi , credi , pk,vi)|i ∈ J1,nK], then

Tally(BB, sk,U) = ρ({|v1, . . . ,vn |})

The tally algorithm typically applies a revote policy. Indeed, if
voters may vote several times, the revote policy states which vote
should be counted. The two main standard revote policies are 1. the
last vote counts or 2. the first vote counts (typically when revote is
forbidden). In what follows, our definitions are written assuming
the last ballot revote policy. However, they can easily be adapted to
the first ballot revote policy and all our results hold in both cases
(as shown in appendix).

The revote policy is either based on the identities or the cre-
dentials. We say that a voting system is id-based if there exists a
a function openid which, given a ballot b, retrieves the associated
identity. Formally, for any id, cred, pk,v ,

openid (Vote(id, cred, pk,v)) = id

Similarly, we say that a voting system is cred-based if there exists
a function opencred which, given a ballot b, the election secret key
sk, and a list U of registered voters and credentials, retrieves the
credential cred used by the voter to create the ballot. Formally, for
any id, cred, sk, pk,v ,

opencred (Vote(id, cred, pk,v), sk,U) = cred
7

Oreg(id)

if (id, ∗) ∈ U then

stop

else

credid ← Credential(1λ , id)
U← U∥(id, credid)

Ocorr(id)

if (id, ∗) < U ∨ (id, ∗) ∈ CU then

stop

else

CU← CU∥(id, credid)

return credid
where (id, credid) ∈ U

Figure 3: Registration and corruption oracles

Note that some schemes are neither id-based nor cred-based,
in particular when the ballots contain no identifier. Such schemes
typically assume that voters do not revote since there is no means
to identify whether two ballots originate from the same voter.

4.2 Security properties
As usual, an adversary is any probabilistic polynomial time Turing
machine (PPTM). We define verifiability and privacy through game-
based properties.

4.2.1 Verifiability. For verifiability, we propose a simple definition,
inspired from [15, 26]. Intuitively, we require that the election re-
sult contains at least the votes of all honest voters. This notion was
called weak verifiability in [15] but we will call it individual verifi-
ability to match the terminology used in symbolic settings. More
sophisticated and demanding definitions have been proposed, for
example controlling how many dishonest votes can be inserted [15]
or tolerating some variations in the result [26]. The main missing
part (in terms of security) is that our definition does not control
ballot stuffing: arbitrarily many dishonest votes may be added to
the result. The reason is that ballot stuffing seems unrelated to
privacy. Moreover, our definition assumes an honest tally, and thus
does not capture universal verifiability aspects. The main reason is
that existing privacy definitions in computational settings assume
an honest tally and we compare the two notions under the same
trust assumptions. We leave as future work to determine how to
extend these two definitions to a dishonest tally, and whether the
implication still holds.

Verifiability is defined through the game Expverif
A
(λ) displayed

on Figure 4. In a first step, the adversary may use oracles Oreg(id)
and Ocorr(id) (defined on Figure 3) to respectively register a voter
and get her credential (in this case, the voter is said to be corrupted).
Then the adversary may ask an honest voter id to vote for a given
vote v through oracle Ovvote(id,v). In this case, the adversary sees
the corresponding ballot and the fact that id voted forv is registered
in the list Voted. The adversary may also cast an arbitrary ballot
b in the name of a dishonest voter id through oracle Ocast(id,b).
Finally, the adversary wins if the election result does not contain
all the honest votes registered in Voted (where only the last vote is
counted).

Definition 4.2 (Individual verifiability). A voting system is indi-
vidually verifiable if for any adversary A,

P
[
ExpverifA (λ) = 1

]
is negligible.

As mentioned in introduction, [13] shows an impossibility result
between (unconditional) privacy and verifiability. [13] considers
another aspect of verifiability, namely universal verifiability, that
is, the guarantee that the result corresponds to the content of the
ballot, even in presence of a dishonest tally. Interestingly, the same
incompatibility result holds between individual verifiability and
unconditional privacy, for the same reasons. Exactly like in [13],
a powerful adversary (i.e. not polynomial) could tally BB and BB′

where BB′ is the ballot box from which Alice’s ballot has been
removed and infer Alice’s vote by difference. More generally, un-
conditional privacy is lost as soon as there exists a tally function that
is meaningfully related to the result, which is implied by individual
verifiability.

4.2.2 Privacy. For privacy, we consider the old, well established
definition of Josh Benaloh [6]. More sophisticated definitions are
been proposed later (see [7] for a survey and a unifying definition).
They aim in particular at getting rid of the partial tally assumption
(needed in [6]). Note however that they all assume an honest ballot
box. Since we also assume partial tally, the original Benaloh def-
inition is sufficient for our needs. In particular, we do not know
if privacy implies verifiability for counting functions that do not
have the partial tally property. This is left as future work.

Intuitively, a voting system is private if, no matter how honest
voters vote, the adversary cannot see any difference. However, the
adversary always sees the election result, that leaks how the group
of honest voters voted (altogether). Therefore, the election result
w.r.t. the honest voters has to remain the same. More formally, in
a first step, the adversary uses oracles Oreg(id) and Ocorr(id) to
respectively register a voter and get her credential. Then the ad-
versary may request an honest voter id to vote either for v0 or v1
through oracle Opvote(id,v0,v1). Voter id will vote vβ depending
on the bit β . The adversary may also cast an arbitrary ballot b in
the name of a dishonest voter id through oracle Ocast(id,b). The
election will be tallied, only if the set V0 of votes v0 yields the
same result than the set V1 of votes v1 (where only the last vote is
counted). Finally, the adversary wins if he correctly guesses β . For-
mally, privacy is defined through the game Exppriv,β

A
(λ) displayed

on Figure 5.

Definition 4.3 (Privacy [6]). A voting system is private if for any
adversary A,���P [Exppriv,0

A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� is negligible.
4.3 Privacy implies individual verifiability
We show that privacy implies individual verifiability and we first
list here our assumptions. As for the symbolic case, we assume the
existence of a neutral vote. We also require that the tally can be per-
formed piecewise, that is, informally, as soon as two boardsBB1,BB2
are independant then Tally(BB1 ⊎ BB2) = Tally(BB1) ∗ Tally(BB2).
This property is satisfied by most voting schemes. Formally, we
characterize this notion of “independence” depending on whether
a scheme is id-based or cred-based.

An id-based voting scheme has the piecewise tally property if
for any two boards BB1 and BB2 that contain ballots registered for

8

Expverif
A
(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state← A
Oreg ,Ocorr
1 (pk)

BB, Voted← []

A
Ovvote ,Ocast
2 (state, pk)

r ← Tally(BB, sk, U)

if r , ⊥ ∧ ∀Vc (finite) . r , ρ({vi }1≤i≤k ⊎Vc) then

return 1
where Voted = {(id1, v1), . . . , (idk , vk)}

Ovvote(id,v)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, v)

BB← BB∥b

Voted← Voted′ ∥(id, credid , v)

return b

where (id, credid) ∈ U
and Voted′ is obtained from Voted

by removing all previous instances of (id, ∗)

Ocast(id,b)
if (id, ∗) ∈ CU ∧

Valid(id, b , BB, pk)

then

BB← BB∥(id, b)

Figure 4: Verifiability

Exppriv,β
A

(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state1 ← A
Oreg ,Ocorr
1 (pk)

BB, V0, V1 ← []

state2 ← A
O
p
vote ,Ocast

2 (state1, pk)

if ρ(V0) = ρ(V1) then

r ← Tally(BB, sk, U)

β ′ ← A3(state2, pk, r)

return β ′

O
p
vote(id,v0,v1)

if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, vβ)

BB← BB∥b

V0 ← V′0 ∥(id, v0)

V1 ← V′1 ∥(id, v1)

return b

where (id, credid) ∈ U
and V′0 (resp. V

′
1) is obtained from V0 (resp. V1)

by removing all instances of (id, ∗)

Ocast(id,b)
if (id, ∗) ∈ CU ∧

Valid(id, b , BB, pk)

then

BB← BB∥(id, b)

Figure 5: Privacy

different agents and such that BB1 ⊎ BB2 is valid, that is, if
ValidTally(BB1 ⊎ BB2, sk,U) ∧
∀b ∈ BB1. ∀b ′ ∈ BB2. openid (b) , openid (b

′),

then their tally can be computed separately:
Tally(BB1 ⊎ BB2, sk,U) = Tally(BB1, sk,U) ∗ Tally(BB2, sk,U). (*)
We also assume that the tally only counts ballots cast with

registered ids, i.e. ∀BB, sk,U. Tally(BB, sk,U) = Tally(BB′, sk,U)
where BB′ = [b ∈ BB | (openid (b), ∗) ∈ U]; and that registering
more voters does not change the tally: if U,U′ have no id in com-
mon and ∀b ∈ BB. (openid (b), ∗) < U′, then Tally(BB, sk,U) =
Tally(BB, sk,U ∪ U′).

Similarly, a cred-based voting scheme has the piecewise tally
property if for any two boards BB1 and BB2 that contain ballots
associated to different credentials, that is
∀b ∈ BB1. ∀b ′ ∈ BB2. opencred (b, sk,U) , opencred (b

′, sk,U)

then their tally can be computed separately (Property (*)).
We also assume that registering more voters does not change the

tally: ifU,U′ share no credentials and∀b ∈ BB. (∗, opencred (b, sk,U∪
U′)) < U′, then Tally(BB, sk,U) = Tally(BB, sk,U ∪ U′).

We say that a (id-based) voting scheme is strongly correct if
whatever valid board the adversary may produce, adding a honestly
generated ballot still yields a valid board. This property is formally
defined through the game ExpValidTally

A
(λ) displayed in Figure 6. A

ExpValidTally
A

(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state← A
Oreg ,Ocorr
1 (pk)

(BB, id, v) ← A
Ovtvote
2 (state, pk)

b ← Vote(id, credid , pk, v)

where (id , credid) ∈ U
if (id, ∗) ∈ U\CU ∧

(∀b′ ∈ BB. openid (b
′) , id) ∧

ValidTally(BB, sk, U) ∧

¬ValidTally(BB | |b , sk, U) then

return 1

Ovtvote(id,v)
if ∃credid .(id, credid) ∈ U\CU then

return Vote(id, credid , pk, v)

Figure 6: ValidTally game

similar assumption was introduced in [7]. For example, Helios is
strongly correct.

A voter credential typically includes a private part used to gen-
erate a signing key for example. It should not be possible for an
adversary to forge a ballot with an honest credential. Formally, we
say that a voting scheme has non-malleable credentials, if for any

9

ExpNM
A
(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state← A
Oreg ,Ocorr
1 (pk)

L← []

b ← AOc2 (state, pk)

if b < L ∧

∃(id, credid) ∈ U\CU.

opencred (b , sk,U) = credid then

return 1

Oc(id,v)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, v)

L← L∥b

return b

where (id, credid) ∈ U

Figure 7: Credential non-malleability

adversary A,

P
[
ExpNMA (λ) = 1

]
is negligible

where ExpNM
A
(λ) is defined on Figure 7. For example, Belenios and

Civitas have non-malleable credentials.

Theorem 4.4 (Privacy implies individual verifiability). Let
V be an id-based, strongly correct, voting scheme that has the piecewise
tally property. If V is private, then V is individually verifiable.

Similarly, letV be a cred-based voting scheme that has the piecewise
tally property and non-malleable credentials. If V is private, then V
is individually verifiable.

The proof of this theorem is inspired by the same intuition as in
the symbolic case: if an attacker manages to break verifiability, that
is, to obtain that not all votes from the honest voters are counted
correctly, then there also exists an attack against privacy. Indeed,
consider a scenario with additional, new voters, whose votes should
compensate those cast by the initial voters. By performing the attack
on verifiability for the initial voters, the attacker reaches a state
where, in the result of the election, they are no longer compensated
by the new votes. This allows the attacker to break privacy.

More precisely, the general idea of the proof is as follows. Con-
sider an attacker A that breaks individual verifiability, i.e. wins
the game Expverif with non negligible probability. We construct
an attacker B that breaks privacy, i.e. wins Exppriv,β . B starts by
registering, and corrupting, the same voters as A, using oracles
Oreg and Ocorr. Let id1, . . . , idn be this first set of voters. B then
registers another set of n voters id ′1, . . . , id

′
n , where the id ′i are fresh

identities, that A does not use.
B then simulatesA, using the oracle Opvote to simulateA’s calls

to Ovvote. Specifically, when A calls Ovvote(id,v), B calls the oracle
O
p
vote(id,v,v

blank), where vblank is a neutral vote. Once B is done
simulating A, it triggers the new voters id ′i to vote, by calling
the oracle Opvote(id

′
i ,v

blank,vi), where vi is the (last) vote cast by
idi . The vote of each id ′i compensates the vote of idi , so that the
condition ρ(V0) = ρ(V1) from Exppriv holds. B then obtains the
result r of the election, which is equal to r1 ∗r2, where r1 is the tally
of the ballots cast by A, and r2 the tally of the additional ballots
cast by B. Then:

Expdis,β
A
(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state1 ← A
Oreg ,Ocorr
1 (pk)

V0, V1 ← []

state2, BB← A
Odvote
2 (state1, pk)

if ρ(V0) = ρ(V1) then

r ← Tally(BB, sk, U)

β ′ ← A3(state2, pk, r)

return β ′

Odvote(id,v0,v1)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, vβ)

V0 ← V′0 ∥(id, v0)

V1 ← V′1 ∥(id, v1)

return b

where (id, credid) ∈ U
and V′0 (resp. V

′
1)

is obtained from V0 (resp. V1)
by removing all instances
of (id, ∗)

Figure 8: Privacy against a dishonest board (PrivDis-Naive)

• if β = 0: then all the votes cast by the id ′i werev
blank, and the

result is thus r = r1. Since A breaks individual verifiability,
r1 does not contain the honest votes, i.e., for all multiset Vc
of votes, r , ρ(v1, . . . ,vn) ∗ ρ(Vc).
• if β = 1 however, the votes cast by the id ′i were the vi , and
the partial tally r2 is therefore r2 = ρ(v1, . . . ,vn). Hence, the
result r does contain the honest votes.

Therefore, by observing whether the final result of the election
contains the honest votes, B is able to guess β , and wins Exppriv.

5 PRIVACYWITH A DISHONEST BOARD
Ourmain theorem states that privacy implies individual verifiability.
However, the privacy definition introduced by Benaloh assumes
an honest ballot box, as most existing privacy definitions of the
literature [7]. Therefore, our main theorem shows that whenever a
voting scheme is private w.r.t. an honest ballot box, then it is also
individually verifiable w.r.t. an honest ballot box, which is of course
a rather weak property. However, intuitively, our proof technique
does not rely on the trust assumptions.

As pointed out in introduction, extending cryptographic pri-
vacy definitions to a dishonest ballot box is difficult. Consider the
natural extension of privacy as displayed in Figure 8: the game is
the same than Exppriv,β

A
(λ) except that the adversary arbitrarily

controls the ballot box. Unfortunately, an adversary can always
win this new game. Indeed, he may simply query Odvote(id1, 0, 1)
and Odvote(id2, 1, 0), yielding respectively ballots bid1 and bid2 . Then
the adversary choses BB = bid1 . The tally will return β , hence the
adversary wins. This corresponds to the fact that an adversary may
always isolate a voter and break her privacy.

5.1 Privacy with careful voters
To solve this issue, we choose another approach, which consists in
explicitly modelling the verification steps made by voters: the tally
will be performed only if honest voters have successfully run their
checks (e.g. checking that their ballot belongs to the bulletin board).
Therefore, we extend the privacy game as follows. The adversary
arbitrarily controls the ballot box and may request honest voters to
vote through Op,cvote(id,v0,v1) as before. Note that there is no need
for the Ocast oracle since the adversary may add directly his own

10

Exppriv−careful,β
A

(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state1 ← A
Oreg ,Ocorr
1 (pk)

V0, V1, Lid (for all id in U) ← []

state2, BB← A
O
p ,c
vote

2 (state1, pk)

H← []

state3 ← A
OhappyBB
3 (state2)

if ∀id . (id, ∗) ∈ V0, V1 ⇒ id ∈ H

and ρ(V0) = ρ(V1) then

r ← Tally(BB, sk, U)

else

r ← ⊥

β ′ ← A4(state3, pk, r)

return β ′

O
p,c
vote(id,v0,v1)

if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, vβ)

V0 ← V′0 ∥(id, v0)

V1 ← V′1 ∥(id, v1)

Lid ← Lid ∥(b , vβ)

return b

where (id, credid) ∈ U
and V′0 (resp. V

′
1) is obtained

from V0 (resp. V1) by
removing all instances
of (id, ∗)

OhappyBB(id)
if (id, credid) ∈ U\CU then

if VerifVoter(id, credid , Lid , BB)

then H← H∥id

Figure 9: Privacy game against a dishonest board with care-
ful voters (Priv-careful)

ballots in the ballot box. He triggers voters to run their verification
tests through the oracle OhappyBB(id). To run her verification test
(using algorithm VerifVoter), the voter has access to the ballot box
BB forged by the adversary aswell as her local state Lid that contains
in particular her previously generated ballots. The tally is performed
only if all honest voters have successfully performed their test and
if, as previously, the setV0 of left votesv0 yields the same result than
the set V1 of right votes v1. Formally, privacy with careful voters is
defined through the game Exppriv−careful displayed on Figure 9.

Definition 5.1 (Privacy with careful voters). A voting system is
private against a dishonest board with careful voters if for any adver-
sary A,���P [Exppriv−careful,0

A
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ���

is negligible.

While this definition models a dishonest ballot box, it implicitly
assumes that all voters see the same (possibly dishonest) ballot
box. This is a very common assumption in voting, that needs to be
achieved by external means.

Similarly, we extend individual verifiability to individual verifia-
bility against a dishonest board as expected, assuming that the tally
is performed only if all honest voters have successfully performed
their test. The formal definition of individual verifiability against a
dishonest board can be found in appendix.

5.2 Privacy implies individual verifiability
against a dishonest box too

We need to assume that the verification test run by honest voters
(VerifVoter) is consistent with how the voter voted. Namely, if the

ExpBS,β
A
(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state1 ← A
Oreg ,Ocorr
1 (pk)

L← []

state2, BB← A
Obsvote
2 (state1, pk)

if ∀v .

| {b |b ∈ BB ∧ ∃v ′. (b , v , v ′) ∈ L} | =

| {b |b ∈ BB ∧ ∃v ′. (b , v ′, v) ∈ L} |

then

r ← Tally(BB, sk, U)

β ′ ← A3(state2, pk, r)

return β ′

Obsvote(id,v0,v1)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, vβ)

L← L∥(b , v0, v1)

return b

where (id, credid) ∈ U

Figure 10: PrivacyBS [9]

voter’s intended ballot is the one that is selected from the board
by the revote policy (e.g. appears last w.r.t. this voter), then this
voter must be satisfied with the board (that is, VerifVoter passes).
Conversely, if the test VerifVoter fails for voter id then adding
ballots unrelated to id (or her credential) will not change this fact
(VerifVoter will still fail). These assumptions are formally stated in
appendix.

Theorem 5.2 (Privacy implies individual verifiability against
a dishonest board). Let V be an id-based, strongly correct voting
scheme that has the piecewise tally property. If V is private against a
dishonest board with careful voters, then V is individually verifiable
against a dishonest board with careful voters.

Similarly, letV be a cred-based voting scheme that has the piecewise
tally property and non-malleable credentials. IfV is private against a
dishonest board with careful voters, then V is individually verifiable
against a dishonest board with careful voters.

6 COMPARING PRIVACY
We compare different notions of privacy, with and without an
honest ballot box, on four standard protocols (Helios, Belenios,
Civitas, and Neuchâtel) as well as on our simple protocol, sketched
in introduction.

To our knowledge, the only other definition of privacy with a
dishonest ballot box is the privacy notion introduced by Bernhard
and Smyth [9]. We first start by discussing this definition.

6.1 PrivacyBS
The privacy notion introduced by Bernhard and Smyth [9] is re-
called in Figure 10 (PrivacyBS). The adversary may request a voter
id to vote for v0 or v1 (depending on the bit β) through the oracle
Obsvote(id,v0,v1). He produces an arbitrary ballot box BB and the
tally will be performed provided that, looking at honest ballots that
appear in BB, counting the corresponding left and right votes yields
the same result.

The main interest of [9] is to highlight the fact that previous def-
initions implicitly assume an honest ballot box. The first attempt at

11

defining privacy w.r.t. a dishonest ballot box (PrivacyBS) has several
limitations. First, it strongly assumes that the ballots that appear in
the ballot box are exactly the same than the cast ballots. This is not
the case for example of the ThreeBallots protocol [28] where the
ballot box only contains two shares (out of three) of the original
ballot. It is not applicable either to a protocol like BeleniosRF [12]
where ballots are re-randomised before their publication. Second, it
requires ballots to be non-malleable [9]. This means that, as soon as
a ballot includes a malleable part (for example the voter’s id like in
Helios, or a timestamp), privacy cannot be satisfied. This severely
restricts the class of protocols that can be considered. Third, Pri-
vacyBS does not account for a revote policy. As soon as revote is
allowed (for example in Helios), then PrivacyBS is broken since
some ballots may not be counted. Indeed, an attacker may call
Obsvote(id1, 1, 0), followed by Obsvote(id1, 0, 1), obtaining ballots b1, b ′1,
and return the board BB = [b1,b ′1]. The equality condition on the
number of ballots in BB produced by Obsvote holds, since for v = 0, 1:

|{b ∈ BB|∃v ′. (b,v,v ′) ∈ L}| = |{b ∈ BB|∃v ′. (b,v ′,v) ∈ L}| = 1

where L = [(b1, 1, 0), (b ′1, 0, 1)]. Hence the tally is computed. Ac-
cording to the revote policy, only b ′1 is counted, and the result is β ,
which lets the attacker win ExpBS.

6.2 Protocols
We consider four standard protocols (Helios, Belenios, Civitas, and
Neuchâtel) as well as our simple protocol, presented in introduction.
We briefly explain each of them in this section. In what follows
E = (gen, enc, dec) denotes an encryption algorithm.

Simple. We detail the simple protocol sketched in introduction.
Recall that voters simply send their encrypted votes to the ballot
box, and, at the end of the voting phase, the tally computes and
publishes the result of the election. No revote is allowed, and the
voters do not have any means of verifying that their vote is taken
into account. Identities and credentials are not used in this protocol.
The corresponding algorithms of this protocol are:
• Vote(id, cred, pk,v) = enc(pk,v)
• VerifVoter(id, cred, L,BB) = true (voters do not make any
checks)
• Tally(BB, sk,U) checks that all the ballots in BB are distinct,
and returns ⊥ if not. The tally performs a random permu-
tation of the ballots, decrypts all of them and returns the
multiset of the votes they contain.
• Valid(id,b,BB, pk) checks thatb does not already occur inBB.

Helios [4] is similar to Simple, except that revote is allowed, and
the last vote cast by each id is counted. To make this revote policy
possible, the ballots contain the id of the voter:Vote(id, cred, pk,v) =
(id, enc(pk,v)). enc(pk,v) here also includes a proof thatv is a valid
vote. Credentials are unused. The tally computes the result of the
election similarly to Simple except that it also features an homomor-
phic mode, where the tally homomorphically computes the sum of
the ballots in BB, decrypts the resulting ciphertext and returns the
result. Moreover, the tally returns a proof of correct decryption. In
addition, the board which will be tallied is made public, allowing
the voters to check that their last ballot is indeed the last ballot

with their id on the board:
VerifVoter(id, cred, Lid,BB) =

the last element in Lid is the last ballot
registered for id in BB.

Similarly to Simple, the Valid function checks that there is no dupli-
cated ciphertext and also checks that the ballot is submitted under
the right id.

Valid(id, (id ′, c),BB, pk) = (id = id ′) ∧ c does not occur in BB

This models an authenticated channel between the ballot box and
each voter: a voter id may not cast a vote in the name of id ′.

Belenios [15] is similar to Helios, except that voters sign their
encrypted vote thanks to their credential:

Vote(id,k, pk,v) = (id, signElGamal(v, pk,k))

where signElGamal(·, ·, ·) denotes the combination of the (ElGamal)
encryption and the signature. As for Helios, it also includes a proof
that v is a valid vote. Tally checks that there exists a bijection
between the ids and the credentials in the final board, i.e. that the
same id is always associated with the same signature, and vice
versa. The revote policy counts the last ballot corresponding to a
given credential. Voters can verify that their last ballot is indeed
the last one signed by their key on the board.

Civitas [14]. In Civitas, voters privately receive a credential,
that is published encrypted on the bulletin board. To cast a vote, a
voter encrypts her vote, also encrypts her credential, and produces
a proof π of well-formedness that links the two ciphertexts together.
The corresponding ballot is of the form

Vote(id, cred, pk,v) = (enc(pk, cred), enc(pk,v), π).

The voters can verify that their vote will be taken into account by
checking that it is present on the board that will be tallied.

VerifVoter(id, cred, Lid,BB) = b ∈ BB

where b is the ballot in Lid . In theory, revote is allowed. However,
we unveil a small discrepancy in how revote should be performed.
Assume for example that the last ballot should be counted. Since
an adversary may recast old ballots generated by an honest voter, a
voter should memorise all the ballots he generated and check that
they appear in the right order on the ballot box. Such a check seems
highly cumbersome for an average voter and we could not find its
description in [14]. Therefore, we simply assume here that honest
voters do not revote.

Neuchâtel [22]. Voters privately receive a code sheet, where
each candidate is associated to a (short) code. To cast a vote, voters
send their encrypted votes to the ballot box, similarly to Simple or
Helios. The ballot box then provides a return code allowing the voter
to check that the ballot has been received and that it encrypts their
candidate, as intended. This offers a protection against a dishonest
voting client (e.g. if the voter’s computer is corrupted). No revote
is allowed. Since the bulletin board is not published, voters cannot
check that their ballots really belong to the final board (used for
tally), which we model by VerifVoter(id, cred, L,BB) = true. Voters
have to trust the voting server (or other internal components) on
this aspect.

12

Protocol Honest board [6] PrivDis-Naive PrivacyBS [9] Priv-careful
Simple (no revote) ✓ ✗ ✓ ✗

Helios ✓ ✗ ✗ ✗

Belenios ✓ ✗ ✗ ✓

Civitas (no revote) ✓ ✗ ✓ ✓

Neuchâtel (no revote) ✓ ✗ ✓ ✗

Figure 11: Comparison of several privacy definitions
(✓: the protocol is private, ✗: there exists an attack on privacy)

6.3 Attacks

Simple. As described in introduction, a dishonest ballot box may
break ballot privacy of any voter by simply replacing the other
votes by votes of its choice. In other words, even if the ballot box
does not detain any decryption key, it can learn how Alice’s voted.

Neuchâtel. Exactly like the Simple protocol, a dishonest ballot
box may break ballot privacy of any voter by simply replacing the
other votes. This is due to the fact that voters have no control over
the ballots that are actually tallied. Note that the Neuchâtel protocol
actually includes internal mechanisms that render such an attack
difficult. However, from the point of view of a voter, if the ballot
box is compromised, her privacy is no longer guaranteed.

Helios. Helios is also vulnerable to an attack when the ballot box
is compromised. This attack is due to P. Roenne [29]. It involves
two honest voters id1, id2, and a dishonest voter id3. The attacker
may call Op,cvote(id1, 0, 1) twice and O

p,c
vote(id2, 1, 0) once, obtaining

ballots (id1,b1), (id1,b ′1), (id2,b2). The adversary then returns the
board [(id1,b ′1), (id2,b2), (id3,b1)]. All ballots are different, hence
no weeding is needed. The result of the tally is then ρ({|0, 1, 0|}) if
β = 0 and ρ({|1, 0, 1|}) if β = 1. The attacker can therefore observe
the difference in the result, which breaks privacy.

Belenios and Civitas remain private against a dishonest board as
long as voters perform their verification checks. We formally prove
privacy according to our definition Priv-careful.

6.4 Comparison
We summarise our findings in Figure 11. As explained in Section 5,
the naive extension of the privacy definition to a dishonest board
(PrivDis-Naive) is immediately false for any protocol.

All of our five protocols satisfy privacy against an honest ballot
box. We rely here on previous results of the literature, except for
Civitas (and of course the Simple protocol). Indeed, Civitas has been
proved to be coercion-resistant [14] in a rather different setting.
Therefore we show here that it satisfies the Benaloh definition.

PrivacyBS fails to detect the attack on the Neuchâtel protocol
and the Simple protocol since it requires that the tally of the hon-
est ballots present on the final board does not leak information.
Conversely, it cannot prove Belenios private as it does not properly
handle revoting as explained in Section 6.1.

7 CONCLUSION
We show a subtle relation between privacy and verifiability, namely
that privacy implies individual verifiability, which is rather counter-
intuitive. Our result holds in a cryptographic as well as a symbolic
setting, for various trust assumptions. In contrast, privacy does
not seem to imply universal verifiability nor eligibility verifiability.
To show that there is indeed no implication, we plan to exhibit
counter-examples, as simple as possible.

Our result assumes counting functions that have the partial tally
property. Our proof technique does not extend immediately to
more complex counting functions such as STV or Condorcet. We
plan to study how privacy and individual verifiability are related
in this context. Also, our results implicitly discard anonymous
channels: computational models do not account for anonymous
channels while our election determinism assumption discards at
least some use of anonymous channels. Intuitively, in presence of
anonymous channels, an attacker may be able to modify a ballot
without being able to tell which one, hence breaking verifiability
without breaking privacy. It would be interesting to identify which
kind of anonymous channels and more generally, which form of
non determinism, can still be tolerated.

Our findings also highlight a crucial need for a ballot privacy
definition in the context of a dishonest ballot box, in a cryptographic
setting. So far, privacy has only been proved assuming an honest
ballot box, which forms a very strong trust assumption that was
probably never made clear to voters nor election authorities.

We propose a first attempt at modelling privacy against a dis-
honest board, assuming that honest voters checks their ballots as
expected by the voting protocol. We do not see our definition as fi-
nal. In particular, assuming that all voters check their vote is highly
unrealistic. In a realistic setting, it is more likely that a (small) frac-
tion of honest voters perform the required tests while the others
stop after casting their vote. We plan to explore how to adapt our
definition to a quantitative setting, in the lines of [27].

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers as well
as the shepherd, whose helpful comments and suggestions greatly
contributed to clarify the notions presented in the paper.

This work has been partially supported by the European Re-
search Council (ERC) under the European Union’s Horizon 2020
research (grant agreement No 645865-SPOOC).

REFERENCES
[1] 2010. Délibération n° 2010-371 du 21 octobre 2010 portant adoption d’une recom-

mandation relative à la sécurité des systèmes de vote électronique. French

13

National recommendation on e-voting.
[2] 2013. Ordonnance de la ChF sur le vote électronique (OVotE) du 13 décembre

2013 (Etat le 15 janvier 2014). Chancellerie fédérale ChF. Swiss recommendation
on e-voting.

[3] Martín Abadi and Cédric Fournet. 2001. Mobile Values, New Names, and Secure
Communication. In 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’01). ACM, 104–115. https://doi.org/10.1145/
360204.360213

[4] Ben Adida. 2008. Helios: Web-based Open-Audit Voting. In 17th USENIX Security
Symposium (Usenix’08). 335–348.

[5] Michael Backes, Catalin Hritcu, and Matteo Maffei. 2008. Automated Verification
of Remote Electronic Voting Protocols in the Applied Pi-Calculus. In 21st IEEE
Computer Security Foundations Symposium, (CSF 2008). 195–209.

[6] J. Benaloh. 1987. Verifiable secret-ballot elections. Ph.D. Dissertation. Yale Univer-
sity.

[7] David Bernhard, Veronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. 2015. A comprehensive analysis of game-based ballot privacy defini-
tions. In Proceedings of the 36th IEEE Symposium on Security and Privacy (S&P’15).
IEEE Computer Society Press, 499–516.

[8] David Bernhard, Olivier Pereira, and Bogdan Warinschi. 2012. How Not to Prove
Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In
Advances in Cryptology - ASIACRYPT 2012 (LNCS), Vol. 7658. Springer, 626–643.

[9] David Bernhard and Ben Smyth. 2014. Ballot secrecy with malicious bulletin
boards. Cryptology ePrint Archive, Report 2014/822.

[10] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Foundations and Trends in Privacy and Security
1, 1–2 (Oct. 2016), 1–135.

[11] Ian Brightwell, Jordi Cucurull, David Galindo, and Sandra Guasch. 2015. An
overview of the iVote 2015 voting system. Available at https://www.elections.
nsw.gov.au.

[12] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. 2016.
BeleniosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. In 23rd
ACM Conference on Computer and Communications Security (CCS’16). Vienna,
Austria, 1614–1625.

[13] Benoît Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern,
and Jacques Traoré. 2010. On Some Incompatible Properties of Voting Schemes.
In Towards Trustworthy Elections 2010. 191–199.

[14] M. R. Clarkson, S. Chong, and A. C. Myers. 2008. Civitas: Toward a Secure Voting
System. In IEEE Symposium on Security and Privacy (S&P’08). IEEE Computer
Society, 354–368.

[15] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachene.
2014. Election Verifiability for Helios under Weaker Trust Assumptions. In 19th
European Symposium on Research in Computer Security (ESORICS’14) (LNCS),
Vol. 8713. Springer, 327–344.

[16] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz
Truderung. 2016. SoK: Verifiability Notions for E-Voting Protocols. In 36th IEEE
Symposium on Security and Privacy (S&P’16). San Jose, USA, 779–798.

[17] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. 2017.
A type system for privacy properties. In 24th ACM Conference on Computer and
Communications Security (CCS’17). ACM, Dallas, USA, 409–423.

[18] Véronique Cortier and Ben Smyth. 2013. Attacking and fixing Helios: An analysis
of ballot secrecy. Journal of Computer Security 21, 1 (2013), 89–148.

[19] Véronique Cortier and CyrilleWiedling. 2012. A formal analysis of the Norwegian
E-voting protocol. In Proceedings of the 1st International Conference on Principles
of Security and Trust (POST’12) (Lecture Notes in Computer Science), Vol. 7215.
Springer, 109–128.

[20] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. 2006. Coercion-Resistance
and Receipt-Freeness in Electronic Voting. In 19th IEEE Computer Security Foun-
dations Workshop (CSFW’06). IEEE Computer Society Press, Venice, Italy, 28–39.

[21] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. 2009. Verifying Privacy-
type Properties of Electronic Voting Protocols. Journal of Computer Security 17,
4 (2009), 435–487. https://doi.org/10.3233/JCS-2009-0340

[22] David Galindo, Sandra Guasch, and Jordi Puiggali. 2015. 2015 Neuchâtel’s Cast-
as-Intended Verification Mechanism. In 5th International Conference on E-Voting
and Identity, (VoteID’15). 3–18.

[23] Rop Gonggrijp and Willem-Jan Hengeveld. 2007. Studying the
Nedap/Groenendaal ES3B Voting Computer: A Computer Security Per-
spective. In USENIX Workshop on Accurate Electronic Voting Technology
(EVT’07).

[24] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan Willemson. 2017. Improving
the Verifiability of the Estonian Internet Voting Scheme. In E-Vote-ID 2016 (LNCS),
Vol. 10141. Springer, 92–107.

[25] Steve Kremer, Mark D. Ryan, and Ben Smyth. 2010. Election verifiability in
electronic voting protocols. In 15th European Symposium on Research in Com-
puter Security (ESORICS’10) (LNCS), Vol. 6345. Springer. https://doi.org/10.1007/
978-3-642-15497-3_24

[26] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2010. Accountabiliy: Defini-
tion and Relationship to Verifiability. In 17th ACM Conference on Computer and
Communications Security (CCS’10). 526–535.

[27] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2011. Verifiability, Privacy,
and Coercion-Resistance: New Insights from a Case Study. In 32nd IEEE Sympo-
sium on Security and Privacy (S&P 2011). IEEE Computer Society, 538–553.

[28] R. L. Rivest and W. D. Smith. 2007. Three Voting Protocols: ThreeBallot, VAV and
Twin. In USENIX/ACCURATE Electronic Voting Technology (EVT 2007).

[29] Peter Roenne. [n. d.]. Private communication. ([n. d.]). The attack has been
discovered by Peter Roenne and then described in the paper [17].

[30] Peter Ryan. 2008. Prêt à Voter with Paillier encryption. Mathematical and
Computer Modelling 48, 9–10 (2008), 1646–1662.

[31] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J. Alex Halderman. 2014. Security Analysis of the
Estonian Internet Voting System. In 2014 ACM SIGSAC Conference on Computer
and Communications Security, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.).
ACM, 703–715.

[32] Scott Wolchok, Eric Wustrow, J. Alex Halderman, Hari K. Prasad, Arun Kankipati,
Sai Krishna Sakhamuri, Vasavya Yagati, and Rop Gonggrijp. 2010. Security
Analysis of India’s Electronic Voting Machines. In 17th ACM Conference on
Computer and Communications Security (CCS’10). Chicago, IL.

[33] Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. 2012. Attack-
ing the Washington, D.C. Internet Voting System. In Financial Cryptography and
Data Security (FC’12).

14

https://doi.org/10.1145/360204.360213
https://doi.org/10.1145/360204.360213
https://www.elections.nsw.gov.au
https://www.elections.nsw.gov.au
https://doi.org/10.3233/JCS-2009-0340
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-642-15497-3_24

Appendix A SYMBOLIC PROOF
A.1 Assumptions summary
We simply recall here the assumptions described in the core of the paper (Sections 2 and 3.4). The numbers will be useful to refer to the
assumptions in the proofs. We also formally define alternative assumptions only sketched in the core of the paper, like the possibility to
assume a special “independent” vote instead of a neutral vote.

Notations: if k ∈ N and v ∈ V , k · v denotes the multiset containing k instances of v . If V is a multiset of votes, and v a vote, we denote
V (v) the number of instances of v in V .

(1) The tallying process is assumed to output terms representing the result of the election on a channel cr , i.e.

∀α . ∀(tr ,ϕ) ∈ trace(Pα). out(cr , r) ∈ tr ⇒ ∃V . ϕ(r) ∈ R(ρ(V)).

(2) The representation function is assumed to be injective: ∀r , r ′. R(r) ∩ R(r ′) = ∅.
(3) The counting function is assumed to have the partial tally property: ∀V ,V ′. ρ(V ⊎V ′) = ρ(V) ∗ ρ(V ′). ∗ is an associative, commutative

operation.
(4) The voting processes must be election determinate, i.e. satisfy

∀α, t, t ′,ϕ,ϕ ′, x,V .

(t =τ t ′ ∧ (t .out(cr , x),ϕ) ∈ trace(Pα) ∧ (t ′.out(cr , x),ϕ ′) ∈ trace(Pα) ∧

ϕ(x) ∈ R(ρ(V))) ⇒ ϕ ′(x) ∈ R(ρ(V))

(5) The voting processes are assumed to be voting friendly, i.e. we assume that for all voter a ∈ A, there exists t ′′ such that for all α
satisfying a < dom(α),
• for all (t,ϕ) ∈ trace(Pα), such that t = t ′.out(cr , x) for some t ′, x , for all v , there exists tr ,ψ such that tr =τ t ′′, Voted(a,v) ∈ tr ,
(t ′.tr .out(cr , x),ψ) ∈ trace(Pα∪{a 7→v }), and ∀V . ϕ(x) ∈ R(ρ(V)) ⇒ ψ (x) ∈ R(ρ(V ⊎ {|v |})).
• and for all t ′, x such that blocking(t ′.out(cr , x), Pα), for all v , tr ,ψ such that tr =τ t ′′, blocking(t ′.tr .out(cr , x), Pα∪{a 7→v }).

Our result holds provided one of the two following assumptions is true:
(6) There exists a neutral vote vneutral ∈ V , such that ρ({|vneutral |}) is neutral for ∗.
(7) There exists a special vote vspecial ∈ V , which is counted separately in the result, as briefly sketched in the core of the paper. Formally,

vspecial must enjoy the following properties.
• the result associated with a multiset determines the number of instances of vspecial in it

∀V ,V ′. ρ(V) = ρ(V ′) =⇒ V (vspecial) = V
′(vspecial).

• the count of vspecial can be simplified

∀V ,V ′,k . ρ(V ⊎ k · vspecial) = ρ(V
′ ⊎ k · vspecial) =⇒ ρ(V) = ρ(V ′).

For example, for ρhom , all the votes are special, therefore this property always holds. For ρmix , it depends on the set of valid votes. In
the standard case where a vote is a selection of candidates (for example between k1 and k2 candidates), then a special vote is, for
instance, a vote that includes the selection of an extra candidate, not used before.

A.1.1 Properties. We recall here the definitions of the individual verifiability and privacy properties (presented in 3.3), and we define two
properties used as pivots in the proof.
• Individual verifiability:

V1(t,ϕ)
def
= ∀t ′, x . (t = t ′.out(cr , x)) ⇒ ∃Vc . ϕ(x) ∈ R(ρ({|v | ∃a. Voted(a,v) ∈ t |} ⊎Vc))

V
def
= ∀α . ∀(t,ϕ) ∈ trace(Pα). V1(t,ϕ).

• Privacy:
P = ∀α . ∀a,b ∈ A\dom(α). ∀v1,v2. Pα∪{a 7→v1,b 7→v2 } ≈t Pα∪{a 7→v2,b 7→v1 }

• First pivot property:

F
def
= ∀α . ∀a ∈ A\dom(α). ∀v1,v2 ∈ V . ∀t, t ′,ϕ,ϕ ′,V ,V ′.
[t =τ t ′ ∧
(t,ϕ) ∈ trace(Pα∪{a 7→v1 }) ∧

(t ′,ϕ ′) ∈ trace(Pα∪{a 7→v2 }) ∧

result(t,ϕ,V) ∧ result(t ′,ϕ ′,V ′)] =⇒

ρ(V ′ ⊎ {|v1 |}) = ρ(V ⊎ {|v2 |}).
15

• Second pivot property:

FF
def
= ∀α . ∀(t,ϕ) ∈ trace(Pα). ∀V ,Vchange. ∀Vwanted ⊆ {|v | ∃a. Voted(a,v) ∈ t |}.

result(t,ϕ,V) ⇒
|Vchange | = |Vwanted | ⇒
∃Vc . ρ(V) ∗ ρ(Vchange) = ρ(Vwanted) ∗ ρ(Vc)

A.2 Theorem
Lemma A.1 (Privacy implies F). Under assumptions 1, 2, 3, 4, and 5,

P ⇒ F

Proof. We prove this by contradiction: assuming F does not hold, we construct an attack on privacy.
Assume F is false. Hence there exists a scenario where changing the vote of one agent does not change the result by one. That is to say,

there exist an affectation of votes α , an agent a < dom(α), votesv1,v2 ∈ V , traces (t,ϕ) ∈ trace(Pα∪{a 7→v1 }) and (t
′,ϕ ′) ∈ trace(Pα∪{a 7→v2 }),

such that t =τ t ′,and two multisets V , V ′, such that result(t,ϕ,V), result(t ′,ϕ ′,V ′), and ρ(V ′ ⊎ {|v1 |}) , ρ(V ⊎ {|v2 |}).
Since result(t,ϕ,V), there exist x , t1 such that t = t1.out(cr , x) and ϕ(x) ∈ R(ρ(V)). Similarly, there exist y, t ′1 such that t ′ = t ′1.out(cr ,y)

and ϕ ′(y) ∈ R(ρ(V ′)). Since t =τ t ′, x = y.
Note that we necessarily have v1 , v2: indeed, if v1 = v2 then (t,ϕ) and (t,ϕ ′) are traces of the same process. Since ϕ(x) ∈ R(ρ(V)), by

assumption 4, this implies that ϕ ′(x) ∈ R(ρ(V)). Since we already know that ϕ ′(x) ∈ R(ρ(V ′)), by assumption 2, we have ρ(V) = ρ(V ′). Thus,
as v1 = v2, we have ρ(V) ∗ ρ({|v2 |}) = ρ(V ′) ∗ ρ({|v1 |}), which is contradictory. Hence v1 , v2.

The attack on privacy consists in the fact that, since changing a’s vote does not produce a change of exactly one in the result, even in
presence of another agent b whose vote is the opposite of a’s, the result will be different depending on the vote of a.

Formally, let b < dom(α) ∪ {a}. By assumption 5, there exist sequences of actions tb , t ′b , and framesψ ,ψ ′, such that
(t1.tb .out(cr , x),ψ) ∈ trace(Pα∪{a 7→v1,b 7→v2 }),

(t ′1.t
′
b .out(cr , x),ψ

′) ∈ trace(Pα∪{a 7→v2,b 7→v1 }),

Voted(b,v2) ∈ tb , Voted(b,v1) ∈ t
′
b , tb =τ t ′b ,

ψ (x) ∈ R(ρ(V ⊎ {|v2 |})), andψ ′(x) ∈ R(ρ(V ′ ⊎ {|v1 |})).
Since ρ(V ′ ⊎ {|v1 |}) , ρ(V ⊎ {|v2 |}), by assumption 2, we haveψ (x) , ψ ′(x).
We have constructed two frames, obtained by the same actions in Pα∪{a 7→v1,b 7→v2 } and Pα∪{a 7→v2,b 7→v1 } , which yield different results

for the election. Using assumption 4, this lets us prove that these two processes are not ≈t -equivalent.
Indeed, let us denote t2

def
= t1.tb .out(cr , x) and t ′2

def
= t ′1.t

′
b .out(cr , x). We have (t2,ψ) ∈ trace(Pα∪{a 7→v1,b 7→v2 }). For any trace (t ′′2 ,ψ

′′) ∈

trace(Pα∪{a 7→v2,b 7→v1 }), if t
′′
2 =τ t2 =τ t ′2, then by assumption 4 we haveψ ′′(x) ∈ R(ρ(V ′⊎{|v1 |})). Hence, by assumption 2 as ρ(V ⊎{|v2 |}) ,

ρ(V ′ ⊎ {|v1 |}), we haveψ ′′(x) < R(ρ(V ⊎ {|v2 |})), which implies thatψ ,ψ ′′ are not statically equivalent.
Thus, Pα∪{a 7→v1,b 7→v2 } ̸≈t Pα∪{a 7→v2,b 7→v1 } . This violates P , which concludes the proof. □

Lemma A.2 (Privacy and F imply FF). Under assumptions 1, 2, 3, 4, and 5,

(P ∧ F) ⇒ FF

Proof. Assume that both P and F hold. Let α be an affectation of votes, let (t,ϕ) ∈ trace(Pα), let V be such that result(t,ϕ,V), i.e. there
exist t ′, x such that t = t ′.out(cr , x) and ϕ(x) ∈ R(ρ(V)). LetVwanted ⊆ {|v | ∃a. Voted(a,v) ∈ t |}, andVchange such that |Vchange | = |Vwanted |.

To prove FF , we need to show that the result in this trace augmented with Vchange contains at least the subset Vwanted of the (intended)
votes of the honest voters. That is to say, we must show that there exists Vc such that ρ(V) ∗ ρ(Vchange) = ρ(Vwanted) ∗ ρ(Vc).

The idea of the proof is to compare ρ(V) to the result ρ(V ′) obtained by turning, one by one, all votes from Vwanted into the votes from
Vchange, and performing the same sequence of actions. As we will see, this is possible, otherwise P would break; and V ⊎Vchange contains
more instances of the honest votes than V ′ ⊎Vwanted, since F holds.

Let us denote the Voted events appearing in t by
Voted(a1,v1), . . . ,Voted(al ,vl)

for some pairwise distinct agents a1, . . . ,al ∈ Voters(t), and some l ∈ N.
By definition, each element of Vwanted is associated with one of these Voted events. Letm def

= |Vwanted |. Without loss of generality, we may
assume that Vwanted = {|v1, . . . ,vm |}.

Note that |Vchange | is also equal tom by assumption. Let us then denote Vchange
def
= {|v ′1, . . . ,v

′
m |}.

Since, by assumption on the form of the processes, the Voted(a,v) event can only be emitted by the process Voter(a,v, c) for some
credential c , we have α(ai) = vi for all i ∈ J1,mK.

16

For i ∈ J0,mK, let αi denote the affectation of votes obtained from α by turning the first i votes from Vwanted to Vchange, i.e.
• αi (aj) = v

′
j if j ∈ J1, iK;

• αi (aj) = vj if j ∈ Ji + 1,mK;
• αi (a) = α(a) if a ∈ dom(α) is not one of the aj , j ∈ J1,mK.

Let β def
= αm . Note that α0 = α , and that all the αi have the same domain.

Let us show that for all i , the same actions as t can be performed in Pαi with the same agents emitting Voted events, i.e. that

∀i ∈ J0,k1K. ∃ti . ti =τ t ∧ ¬blocking(ti , Pαi).

By contradiction, assume this property does not hold, and let i be the smallest index that falsifies it. Hence,

∀ti . ti =τ t ⇒ blocking(ti , Pαi). (1)

In addition, note that since the property is clearly satisfied at the 0th step, i ≥ 1. Hence, it holds for i − 1, i.e. there exists ti−1 such that
ti−1 =τ t , and ¬blocking(ti−1, Pαi−1). Since t = t ′.out(cr , x), we also have ti−1 = t ′i−1.out(cr , x) for some t ′i−1 such that t ′i−1 =τ t ′.

Then, for all t ′i =τ t ′i−1 (=τ t ′), by (1), blocking(t ′i .out(cr , x), Pαi) holds.
The same sequence of actions ti−1 is blocking at step i and not at step i − 1, which differs only by the vote of of ai . This lets us construct

an attack on privacy, which constitutes a contradiction. Indeed, by assumption 5, we may add a voter b < dom(α), who votes for v ′i at step
i − 1, and for vi at step i , and there exists tr such that
• there exists tr ′ =τ tr andψ such that (t ′i−1.tr

′.out(cr , x),ψ) ∈ trace(Pαi−1∪{b 7→v ′i }
).

• for all t ′i =τ t ′i−1 (=τ t ′), we have shown that blocking(t ′i .out(cr , x), Pαi), and thus for all tr
′′ =τ tr and allψ ′, (t ′i .tr

′′.out(cr , x),ψ
′) <

trace(Pαi∪{b 7→vi }).
Therefore, the processes Pαi∪{b 7→vi } and Pαi−1∪{b 7→v ′i }

are not trace equivalent. Since they only differ by the votes of ai and b, who
respectively vote for vi , v ′i on the left and v ′i , vi on the right, this breaks privacy, which contradicts the hypotheses.

Thus, for all i , there exists ti such that ti =τ t , of the form t ′i .out(cr , x), such that ¬blocking(ti , Pαi). In other words, there exists ϕi such
that (ti ,ϕi) ∈ trace(Pαi). By assumption 1, there exists Vi such that ϕi (x) ∈ R(ρ(Vi)), i.e. result(ti ,ϕi ,Vi). Let V ′

def
= Vm . Note that V0 = V .

For all i ∈ J0,m−1K, αi and αi+1 only differ by the vote of ai+1, which isv ′i+1 in αi+1 andvi+1 in αi . Hence, by F , we have ρ(Vi ⊎{|v
′
i+1 |}) =

ρ(Vi+1 ⊎ {|vi+1 |}).
That is to say, by assumption 3, that ρ(Vi) ∗ ρ({|v ′i+1 |}) = ρ(Vi+1) ∗ ρ({|vi+1 |}).
Therefore, by rewriting thesem equalities successively, we have

ρ(V0) ∗ ρ({|v
′
1 |}) ∗ . . . ∗ ρ({|v

′
m |}) = ρ(Vm) ∗ ρ({|v1 |}) ∗ . . . ∗ ρ({|vm |}),

i.e., by assumption 3,
ρ(V) ∗ ρ({|v ′i | i ∈ J1,mK|}) = ρ({|vi | i ∈ J1,mK|}) ∗ ρ(V ′).

By definition, this means
ρ(V) ∗ ρ(Vchange) = ρ(Vwanted) ∗ ρ(V

′)

which concludes the proof. □

Lemma A.3 (FF impliesV with a neutral vote). Under assumptions 1, 2, 3, 4, 5, and assuming the existence of a neutral vote (assumption 6),

FF ⇒ V

Proof. Under assumption 6, there exists a neutral vote vneutral. Assume FF holds.
Let α be an affectation of votes, and let (t ′.out(cr , x),ϕ) ∈ trace(Pα). Let t

def
= t ′.out(cr , x). To prove individual verifiability, we need to

show that the result in this trace contains at least the (intended) votes of the honest voters. That is to say, we must show that there exists Vc
such that ϕ(x) ∈ R(ρ({|v | ∃a. Voted(a,v) ∈ t |} ⊎Vc)).

By assumption 1, there exists V such that ϕ(x) ∈ R(ρ(V)). We have result(t,ϕ,V).
Let Vwanted

def
= {|v | ∃a. Voted(a,v) ∈ t |} be the multiset of all intended honest votes in t . Let k def

= |Vwanted |, and Vchange
def
= k · vneutral.

By FF , there exists a multiset Vc such that ρ(V) ∗ ρ(Vchange) = ρ(Vwanted) ∗ ρ(Vc).
By assumption 3, ρ(Vchange) = ρ({|vneutral |})k . As, by assumption 6, ρ({|vneutral |}) is neutral for ∗, so is ρ(Vchange).
Therefore, ρ(V) = ρ(Vwanted) ∗ ρ(Vc) = ρ(Vwanted ⊎Vc), which proves the claim. □

Lemma A.4 (FF implies V with a special vote). Under assumptions 1, 2, 3, 4, 5, and assuming the existence of a vote that is counted
separately (assumption 7),

FF ⇒ V

17

Proof. Under assumption 7, there exists a special vote vspecial which is counted separately in the result.
Assume FF holds.
Let α be an affectation of votes, and let (t ′.out(cr , x),ϕ) ∈ trace(Pα). Let t

def
= t ′.out(cr , x). To prove individual verifiability, we need to

show that the result in this trace contains at least the (intended) votes of the honest voters. That is to say, we must show that there exists Vc
such that ϕ(x) ∈ R(ρ({|v | ∃a. Voted(a,v) ∈ t |} ⊎Vc)).

By assumption 1, there exists V such that ϕ(x) ∈ R(ρ(V)). We have result(t,ϕ,V).
Let Vwanted

def
= {|v | ∃a. Voted(a,v) ∈ t ∧ v , vspecial |} be the multiset of all intended honest votes in t that are not vspecial.

Let k def
= |Vwanted |, and Vchange

def
= k · vspecial.

By FF , there exists a multiset Vc such that ρ(V) ∗ ρ(Vchange) = ρ(Vwanted) ∗ ρ(Vc).
We may rewrite this equality as ρ(V ⊎ k · vspecial) = ρ(Vwanted ⊎Vc) by assumption 3.
Assumption 7 then lets us deduce that

(V ⊎ k · vspecial)(vspecial) = (Vwanted ⊎Vc)(vspecial).

Yet, Vwanted(vspecial) = 0 by definition. Therefore, Vc (vspecial) ≥ k , and we may write Vc = V ′c ⊎ k · vspecial for some V ′c . We then have

ρ(V ⊎ k · vspecial) = ρ(Vwanted ⊎V
′
c ⊎ k · vspecial),

which implies by assumption 7 that
ρ(V) = ρ(Vwanted ⊎V

′
c).

Since Vwanted contains all the intended honest votes different from vspecial, it remains to be proved that V ′c contains sufficiently many
instances of vspecial.

Let k ′ def= |{|Voted(a,vspecial) ∈ t | a ∈ A|}| the number of intended votes for vspecial in t ; and V ′wanted
def
= k ′ · vspecial.

Let v ∈ V such that v , vspecial. Let V ′change
def
= k ′ · v .

By FF , there exists V ′′c such that
ρ(V) ∗ ρ(V ′change) = ρ(V

′
wanted) ∗ ρ(V

′′
c),

i.e., by assumption 3,
ρ(V ⊎ k ′ · v) = ρ(k ′ · vspecial ⊎V

′′
c).

By assumption 7, we then have
(V ⊎ k ′ · v)(vspecial) = (k

′ · vspecial ⊎V
′′
c)(vspecial).

As before, since v , vspecial, this means that V (vspecial) ≥ k ′.
We already know that ρ(V) = ρ(Vwanted ⊎ V ′c). By applying assumption 7 again, (Vwanted ⊎ V ′c)(vspecial) = V (vspecial) ≥ k ′. Since

vspecial < Vwanted, (V ′c)(vspecial) ≥ k ′, i.e. V ′c = V ′′′c ⊎ k
′ · vspecial for some V ′′′c .

Therefore we have
ρ(V) = ρ(Vwanted ⊎ k

′ · vspecial ⊎V
′′′
c) = ρ({|v | ∃a. Voted(a,v) ∈ t |} ⊎V

′′′
c),

which concludes the proof. □

The next theorem corresponds to Theorem 3.11.

Theorem A.5 (Privacy implies individual verifiability when there is a neutral or a special vote). Under assumptions 1, 2, 3, 4, 5,
and assuming the existence of either a neutral vote or a special vote counted separately (assumptions 6 or 7),

P ⇒ V

Proof. This follows directly from Lemmas A.1, A.2, A.3, and A.4. □

Appendix B COMPUTATIONAL PROOF
B.1 Assumptions summary
We first recall some of the hypotheses used in the proofs, that were presented in Sections 2, 4.1 and 4.3. Some of these assumptions differ
depending on whether the scheme is id-based or cred-based, or apply only to one of these two classes of schemes. In such cases, the
differences will be clearly stated.

18

(1) The voting scheme has the piecewise tally property. In the case of id-based schemes, the assumption is that for all boards BB1, BB2, if
sk is the election key and U is a list of registered users and credentials, and if

ValidTally(BB1 ⊎ BB2, sk,U) ∧
∀b ∈ BB1. ∀b ′ ∈ BB2. openid (b) , openid (b

′)

then the tally can be computed separately:
Tally(BB1 ⊎ BB2, sk,U) = Tally(BB1, sk,U) ∗ Tally(BB2, sk,U).

In the case of credential-based schemes, the assumption is that for all boards BB1, BB2, if sk is the election key and U is a list of
registered users and credentials, and if

∀b ∈ BB1. ∀b ′ ∈ BB2. opencred (b, sk,U) , opencred (b
′, sk,U)

then the tally can be computed separately:
Tally(BB1 ⊎ BB2, sk,U) = Tally(BB1, sk,U) ∗ Tally(BB2, sk,U).

(2) In the case of id-based schemes only, the tally only counts ballots cast with registered ids, i.e. ∀BB, sk,U. Tally(BB, sk,U) =
Tally(BB′, sk,U) where BB′ = [b ∈ BB | (openid (b), ∗) ∈ U].

(3) Registering more voters does not change the tally. In the case of id-based schemes, the assumption is that for all board BB, election key
sk and list of voters U, if U,U′ have no id in common and ∀b ∈ BB. (openid (b), ∗) < U′, then Tally(BB, sk,U) = Tally(BB, sk,U ∩ U′).
In the case of credential-based schemes, the assumption is that ifU,U′ share no credentials and∀b ∈ BB. (∗, opencred (b, sk,U∪U′)) < U′,
then Tally(BB, sk,U) = Tally(BB, sk,U ∪ U′).

(4) The voting scheme is correct,i.e. for all distinct identities U = id1, . . . , idn , and credentials cred1, . . . , credn , for all votes v1, . . . ,vn ,
for all election keys (pk, sk), if BB = [Vote(idi , credi , pk,vi)|i ∈ J1,nK], then

Tally(BB, sk,U) = ρ(v1, . . . ,vn).

(5) There exists a neutral vote vneutral ∈ V , such that ρ({vneutral}) is neutral for ∗.
(6) Given a multiset of valid votes V and a result r , it is possible to efficiently decide whether r can be decomposed into ρ(V) ∗ ρ(V ′) for

some multiset V ′ of valid votes.
That is to say there exists a PPTM D such that

∀r ,V . D(r ,V) = 1 ⇐⇒ ∃V ′. r = ρ(V) ∗ ρ(V ′).

In the proof that privacy implies individual verifiability against a dishonest board provided the voters are careful, we also use the following
two hypotheses:

(7) If a voter’s intended ballot is indeed the one which will be selected from the board by the revote policy, then this voter must be
satisfied with the board. Formally, for all registered voter id with credential cred, for all ballot b, voter knowledge L, and board BB,
• For id-based schemes: if the revote policy is to count the last (resp. first) ballot cast for each id, the assumption is that if the last
(resp. first) element of L is (b, ∗), and the last (resp. first) ballot b ′ ∈ BB such that openid (b ′) = id is b, then VerifVoter(id, cred, L,BB)
holds.
• For credential-based schemes: if the revote policy is to count the last (resp. first) ballot cast for each credential, the assumption is
that if the last (resp. first) element of L is (b, ∗), and the last (resp. first) ballot b ′ ∈ BB such that opencred (b ′, sk,U) = cred is b, then
VerifVoter(id, cred, L,BB) holds.

(8) If a voter id is satisfied with a board BB, then id remains satisfied with any board obtained from BB by adding new ballots that do not
interfere with id’s given the revote policy.
Formally, for all board BB, election key pk, registered voter id with credential cred and knowledge L, for all BB′,
• For id-based schemes: the assumption is that if ∀b ∈ BB′. openid (b) , id then

VerifVoter(id, cred, L,BB) ⇐⇒ VerifVoter(id, cred, L,BB ⊎ BB′).

• For credential-based schemes: the assumption is that if ∀b ∈ BB′. opencred (b, sk,U) , cred then
VerifVoter(id, cred, L,BB) ⇐⇒ VerifVoter(id, cred, L,BB ⊎ BB′).

We will also assume, depending on whether the voting scheme is id or credential based, that no polynomial adversary wins ExpValidTally
with non-negligible probability, i.e.

∀A. P
[
ExpValidTally
A

(λ) = 1
]
is negligible,

or that no polynomial adversary wins ExpNM with non-negligible probability,i.e.

∀A. P
[
ExpNMA (λ) = 1

]
is negligible,

where ExpValidTally is defined on Figure 6 and ExpNM is defined on Figure 7.
19

O
v ,f
vote(id,v)

if (id, ∗) ∈ U\CU ∧ (id, ∗) < Voted then

b ← Vote(id, credid , pk, v)

BB← BB∥b

Voted← Voted∥(id, v)

return b

where (id, credid) ∈ U

O
p,f
vote(id,v0,v1)

if (id, ∗) ∈ U\CU ∧ (id, ∗) < V0 ∪ V1 then

b ← Vote(id, credid , pk, vβ)

BB← BB∥b

V0 ← V0 ∥(id, v0)

V1 ← V1 ∥(id, v1)

return b

where (id, credid) ∈ U

Figure 12: Oracles for the individual verifiability and privacy games (revote policy = first vote)

B.2 Privacy implies individual verifiability with a honest board (proof of Theorem 4.4)
We consider the case of protocols where the revote policy is to count only the last ballot (for each id or credential) or the first ballot. In the
case of the last ballot, the definitions of the individual verifiability and privacy games can be found on Figures 4 and 5. In the case of the first
ballot, we adapt these definitions by replacing the oracles Ovvote and O

p
vote with O

v ,f
vote and O

p,f
vote, described on Figure 12. These two oracles

are analogous to Ovvote and O
p
vote, but keep only the first votes from each voter in the lists V0, V1, Voted, instead of the last.

The following theorem corresponds to Theorem 4.4.

Theorem B.1. Under assumptions 1, 2, 3, 4, 5, 6:

• for id-based schemes, assuming that no polynomial adversary wins ExpValidTally with non-negligible probability,
• and for credential-based schemes, assuming that no polynomial adversary wins ExpNM with non-negligible probability,

if

∀A.
���P [Exppriv,0

A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� is negligible,
then

∀A. P
[
ExpverifA (λ) = 1

]
is negligible.

Proof. We first consider the case of id-based protocols.

Let A = A1,A2 be an adversary that breaks individual verifiability, i.e. wins Expverif . We consider an adversary B = B1,B2,B3 that
attacks privacy, i.e. plays Exppriv,β :

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping a list U1 of the

identities it registers by calling Oreg. A returns some state. B1 then calls Oreg another |U1 | times, on fresh identities that do not
appear in U1. It keeps a list U2 of these fresh identities.

• B
O
p
vote,Ocast

2 (state1, pk) maintains a list L, initially empty, which will be used to record the calls to Opvote, and a representation of the
current board BB′. B2 first simulates AO

v
vote,Ocast

2 (state, pk):
– for each call to Ovvote(id,v), provided id ∈ U1, B calls Opvote(id,v,vneutral), and, depending on the revote policy
∗ either checks if id is already present in L, to add (id,v) to L only if it is not (note that, in case it is, Opvote(id,v,vneutral) returns
nothing);
∗ or adds (id,v) to L and removes any previous couple (id,v ′) (for any v ′) from L.
If Opvote(id,v,vneutral) returns a ballot b, B then adds it to BB′, and passes it to A2.

– for each call to Ocast(id,b), provided id ∈ U1, B calls Ocast(id,b), and, if Valid(id,b,BB′, pk), adds it to BB′.

Let then Voted be the list of the votes in L: Voted = [v for (id,v) ∈ L]. Let also BBa be the value of the board BB′ at that point. Note
that BBa only contains identities from U1.

If at any point during the simulation A2 blocks or fails, B stops the simulation. In any case, B2 calls Opvote(id1,vneutral,v1), . . . ,
O
p
vote(idl ,vneutral,vl), where v1, . . . ,vl are the elements of Voted, and id1, . . . , idl are pairwise distinct identities from U2. Note that

since all identities in L are distinct and in U1, l is indeed smaller than |U1 | = |U2 |. Let BBb = [b1, . . . ,bl] be the set of new ballots
added to the board by these l calls, i.e. ballots for vneutral if β = 0 and v1, . . . ,vl if β = 1.
At this point, we have BB = BBa ⊎ BBb .

20

B2 then returns a state2 indicating whether A2 has failed. Intuitively, A is accurately simulated only if β = 0, i.e. is shown a board
where the votes it wanted to cast have indeed been cast. Hence whenever A wins Expverif , the simulated A2 failing can only mean
that β = 1.

• Exppriv will then check that ρ(V0) = ρ(V1), where V0 and V1 are the lists it keeps, which contain the first (or last, depending on the
revote policy) votes Opvote has been called on for each id. Considering the definition of B2, at this point we always have

ρ(V0) = ρ(V1) = ρ(v1, . . . ,vl ,vneutral, . . . ,vneutral︸ ︷︷ ︸
l times

)

Hence this check necessarily succeeds, and Exppriv computes Tally(BB, sk,U).
• B3 obtains a result r . If r = ⊥, B3 returns 1. If A2 blocked previously, B returns β ′ = 1. Otherwise, B computes D(r ,Voted) and:
– if ∃Vc . r = ρ(Voted) ∗ ρ(Vc) then B returns β ′ = 1
– otherwise, B returns β ′ = 0.

We also construct an adversary C, who plays the game ExpValidTally.
• C1 is identical to B1.
• C2 first draws at random a bit β ′′, and then simulates B2 up to the point where B2 has finished simulating A2. C2 keeps a list BB,
initially empty. It simulates each call to Opvote(id,v0,v1) B does by calling Ovtvote(id,vβ ′′), and appending the obtained ballot to BB. It
simulates each call to Ocast(id,b) by appending b to BB, provided id is dishonest and Valid(id,b,BB, pk).
• Once C2 has finished simulating B2, it draws at random a number k ∈ J1, lK Recall that l is the number of different ids Opvote (and thus
Ovtvote) has been called on, and is also the number of additional calls to Opvote B will make. Note that, at this point, BB in ExpValidTally

C

is the same as BBa in Exppriv,β
′′

B
. C then simulates the first k − 1 calls to Opvote(id,v0,v1), again by calling Ovtvote(id,vβ ′′). If the kth

call is Opvote(id,v0,v1), C returns (BB, id,vβ ′′).

We will now prove that if A breaks individual verifiability, then B breaks privacy provided C does not break ExpValidTally.

The adversary C is polynomial, i.e. there exists a polynomial q(λ) bounding its number of operations.
For any β , assume ValidTally(BBa, sk,U1) holds and ValidTally(BBa ⊎BBb , sk,U1 ∪U2) does not. Thus, by assumption 3, ValidTally(BBa ⊎

BBb , sk,U1 ∪ [(id1, credid1), . . . , (idl , credidl)]) does not hold either. Hence, there exists a smallest k ∈ J1, lK such that ValidTally(BBa ⊎
[b1, . . . ,bk−1], sk,U1∪U′2) holds andValidTally(BBa⊎[b1, . . . ,bk], sk,U1∪U′2∪[(idk , credidk)]) does not, whereU

′
2 = [(id1, credid1), . . . , (idk−1, credidk−1)].

bk has been added to BBb by the kth call to Opvote by B: bk = Vote(idk , credidk , pk,vβ) for some vβ . Thus, provided C correctly guesses
β ′′ = β and k , C returns (BBa ⊎ [b1, . . . ,bk−1], idk ,vβ) the conditions on BB in ExpValidTally

C
holds, and thus ExpValidTally

C
= 1. Therefore,

ValidTally(BBa, sk,U1) holds and ValidTally(BBa ⊎ BBb , sk,U1 ∪ U2) does not with probability at most 2l P
[
ExpValidTally
C

= 1
]
, which is

smaller than 2q(λ) P
[
ExpValidTally
C

= 1
]
since l ≤ q(λ).

Since BBa only contains ballots cast for identities in U1 and BBb for identities in U2, and U1∩U2 = ∅, if ValidTally(BBa ⊎BBb , sk,U1∪U2),
by assumption 1 we have (regardless of β)

r = Tally(BB, sk,U) = Tally(BBa ⊎ BBb , sk,U) = Tally(BBa, sk,U) ∗ Tally(BBb , sk,U)

In addition, by assumption 3, Tally(BBa, sk,U) = Tally(BBa, sk,U1). Hence

r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U).

• If β = 0: then Exppriv,0
B
(λ) = 1 if and only if B3 returns 1 in this game, which happens either when A (simulated by B) blocks, or

when it does not and ∃Vc . r = ρ(Voted) ∗ ρ(Vc) or r = ⊥.
Assume ValidTally(BBa, sk,U1) ⇒ ValidTally(BBa ⊎ BBb , sk,U), which, as we have established, holds except with probability at most
2q(λ) P

[
ExpValidTally
C

= 1
]
.

Let us first examine the case where A does not block and r , ⊥. Since r , ⊥, ValidTally(BBa, sk,U1) holds. Hence, ValidTally(BBa ⊎
BBb , sk,U) also holds, and as explained previously we thus know that r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U). Since β = 0, BBb only
contains ballots for vneutral. Hence, by assumption 4, Tally(BBb , sk,U) = ρ(vneutral)l = ρ(vneutral). Thus r = Tally(BBa, sk,U1).
The condition ∃Vc . r = ρ(Voted) ∗ ρ(Vc) is therefore equivalent to ∃Vc . Tally(BBa, sk,U1) = ρ(Voted) ∗ ρ(Vc). Since, in this case,
A has been accurately simulated without blocking, does not return ⊥, and BBa is the board after its execution, this is exactly the
condition under which Expverif

A
(λ) does not return 1.

21

Hence Exppriv,0
B
(λ) = 1 if and only if either A (simulated by B) blocks, or constructs a board whose tally is ⊥, or it does not and

Expverif
A
(λ) , 1.

Since Expverif
A
(λ) also does not return 1whenA blocks orwhen the tally is⊥, this implies that, unless the implicationValidTally(BBa, sk,U1) ⇒

ValidTally(BBa ⊎ BBb , sk,U) is false, Exp
priv,0
B
(λ) = 1 if and only if Expverif

A
(λ) , 1. Thus���P [Exppriv,0

B
(λ) = 1

]
− P

[
ExpverifA (λ) , 1

] ��� ≤ 2q(λ) P
[
ExpValidTally
C

= 1
]
. (2)

• If β = 1: then Exppriv,1
B
(λ) = 1 if and only if B3 returns 1 in this game, which happens either when A (simulated by B) blocks, or

when it does not and ∃Vc . r = ρ(Voted) ∗ ρ(Vc) or r = ⊥.
Assume ValidTally(BBa, sk,U1) ⇒ ValidTally(BBa ⊎ BBb , sk,U), which, as we have established, holds except with probability at most
2q(λ) P

[
ExpValidTally
C

= 1
]
.

Let us first examine the case where A does not block and r , ⊥. As in the β = 0 case, we thus have r = Tally(BBa, sk,U1) ∗
Tally(BBb , sk,U). Since β = 1, BBb contains ballots for v1, . . . ,vl , i.e. for Voted. Hence, by assumption 4, Tally(BBb , sk,U) = ρ(Voted),
and therefore r = Tally(BBa, sk,U1) ∗ ρ(Voted). By definition of Tally, there exists V such that Tally(BBa, sk,U1) = ρ(V). Hence the
condition ∃Vc . r = ρ(Voted) ∗ ρ(Vc) necessarily holds.

Therefore, unless the implication ValidTally(BBa, sk,U1) ⇒ ValidTally(BBa ⊎ BBb , sk,U) is false, Exp
priv,1
B
(λ) = 1 if and only if either

A (simulated by B) blocks, or it does not and returns a board whose tally is ⊥, or it does not and returns a board whose tally is not ⊥.
Hence

1 − P
[
Exppriv,1
B
(λ) = 1

]
≤ 2q(λ) P

[
ExpValidTally
C

= 1
]
. (3)

We thus have, using 4 and 5:

P
[
Expverif
A
(λ) = 1

]
=

(
1 − P

[
Expverif
A
(λ) , 1

])
+
(
P
[
Exppriv,0
B
(λ) = 1

]
− P

[
Exppriv,0
B
(λ) = 1

])
+
(
P
[
Exppriv,1
B
(λ) = 1

]
− P

[
Exppriv,1
B
(λ) = 1

])
=

(
P
[
Exppriv,0
B
(λ) = 1

]
− P

[
Expverif
A
(λ) , 1

])
+
(
P
[
Exppriv,1
B
(λ) = 1

]
− P

[
Exppriv,0
B
(λ) = 1

])
+
(
1 − P

[
Exppriv,1
B
(λ) = 1

])
≤

���P [Exppriv,1
B
(λ) = 1

]
− P

[
Exppriv,0
B
(λ) = 1

] ��� + 4q(λ) P [ExpValidTally
C

= 1
]

Therefore, if A breaks individual verifiability, i.e. if P
[
Expverif
A
(λ) = 1

]
is not negligible, then B breaks privacy, or C breaks ExpValidTally.

The proof for the case of credential-based protocols is very similar. In that case, instead of the ExpValidTally assumption, we assume that

∀A. P
[
ExpNMA (λ) = 1

]
is negligible

where ExpNM is defined on Figure 7.

Let A = A1,A2 be an adversary that breaks individual verifiability, i.e. wins Expverif . We construct the adversary B, that plays Exppriv,
as in the id-based case. We also construct D, that plays ExpNM, and is similar to C in the id-based case, except that D simulates calls to
O
p
vote by calling Oc instead of Ovtvote:
• D1 is identical to B1.
• D2 first draws at random a bit β ′′, and then simulates B2 up to the point where B2 has finished simulating A2. It simulates each call
to Opvote(id,v0,v1) B makes by calling Oc(id,vβ ′′).
• Once D2 has finished simulating B2 up to the point B2 has simulated A2, D obtains a board BBa (which is the same as BBa in
Exppriv,β

′′

B
). Since BBa is obtained by simulatingA, which is polynomial, in all executions of D the length of BBa is bounded by some

polynomial p(λ). D then draws at random a ballot in BBa , and returns it.
Similarly to the proof for the id-based case, and keeping the same notations, it then follows that BBa contains a ballot with a credential in

U2 the same credential with probability at most 2p(λ) P
[
ExpNM
D
= 1

]
. Indeed, if such a ballot exists, it cannot have been produced by a call

to Oc. Otherwise, it would necessarily have been produced by Oc(id,v) for some id,v such that (id, cred) ∈ U2, and the only calls to this
oracle simulate calls made by B to Opvote when simulatingA. Since B only calls Opvote on ids in U1 when simulatingA, this is contradictory.
Thus, a ballot in BBa with a credential in U2 cannot have been produced by Oc. Hence, provided D picked β ′′ = β , and picks the right ballot
in BBa , which happens with probability at least 1

p(λ) , D wins ExpNM.

Therefore, BBa contains no ballot with a credential in U2, except with probability at most 2p(λ) P
[
ExpNM
D
(λ) = 1

]
.

22

Expverif−careful
A

(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state← A
Oreg ,Ocorr
1 (pk)

Voted, Lid (for all id in U) ← []

BB, state2 ← A
O
v ,c
vote

2 (state, pk)

state3 ← A
OhappyBB
3 (state2)

if ∀id . (id, ∗) ∈ Voted ⇒ id ∈ H then

r ← Tally(BB, sk, U)

if r , ⊥ ∧ ∀Vc (finite) . r , ρ({vi }1≤i≤k ⊎Vc) then

return 1

where Voted = {(id1, v1), . . . , (idk , vk)}

O
v ,c
vote(id,v)

if (id, ∗) ∈ U\CU then

b ← Vote(id, credid , pk, v)

Voted← Voted′ ∥(id, v)

Lid ← Lid ∥(b , v)

return b

where (id, credid) ∈ U
and Voted′ is obtained from
Voted by removing all instances of (id, ∗)

Figure 13: Individual verifiability against a dishonest board with careful voters.

Note that by construction, all ballots in BBb have credentials in U2. Consequently, unless BBa contains a ballot with a credential in U2, by
assumption 1, we have (regardless of β)

r = Tally(BB, sk,U) = Tally(BBa ⊎ BBb , sk,U) = Tally(BBa, sk,U) ∗ Tally(BBb , sk,U)

which means, by assumption 3, that
r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U).

The remainder of the proof is the same as before, and establishes that

P
[
ExpverifA (λ) = 1

]
≤

���P [Exppriv,1
B
(λ) = 1

]
− P

[
Exppriv,0
B
(λ) = 1

] ��� + 4p(λ) P [ExpNMD = 1
]
.

Thus if A breaks verifiability, i.e. if P
[
Expverif
A
(λ) = 1

]
is not negligible, then B breaks privacy, or D breaks ExpNM, which proves the claim.

Note that, in these reductions, for each id in U1, B makes at most as many calls to Opvote as A makes to Ovvote, and at most as many calls
to Ocast as A makes to Ocast. In addition, for each id in U2, B makes at most one call to Opvote, and no call to Ocast. Thus, the exact same
proof proves that the result also holds if both the games Exppriv and Expverif are modified to prevent revote, by allowing only one call to
O
p
vote/O

v
vote and/or to Ocast/Ocast for each id. □

B.3 Privacy implies individual verifiability with a dishonest board and careful voters (proof of
Theorem 5.2)

We consider the case of protocols where the revote policy is to count only the last ballot (for each id or credential) or the first ballot. In the
case of the last ballot, the definitions of the privacy game with a dishonest board and careful voters can be found on Figure 9. We adapt the
verifiability game to the case of a dishonest board and careful voters as follows.

Definition B.2 (Individual verifiability against a dishonest board with careful voters). For an adversary A = A1,A2 and a parameter λ, we
consider the game Expverif−careful

A
(λ) defined on Figure 13. The voting system is verifiable against a dishonest board with careful voters if

∀A. P
[
Expverif−carefulA (λ) = 1

]
is negligible.

In the case of the first ballot, we adapt these definitions by replacing the oracles Ov ,cvote and O
p,c
vote with O

v ,c ,f
vote and Op,c ,fvote , described on

Figure 14. These two oracles are analogous to Ov ,cvote and O
p,c
vote, but keep only the first votes from each voter in the lists V0, V1, Voted, instead

of the last.
The following theorem corresponds to Theorem 5.2.

Theorem B.3. Under assumptions 1, 2, 3, 4, 5, 6, 7, 8:

• for id-based schemes, assuming that no polynomial adversary wins ExpValidTally with non-negligible probability,
• and for credential-based schemes, assuming that no polynomial adversary wins ExpNM with non-negligible probability,

23

O
v ,c ,f
vote (id,v)

if (id, ∗) ∈ U\CU ∧ (id, ∗) < Voted then

b ← Vote(id, credid , pk, v)

Voted← Voted∥(id, v)

Lid ← Lid ∥(b , v)

return b

where (id, credid) ∈ U

O
p,c ,f
vote (id,v0,v1)

if (id, ∗) ∈ U\CU ∧ (id, ∗) < V0, V1 then

b ← Vote(id, credid , pk, vβ)

V0 ← V0 ∥(id, v0)

V1 ← V1 ∥(id, v1)

Lid ← Lid ∥(b , vβ)

return b

where (id, credid) ∈ U

Figure 14: Oracles for the verifiability and privacy games with dishonest boards and careful voters
(revote policy = first vote)

if

∀A.
���P [Exppriv−careful,0

A
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ��� is negligible,

then

∀A. P
[
Expverif−carefulA (λ) = 1

]
is negligible.

Proof. We first consider the case of id-based protocols.

Let A = A1,A2,A3 be an adversary that breaks individual verifiability against a dishonest board with careful voters, i.e. wins
Expverif−careful. We consider an adversary B = B1,B2,B3,B4 that attacks privacy against a dishonest board with careful voters, i.e. plays
Exppriv−careful,β :

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping a list U1 of the

identities it registers by calling Oreg. A returns some state. B1 then calls Oreg another |U1 | times, on fresh identities that do not
appear in U1. It keeps a list U2 of these fresh identities.

• B
O
p ,c
vote

2 (state1, pk) maintains a list L, initially empty, which will be used to record the calls to Op,cvote. B2 first simulatesAO
v ,c
vote

2 (state, pk).
For each call to Ov ,cvote(id,v), provided id ∈ U1, B calls Op,cvote(id,v,vneutral) and (potentially) obtains a ballot b. Depending on the
revote policy, B2
– either checks if id is already present in L, to add (id,v,b) to L only if it is not, if the revote policy is "first" (note that in this case,
O
p,c
vote indeed returns a ballot);

– or adds (id,v,b) to L and removes any previous entry (id,v ′,b ′) (for any v ′, b ′) from L, if the revote policy is "last" (note that in
this case, Op,cvote indeed returns a ballot).

The simulated A2 returns a board BBa and a state state′2. Let BB
′
a be the list of ballots in BBa that A2 was allowed to cast, i.e.

BB′a = [b ∈ BBa |openid (b) ∈ U1].

Let then Voted be the list of the votes in L: Voted = [v for (id,v,b) ∈ L].

If at any point during the simulationA2 blocks or fails,B stops the simulation, and letsBBa be the list of ballots in L, i.e. [b for (id,v,b) ∈
L].

In any case, B2 calls O
p,c
vote(id1,vneutral,v1), . . . , O

p,c
vote(idl ,vneutral,vl), where v1, . . . ,vl are the elements of Voted, and id1, . . . , idl are

pairwise distinct identities from U2. Note that since all identities in L are distinct and in U1, l is indeed smaller than |U1 | = |U2 |. B2
thus obtains l ballots b1, . . . ,bl , forvneutral if β = 0 andv1, . . . ,vl if β = 1. Let BBb be the list of these ballots. Let then BB = BB′a ⊎BBb .

B2 then returns a state2 indicating whetherA2 has failed, and the board BB. Intuitively,A is accurately simulated only if β = 0, i.e. is
actually provided with ballots for the votes it wanted to cast. Hence whenever A wins Expverif−careful, the simulated A2 failing can
only mean that β = 1.

• B
OhappyBB
3 (state2) first simulates AOhappyBB3 (state′2), unless A2 has failed, in which case it simply calls Ohappy(openid (b)) for each b

occurring in BB′a .
24

B3 then calls OhappyBB(idi) for each i ∈ J1, lK. Since BB′a only contains ballots b such that openid (b) ∈ U1 (by definition), only
BBb contains ballots for the idi ∈ U2. BBb , by construction, contain exactly one ballot for each idi , which is the ballot bi pro-
duced by the (only) call to Opvote(idi , ∗, ∗). Since the revote policy is to count the first (or last) ballot for each id, by assumption 7,
VerifVoter(idi , credidi , Lidi ,BB) holds, and thus the call to OhappyBB(idi) adds idi to H.
After that step, H thus necessarily contains at least id1, . . . , idl .

• Exppriv−careful will then check that all ids occurring in V0 or V1 are also in H, where V0 and V1 are the lists it keeps, which contain
the first (or last, depending on the revote policy) votes Op,cvote has been called on for each id, and H is the list of identities OhappyBB has
successfully been called on. IfHa andHb denote the value of the listH at this point respectively in Expverif−careful

A
and Exppriv−careful,β

B
,

we have Hb = Ha ⊎ [id1, . . . , idl]. Indeed:
– we have established that Hb contains id1, . . . , idl ,
– and for all (id, cred) ∈ U1, id ∈ Hb if and only if OhappyBB(id) has been called by B and VerifVoter(id, cred, Lid,BB) succeeds, i.e.
if and only if OhappyBBa (id) was called by the simulated A and VerifVoter(id, cred, Lid,BB) succeeds. Since BB = BB′a ⊎ BBb , and
given the definition of BBb , by assumption 8, VerifVoter(id, cred, Lid,BB) is equivalent to VerifVoter(id, cred, Lid,BB′a), which is
itself equivalent to VerifVoter(id, cred, Lid,BBa). Thus id ∈ Hb if and only if id ∈ Ha .

Therefore, the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H succeeds in Expverif−careful
A

if and only if it succeeds in Exppriv−careful,β
B

.
• Exppriv−careful will then check that ρ(V0) = ρ(V1). Considering the definition of B2, if this point is reached, we always have

ρ(V0) = ρ(V1) = ρ(v1, . . . ,vl ,vneutral, . . . ,vneutral︸ ︷︷ ︸
l times

)

Hence this check necessarily succeeds, and Exppriv−careful computes Tally(BB, sk,U).
• B4 obtains a result r (or ⊥, if the previous tests by Exppriv failed or the tally returned ⊥). If
– A2 blocked previously;
– or r = ⊥, which means, as we have established that ρ(V0) = ρ(V1) always holds, that the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H fails,
or the tally returns ⊥;
B returns β ′ = 1.
Otherwise, B computes D(r ,Voted) and:
– if ∃Vc . r = ρ(Voted) ∗ ρ(Vc) then B returns β ′ = 1
– otherwise, B returns β ′ = 0.

We also construct an adversary C, who plays the game ExpValidTally.
• C1 is identical to B1.
• C2 first draws at random a bit β ′′, and then simulates B2 up to the point where B2 has finished simulating A2. It simulates each call
to Op,cvote(id,v0,v1) B does by calling Ovtvote(id,vβ ′′).
• Once C2 has finished simulating B2 up to the point B2 has simulated A2 and obtained a board BB′a , it draws at random a number
k ∈ J1, lK Recall that l is the number of different ids Op,cvote has been called on, and is also the number of additional calls to Op,cvote B will
make. C then simulates the first k − 1 calls to Op,cvote(id,v0,v1), again by calling Ovtvote(id,vβ ′′). It obtains k − 1 ballots, and stores them
in a board BBb = [(id1,b1), . . . , (idk−1,bk−1)]. If the kth call is Op,cvote(id,v0,v1), C returns (BB′a ⊎ BBb , id,vβ ′′).

We will now prove that if A breaks Expverif−careful, then B breaks Exppriv−careful provided C does not break ExpValidTally.

The adversary C is polynomial, i.e. there exists a polynomial q(λ) bounding its number of operations.
For any β , assume ValidTally(BBa, sk,U1) holds and ValidTally(BB′a ⊎ BBb , sk,U1 ∪ U2) does not. Thus, by assumptions 3 and 2,

ValidTally(BB′a ⊎ BBb , sk,U1 ∪ [(id1, credid1), . . . , (idl , credidl)]) does not hold either, but ValidTally(BB′a, sk,U1) does. Hence, there exists a
smallest k ∈ J1, lK such that ValidTally(BB′a⊎[b1, . . . ,bk−1], sk,U1∪U′2) holds and ValidTally(BB

′
a⊎[b1, . . . ,bk], sk,U1∪U′2∪[(idk , credidk)])

does not, where U′2 = [(id1, credid1), . . . , (idk−1, credidk−1)]. bk was produced by the kth call to Op,cvote by B: bk = Vote(idk , credidk , pk,vβ)

for some vβ . Thus, provided C correctly guesses β ′′ = β and k , C returns (BB′a ⊎ [b1, . . . ,bk−1], idk ,vβ) the conditions on BB in ExpValidTally
C

holds, and thus ExpValidTally
C

= 1. Therefore, ValidTally(BBa, sk,U1) holds and ValidTally(BBa ⊎ BBb , sk,U1 ∪ U2) does not with probability

at most 2l P
[
ExpValidTally
C

= 1
]
, which is smaller than 2q(λ) P

[
ExpValidTally
C

= 1
]
since l ≤ q(λ).

Since BB′a only contains ballots cast for identities in U1 (by definition) and BBb for identities in U2, and U1 ∩ U2 = ∅, if ValidTally(BB′a ⊎
BBb , sk,U1 ∪ U2), by assumption 1 we have (regardless of β)

r = Tally(BB, sk,U) = Tally(BB′a ⊎ BBb , sk,U) = Tally(BB′a, sk,U) ∗ Tally(BBb , sk,U)
25

In addition, by assumption 3, Tally(BB′a, sk,U) = Tally(BB′a, sk,U1). Hence
r = Tally(BB′a, sk,U1) ∗ Tally(BBb , sk,U).

Moreover, since BBa\BB′a contains only ballots for identities not in U1, by assumption 2, Tally(BB′a, sk,U1) = Tally(BBa, sk,U1), and thus
r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U).

• If β = 0: then Exppriv−careful,0
B

(λ) = 1 if and only if B4 (called on the result r) returns 1 in this game, which happens
– either when A (simulated by B) blocks;
– or when r = ⊥, i.e., as already mentioned, if the tally returns ⊥ or the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H fails in Exppriv−careful,β

B
;

– or when A does not block, the previous test succeeds, and ∃Vc . r = ρ(Voted) ∗ ρ(Vc).
Assume ValidTally(BBa, sk,U1) ⇒ ValidTally(BB′a ⊎ BBb , sk,U), which, as we have established, holds except with probability at most
2q(λ) P

[
ExpValidTally
C

= 1
]
.

We have already established that the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H succeeds in Exppriv−careful,β
B

if and only if it succeeds in
Expverif−careful
A

.
Let us first examine the case where A does not block, the tally does not return ⊥, and the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H
succeeds. Since r , ⊥, ValidTally(BBa, sk,U1) holds. Hence, ValidTally(BBa ⊎ BBb , sk,U) also holds, and as explained previously we
thus know that r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U). Since β = 0, BBb only contains ballots for vneutral, and then by assumption 4,
Tally(BBb , sk,U) = ρ(vneutral)

l = ρ(vneutral). Thus r = Tally(BBa, sk,U1).
The condition ∃Vc . r = ρ(Voted) ∗ ρ(Vc) is therefore equivalent to ∃Vc . Tally(BBa, sk,U1) = ρ(Voted) ∗ ρ(Vc). Since, in this case,
– A has been accurately simulated without blocking,
– BBa is the board it returns,
– the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H succeeds in Expverif−careful

A
,

this is exactly the condition under which Expverif−careful
A

(λ) does not return 1.

Hence, in that case, Exppriv−careful,0
B

(λ) = 1 if and only if
– either A (simulated by B) blocks;
– or the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H fails in Expverif−careful

A
;

– or the tally returns ⊥;
– or A does not block, the previous test succeeds, the tally does not return ⊥, and Expverif−careful

A
(λ) does not return 1.

Since Expverif−careful
A

(λ) also does not return 1 when A blocks, or when the test fails, or when the tally returns ⊥, this implies
that, unless the implication ValidTally(BBa, sk,U1) ⇒ ValidTally(BB′a ⊎ BBb , sk,U) is false, Exp

priv−careful,0
B

(λ) = 1 if and only if
Expverif−careful
A

(λ) , 1. Thus���P [Exppriv−careful,0
B

(λ) = 1
]
− P

[
Expverif−carefulA (λ) , 1

] ��� ≤ 2q(λ) P
[
ExpValidTally
C

= 1
]
. (4)

• If β = 1: then Exppriv−careful,1
B

(λ) = 1 if and only if B4 (called on the result r) returns 1 in this game, which happens
– either when A (simulated by B) blocks;
– or when r = ⊥, i.e., as already mentioned, if the tally returns ⊥ or the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H fails in Exppriv−careful,β

B
;

– or when A does not block, the previous test succeeds, the tally returns r , ⊥, and ∃Vc . r = ρ(Voted) ∗ ρ(Vc).
Assume ValidTally(BBa, sk,U1) ⇒ ValidTally(BB′a ⊎ BBb , sk,U), which, as we have established, holds except with probability at most
2q(λ) P

[
ExpValidTally
C

= 1
]
.

We have already established that the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H succeeds in Exppriv−careful,β
B

if and only if it succeeds in
Expverif−careful
A

.
Let us first examine the case where A does not block, the tally does not return ⊥, and the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H
succeeds.
As in the β = 0 case, we thus have r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U). Since β = 1, BBb contains ballots for v1, . . . ,vl , i.e. for
Voted. Hence, by assumption 4, Tally(BBb , sk,U) = ρ(Voted), and therefore r = Tally(BBa, sk,U1) ∗ ρ(Voted). By definition of Tally,
there exists V such that Tally(BBa, sk,U1) = ρ(V). Hence the condition ∃Vc . r = ρ(Voted) ∗ ρ(Vc) necessarily holds.
In addition we know that the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H succeeds in Expverif−careful

A
. Therefore, unless the implication

ValidTally(BBa, sk,U1) ⇒ ValidTally(BB′a ⊎ BBb , sk,U) is false, Exp
priv,1
B
(λ) = 1 if and only if

– either A (simulated by B) blocks;
– or the test ∀id. (id, ∗) ∈ V0,V1 ⇒ id ∈ H fails in Expverif−careful

A
;

– or the tally returns ⊥;
26

– or A does not block, the tally does not return ⊥ and the previous test succeeds;
which means that

1 − P
[
Exppriv−careful,1
B

(λ) = 1
]
≤ 2q(λ) P

[
ExpValidTally
C

= 1
]
. (5)

We thus have, using 4 and 5:

P
[
Expverif−careful
A

(λ) = 1
]
=

(
1 − P

[
Expverif−careful
A

(λ) , 1
])
+
(
P
[
Exppriv−careful,0
B

(λ) = 1
]
− P

[
Exppriv−careful,0
B

(λ) = 1
])

+
(
P
[
Exppriv−careful,1
B

(λ) = 1
]
− P

[
Exppriv−careful,1
B

(λ) = 1
])

=
(
P
[
Exppriv−careful,0
B

(λ) = 1
]
− P

[
Expverif−careful
A

(λ) , 1
])

+
(
P
[
Exppriv−careful,1
B

(λ) = 1
]
− P

[
Exppriv−careful,0
B

(λ) = 1
])
+
(
1 − P

[
Exppriv−careful,1
B

(λ) = 1
])

≤

���P [Exppriv−careful,1
B

(λ) = 1
]
− P

[
Exppriv−careful,0
B

(λ) = 1
] ��� + 4q(λ) P [ExpValidTally

C
= 1

]
Therefore, if A breaks verifiability with careful voters, i.e. if P

[
Expverif−careful
A

(λ) = 1
]
is not negligible, then B breaks privacy with

careful voters, or C breaks ExpValidTally.

The proof for the case of credential-based protocols is very similar. In that case, we assume that

∀A. P
[
ExpNMA (λ) = 1

]
is negligible.

Let A = A1,A2,A3 be an adversary that breaks individual verifiability, i.e. wins Expverif−careful. We construct the adversary B, that
plays Exppriv−careful, as in the id-based case. However, contrary to the id-based case, B does not remove any ballots from BBa , and simply
uses BB′a = BBa . We also construct D, that plays ExpNM, and is similar to C in the id-based case, except that D simulates calls to Op,cvote by
calling Oc instead of Ovtvote:
• D1 is identical to B1.
• D2 first draws at random a bit β ′′, and then simulates B2 up to the point where B2 has finished simulating A2. It simulates each call
to Op,cvote(id,v0,v1) B makes by calling Oc(id,vβ ′′).
• Once D2 has finished simulating B2 up to the point B2 has simulated A2, D obtains a board BBa (which is the same as BBa in
Exppriv−careful,β

′′

B
). Since BBa is obtained by simulating A, which is polynomial, in all executions of D the length of BBa is bounded

by some polynomial p(λ). D then draws at random a ballot in BBa , and returns it.
Similarly to the proof for the id-based case, and keeping the same notations, it then follows that BBa contains a ballot with a credential in

U2 the same credential with probability at most 2p(λ) P
[
ExpNM
D
= 1

]
. Indeed, if such a ballot exists, it cannot have been produced by a call

to Oc. Otherwise, it would necessarily have been produced by Oc(id,v) for some id,v such that (id, cred) ∈ U2, and the only calls to this
oracle simulate calls made by B to Op,cvote when simulatingA. Since B only calls Op,cvote on ids in U1 when simulatingA, this is contradictory.
Thus, a ballot in BBa with a credential in U2 cannot have been produced by Oc. Hence, provided D picked β ′′ = β , and picks the right ballot
in BBa , which happens with probability at least 1

p(λ) , D wins ExpNM.

Therefore, BBa contains no ballot with a credential in U2, except with probability at most 2p(λ) P
[
ExpNM
D
(λ) = 1

]
.

Note that by construction, all ballots in BBb have credentials in U2. Consequently, unless BBa contains a ballot with a credential in U2, by
assumption 1, we have (regardless of β)

r = Tally(BB, sk,U) = Tally(BBa ⊎ BBb , sk,U) = Tally(BBa, sk,U) ∗ Tally(BBb , sk,U)

which means, by assumption 3, that
r = Tally(BBa, sk,U1) ∗ Tally(BBb , sk,U).

The remainder of the proof is the same as before, and establishes that ifA breaks verifiabilitywith careful voters, i.e. if P
[
Expverif−careful
A

(λ) = 1
]

is not negligible, then B breaks privacy with careful voters, or D breaks ExpNM, which proves the claim.

Note that, in these reduction, for each id in U1, B makes at most as many calls to Op,cvote as A makes to Ov ,cvote. In addition, for each id in
U2, B makes at most one call to Op,cvote.

Thus, the exact same proof proves that the result also holds if both the games Exppriv−careful and Expverif−careful are modified to prevent
revote, by allowing only one call to Op,cvote/O

v ,c
vote for each id. □

27

Expind,β
A
(λ)

(pk, sk) ← Setup(1λ)
U, CU← []

state← A
Oreg ,Ocorr
1 (pk)

L← []

β ′ ← A
Oic ,O

i
d

2 (state, pk)

return β ′

A2 is only allowed one call to Oid

Oic(id, cred,v0,v1)
b ← Vote(id, cred, pk, vβ)

L← L∥extract(b)

return b

Oid(bL)

dL← []

for b ∈ bL do

if extract(b) < L then

dL← dL∥(opencred (b , sk, U), open(b , sk, U))

else

dL← dL∥⊥

return dL

Figure 15: IND − CCA-like property on the ballot creation function

Appendix C CASE STUDY
C.1 Assumptions
To prove that the protocols we study satisfy the different privacy properties, we will in some cases assume that no adversary wins ExpNM
(presented on Figure 7) with non-negligible probability. We will also in some cases use the assumption that the ballot creation function has a
property similar to the IND − CCA property i.e. that

∀A.
���P [Expind,0

A
(λ) = 1

]
− P

[
Expind,1
A
(λ) = 1

] ��� is negligible
where Expind is defined on Figure 15. This definition assumes a function open(b, sk,U) that returns the vote contained in the ballot b, i.e. for
all election keys (pk, sk) and list of users and credentials U,

∀id, cred,v . open(Vote(id, cred, pk,v), sk,U) = v .

It also assumes a function extract(b), that represents the ciphertext part in b. Typically, if b has the form (id, c) where id is the identity of
the voter and c the ciphertext containing the vote, we have openid (b) = id and extract(b) = c . This corresponds to the case of Helios and
Belenios in our case study. For the other protocols we study, extract(b) = b.

C.2 Proofs
C.2.1 Civitas is private for Exppriv.

Theorem C.1. Assuming no adversary wins Expind nor ExpNM with non-negligible probability, Civitas is private for Exppriv.

Proof. Let A = A1,A2,A3 be an adversary that wins Exppriv. We consider an adversary B = B1,B2 that plays Expind:

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping lists U1, CU1 of

the identities it declares and corrupts by calling Oreg and Ocorr. A returns some state′1. B1 then corrupts each user A1 has registered,
i.e., B1 calls Ocorr(id) for each id A1 has declared, and stores each id’s credential in a list CU2.

• B
Oic ,O

i
d

2 (state1, pk) maintains lists V0,V1,BB, initially empty, which will be used to simulate the lists with the same name in Exppriv.
B2 will also use lists hL, cL, initially empty.
B2 first simulates AO

p
vote,Ocast

2 (state′1, pk):
– for each call to Opvote(id,v0,v1), provided id ∈ U1\CU1, B checks whether id is already present in V0, V1. Provided it is not, B
then retrieves id’s credential credid from CU2, and calls Oic(id, credid,v0,v1). B obtains a ballot b. B then appends b to BB and hL,
(id,v0) to V0, (id,v1) to V1. Finally B returns b to the simulated A.

– for each call to Ocast(id,b), provided id ∈ CU1 and Valid(id,b,BB, pk), B appends b to BB, and to cL.
We write cL\hL (resp. cL ∩ hL) the sublist of cL (in the same order) of ballots that do not occur (resp. do occur) in hL.

• B2 then computes ρ(V0), ρ(V1), and check they are equal.
• B2 calls Oid(cL\hL), and obtains a list L of pairs of credentials and votes. B2 then computes the list L′ of the first vote for each
credential in L. Note that, by construction, no ballot in cL\hL has been generated by a call to Oic , which means that Oid accepts to
open all ballots in cL\hL.
• B2 computes r = ρ(V0) ∗ ρ(L′), calls A3 on r , and obtains a bit β ′. B2 returns β ′.

28

Note that the lists BB, V0, V1 in B are equal to the lists of the same name in Exppriv,β
A

. Then, by construction, A2 is always accurately
simulated by B2, i.e. it is called on the same inputs, shown the same board, and provided with the same oracles as what would happen in
Exppriv,β
A

.

We also construct an adversary C, that plays the game ExpNM.
• C1 simulates A1, similarly to B1. However, unlike B1, it stops there, and does not corrupt all identities.
• C2 first draws at random a bit β ′′, Similarly to B2, C2 then simulates A2 and uses lists BB, cL, hL, V:
– for each call to Opvote(id,v0,v1), provided id ∈ U1\CU1, C calls Oc(id,vβ ′′). C obtains a ballot b and appends b to BB and hL, and
(id,vβ ′′) to V. Finally C returns b to the simulated A.

– for each call to Ocast(id,b), provided id ∈ CU1 and Valid(id,b,BB, pk), C appends b to BB and cL.
• Once C2 has finished simulating A2, it draws at random an element of cL and returns it.

Note that the lists BB, cL, hL are the same for C in ExpNM at the point C2 returns, and for B in Expind at the point B2 returns. Similarly V in
C is the same as Vβ ′′ in B. Let us also notice that hL in C is equal to the list L in the game ExpNM.

We will now prove that if A breaks privacy, then B wins Expind provided C does not win ExpNM.

The adversary C is polynomial, i.e. there exists a polynomial q(λ) bounding its number of operations. q(λ) necessarily also bounds the
length of the list cL that C uses.

For any β , assume cL\hL contains a ballot b such that there exists a honest (∗, cred) ∈ U\CU such that opencred (b, sk,U) = cred (note
that U,CU in ExpNM

C
are equal to U1, CU1 in B). Thus, provided C correctly guesses β ′′ = β , and chooses this b from cL, the condition

b < L ∧ ∃(∗, cred) ∈ U\CU. opencred (b, sk,U) = cred in ExpNM
C

holds. Indeed, since b < hL, b < L. Thus ExpNM
C
= 1.

Therefore, such a ballot b exists with probability at most 2|cL| P
[
ExpNM
C
= 1

]
, which is smaller than 2q(λ) P

[
ExpNM
C
= 1

]
since |cL| ≤ q(λ).

For any β , Expind,β
B
(λ) = 1 if and only if B2 returns 1 in this game.

Assume cL\hL does not contain any ballot associated with a honest credential (i.e. a credential in U1\CU1), which, as we have established,
holds except with probability at most 2q(λ) P

[
ExpNM
C
= 1

]
.

Let us then show that A3 is accurately simulated by B2, i.e. it is simulated by B2 only when it is called in Exppriv,β
A

, that is, when
ρ(V0) = ρ(V1); and it is provided with the actually tally of the board BB (which A2 interacted with).

Indeed, by construction of B2, BB = hL ⊎ cL is an interleaving of the ballots from hL and cL.
By assumption, cL\hL contains no ballot from honest credentials, while by construction hL (and thus cL ∩ hL) only contains ballots from

honest credentials. Hence, the list BBd of ballots in BB associated with dishonest credentials is cL\hL (in that order). The list BBh of ballots in
BB associated with honest credentials is an interleaving of the ballots from the lists hL and cL ∩ hL. However, by construction, hL contains
at most one ballot for each credential. Thus, BBh also contains at most one distinct ballot (of which there can be several copies) for each
credential. The list of distinct ballots in BBh (not necessarily in the same order) is thus hL.

The revote policy specified for Civitas is to count only the first ballot corresponding to each credential. Since BB can be separated into the
lists BBh and BBd (whose ballots do not share any credential, by definition), and since the ballots of each of these two lists occur in the same
order in BB, we have

Tally(BB, sk,U1) = Tally(BBh, sk,U1) ∗ Tally(BBd , sk,U1) = Tally(hL, sk,U1) ∗ Tally(cL\hL, sk,U1).

hL contains ballots for either the votes in V0 or those in V1, depending on β . Since at that point ρ(V0) = ρ(V1), we have ρ(V0) =
Tally(hL, sk,U1). In addition, the oracle Oid returns the list L of the credentials and votes of each ballot in cL\hL. Since L′ is the list of the
first vote for each credential in L, we thus have Tally(cL\hL, sk,U1) = ρ(L′). Therefore, ρ(V0) ∗ ρ(L′), which is the result computed by B2, is
indeed Tally(BB, sk,U1), which concludes the proof that A3 is accurately simulated by B2.

Hence, unless cL\hL contains a ballot associated with a honest credential, Expind,β
B
(λ) = 1 if and only if the accurately simulated A3

returns 1, i.e. if and only if Exppriv,β
A

(λ) = 1.
Thus ���P [Expind,β

B
(λ) = 1

]
− P

[
Exppriv,β
A

(λ) , 1
] ��� ≤ 2q(λ) P

[
ExpNM
C
= 1

]
. (6)

We thus have:
29

���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� = ���(P [Exppriv,0
A
(λ) = 1

]
− P

[
Expind,0
B
(λ) = 1

])
+
(
P
[
Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

])
+

(
P
[
Expind,1
B
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

])���
≤

���P [Exppriv,0
A
(λ) = 1

]
− P

[
Expind,0
B
(λ) = 1

] ��� + ���P [Expind,1
B
(λ) = 1

]
− P

[
Expind,0
B
(λ) = 1

] ���
+

���P [Expind,1
B
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ���
≤

���P [Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

] ��� + 4q(λ) P [ExpNM
C
= 1

]
Therefore, if A breaks privacy, i.e. if

���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� is not negligible, then B breaks Expind, or C breaks
ExpNM.

□

C.2.2 Civitas is private for Exppriv−careful.

Theorem C.2. Assuming no adversary wins Expind nor ExpNM with non-negligible probability, Civitas is private for Exppriv−careful.

Proof. Let A = A1,A2,A3,A4 be an adversary that wins Exppriv−careful. We consider an adversary B = B1,B2,B3 that plays Expind:

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping lists U1, CU1 of

the identities it declares and corrupts by calling Oreg and Ocorr. A returns some state′1. B1 then corrupts each user A1 has registered,
i.e., B1 calls Ocorr(id) for each id A1 has declared, and stores each id’s credential in a list CU2.

• B
Oic ,O

i
d

2 (state1, pk) maintains lists V0,V1,BB, initially empty, which will be used to simulate the lists with the same name in
Exppriv−careful. B2 will also use lists hL, H, and a list Lid for each id ∈ U1, all of them initially empty.
B2 first simulates AO

p ,c
vote

2 (state′1, pk). For each call to Op,cvote(id,v0,v1), provided id ∈ U1\CU1, B checks whether id is already present
in V0, V1. Provided it is not, B then retrieves id’s credential credid from CU2, and calls Oic(id, credid,v0,v1). B obtains a ballot b. B
then appends (id,v0) to V0, (id,v1) to V1, b to hL, and b to Lid . Finally B returns b to A.
A2 eventually returns a board BB. We write BB\hL (resp. BB ∩ hL) the sublist of BB (in the same order) of ballots that do not occur
(resp. do occur) in hL.
• B2 calls Oid(BB\hL), and obtains a list L of pairs of credentials and votes. B2 then computes the list L′ of the first vote for each
credential in L. Note that, by construction, no ballot in BB\hL has been generated by a call to Oic , which means that Oid accepts to
open all ballots in BB\hL.

• B2 then simulatesAOhappyBB3 . For each call to OhappyBB(id), provided id ∈ U1\CU1, following the specification of the voter verification
for Civitas, B checks whether the first ballot b in Lid is in BB (note that by definition of the oracles, Lid actually only contains a single
element). If so, B appends id to H. In any case, B then resumes the execution of A3.
• B2 then computes ρ(V0), ρ(V1), and checks that they are equal, and that every id occurring in V0, V1 is also an element of H. If so, B2
computes r = ρ(V0) ∗ ρ(L′). Otherwise, B2 lets r = ⊥.
• B2 then calls A4 on r , and obtains a bit β ′. B2 returns β ′.

Note that the lists BB, V0, V1, H in B are equal to the lists of the same name in Exppriv−careful,β
A

. Then, by construction, A2 is always
accurately simulated by B2, i.e. it is called on the same inputs, and provided with the same oracles as what would happen in Exppriv,β

A
. Given

the specification of VerifVoter for Civitas, A3 is also accurately simulated by B2.

We also construct an adversary C, who plays the game ExpNM.
• C1 simulates A1, similarly to B1. However, unlike B1, it stops there, and does not corrupt all identities.
• C2 first draws at random a bit β ′′, Similarly to B2, C2 then simulatesA2 and uses lists hL, V. For each call to Op,cvote(id,v0,v1), provided
id ∈ U1\CU1 does not already occur in V, C calls Oc(id,vβ ′′). C obtains a ballot b and appends (id,vβ ′′) to V, and b to hL. Finally C
returns b.
• A2 eventually returns a board BB. C then draws at random a ballot of BB and returns it.

Note that the lists BB, hL, are the same for C in ExpNM at the point C2 returns, and for B in Expind at the point the simulated A2 returns.
Similarly V in C is the same as Vβ ′′ in B. Let us also notice that hL in C is equal to the list L in the game ExpNM.

We will now prove that if A wins Exppriv−careful, then B wins Expind provided C does not win ExpNM.

The adversary C is polynomial, i.e. there exists a polynomial q(λ) bounding its number of operations. q(λ) necessarily also bounds the
length of the board BB that C computes.

30

For any β , assume BB\hL contains a ballot b such that there exists a honest (∗, cred) ∈ U\CU such that opencred (b, sk,U) = cred (note
that U,CU in ExpNM are equal to U1, CU1 in B). Thus, provided C correctly guesses β ′′ = β , and chooses this b from BB, the condition
b < L ∧ ∃(id, cred) ∈ U\CU. opencred (b, sk,U) = cred in ExpNM

C
holds. Indeed, since b < hL, b < L. Thus ExpNM

C
= 1.

Therefore, such a ballotb exists with probability at most 2|BB| P
[
ExpNM
C
= 1

]
, which is smaller than 2q(λ) P

[
ExpNM
C
= 1

]
since |BB| ≤ q(λ).

For any β , Expind,β
B
(λ) = 1 if and only if B2 returns 1 in this game.

Assume BB\hL does not contain any ballot associated with a honest credential (i.e. a credential in U1\CU1), which, as we have established,
holds except with probability at most 2q(λ) P

[
ExpNM
C
= 1

]
.

Let us then show thatA4 is accurately simulated by B2, i.e. it is provided by B2 with the same input as when it is called in Exppriv,β
A

, that
is the actual tally of the board BB (which A2 returned) if ρ(V0) = ρ(V1)) and if ∀id . (id, ∗) ∈ V0,V1 ⇒ id ∈ H; and ⊥ otherwise.

It is clear from the definition of B that when either the equality condition ρ(V0) = ρ(V1) or the voter verification condition ∀id . (id, ∗) ∈
V0,V1 ⇒ id ∈ H do not hold, A4 is indeed given ⊥ as an argument.

Let us now study the case where both these conditions are met. Among the ballots in BB, some are also in the list hL of ballots created by
the oracle Oic . We will thus see BB as an interleaving (BB\hL) ⊎ (BB ∩ hL) of the ballots in BB\hL and BB ∩ hL (keeping the same order
within each of these two lists).

By assumption, BB\hL contains no ballot for honest credentials, whereas by construction hL (and thus BB ∩ hL) only contains ballots for
honest credentials. In addition, by construction, hL contains at most one ballot for each credential. Thus, BB ∩ hL also contains at most
one distinct ballot (of which there can be several copies) for each credential. The list of distinct ballots with honest credentials in BB (not
necessarily in the same order) is thus a subset of hL.

Moreover, we assumed the voter verifications succeeded, i.e. ∀id . (id, ∗) ∈ V0,V1 ⇒ id ∈ H holds. By construction, each b ∈ hL was
added when simulating a call to Opvote(id,v0,v1) for some honest id ∈ U1\CU1 and some v0,v1. Therefore (id,v0) ∈ V0, (id,v1) ∈ V1, and
Lid = [b]. Hence, id ∈ H. By definition of B (which performs the voter verifications), this means that b is in BB.

Consequently, all ballots in hL are also in BB. Thus the list of distinct ballots with honest credentials in BB (not necessarily in the same
order) is actually equal to hL.

The revote policy specified for Civitas is to count only the first ballot corresponding to each credential. Since BB can be separated into the
lists BB\hL and BB ∩ hL (whose ballots do not share any credential, by assumption), and since the ballots of each of these two lists occur in
the same order in BB, we have

Tally(BB, sk,U1) = Tally(BB ∩ hL, sk,U1) ∗ Tally(BB\hL, sk,U1).

Then, by the previous observation that the list of distinct ballots in BB ∩ hL is hL (regardless of the order, which does not matter since all
ballots in hL have distinct credentials by construction):

Tally(BB, sk,U1) = Tally(hL, sk,U1) ∗ Tally(BB\hL, sk,U1).

By construction, hL contains ballots for either the votes in V0 or those in V1, depending on β . Since at that point ρ(V0) = ρ(V1), we have
ρ(V0) = Tally(hL, sk,U1). In addition, the oracle Oid returns the list L of the credentials and votes of each ballot in BB\hL. Since L′ is the list
of the first vote for each credential in L, we thus have Tally(BB\hL, sk,U1) = ρ(L′). Therefore, ρ(V0) ∗ ρ(L′), which is the result computed by
B2, is indeed Tally(BB, sk,U1), which concludes the proof that A4 is accurately simulated by B2.

Hence, unless cL\hL contains a ballot associated with a honest credential, Expind,β
B
(λ) = 1 if and only if the accurately simulated A4

returns 1, i.e. if and only if Exppriv−careful,β
A

(λ) = 1.
Thus ���P [Expind,β

B
(λ) = 1

]
− P

[
Exppriv−careful,β
A

(λ) , 1
] ��� ≤ 2q(λ) P

[
ExpNM
C
= 1

]
. (7)

We thus have:���P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ���

=

���(P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Expind,0
B
(λ) = 1

])
+
(
P
[
Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

])
+

(
P
[
Expind,1
B
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
])���

≤

���P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Expind,0
B
(λ) = 1

] ��� + ���P [Expind,1
B
(λ) = 1

]
− P

[
Expind,0
B
(λ) = 1

] ���
+

���P [Expind,1
B
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ���

≤

���P [Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

] ��� + 4q(λ) P [ExpNM
C
= 1

]
31

Therefore, if A breaks privacy with careful voters, i.e. if
���P [Exppriv−careful,0

A
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ��� is not negligible, then

B breaks Expind, or C breaks ExpNM.
□

C.2.3 Belenios is private for Exppriv−careful.

Theorem C.3. Assuming no adversary wins Expind nor ExpNM with non-negligible probability, Belenios is private for Exppriv−careful.

Proof. Let A = A1,A2,A3,A4 be an adversary that wins Exppriv−careful. We consider an adversary B = B1,B2,B3 that plays Expind:

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping lists U1, CU1 of

the identities it declares and corrupts by calling Oreg and Ocorr. A returns some state′1. B1 then corrupts each user A1 has registered,
i.e., B1 calls Ocorr(id) for each id A1 has declared, and stores each id’s credential in a list CU2.

• B
Oic ,O

i
d

2 (state1, pk) maintains lists V0,V1,BB, initially empty, which will be used to simulate the lists with the same name in
Exppriv−careful. B2 will also use lists hL, H, and a list Lid for each id ∈ U1, all of them initially empty.
B2 first simulates AO

p ,c
vote

2 (state′1, pk). For each call to Op,cvote(id,v0,v1), provided id ∈ U1\CU1, B retrieves id’s credential credid from
CU2, and calls Oic(id, credid,v0,v1). B obtains a ballot b. B then removes from V0 and V1 all elements of the form (id, ∗), and appends
(id,v0) to V0, (id,v1) to V1, b to hL, and b to Lid . Finally B returns b to A.
A2 eventually returns a board BB. We write BB\hL (resp. BB ∩ hL) the sublist of BB (in the same order) of ballots that do not occur
(resp. do occur) in hL.
• B2 calls Oid(BB\hL), and obtains a list L of pairs of credentials and votes. B2 then computes the list L′ of the last vote for each
credential in L. We will see later that under the right assumptions, Oid accepts to open all (valid) ballots in BB\hL.

• B2 then simulatesAOhappyBB3 . For each call to OhappyBB(id), provided id ∈ U1\CU1, following the specification of the voter verification
for Belenios, B retrieves id’s credential cred from CU2, and checks whether the last ballot b in Lid is the last ballot associated to cred
(i.e. signed by cred) in BB. If so, B appends id to H. In any case, B then resumes the execution of A3.
• B2 then computes ρ(V0), ρ(V1), and checks that they are equal, and that every id occurring in V0, V1 is also an element of H. If so, B2
computes r = ρ(V0) ∗ ρ(L′). Otherwise, B2 lets r = ⊥.
• B2 then calls A4 on r , and obtains a bit β ′. B2 returns β ′.

Note that the lists BB, V0, V1, H in B are equal to the lists of the same name in Exppriv−careful,β
A

. Then, by construction, A2 is always
accurately simulated by B2, i.e. it is called on the same inputs, and provided with the same oracles as what would happen in Exppriv,β

A
. Given

the specification of VerifVoter for Belenios, A3 is also accurately simulated by B2.

We also construct an adversary C, who plays the game ExpNM.
• C1 simulates A1, similarly to B1. However, unlike B1, it stops there, and does not corrupt all identities.
• C2 first draws at random a bit β ′′, Similarly to B2, C2 then simulatesA2 and uses lists hL, V. For each call to Op,cvote(id,v0,v1), provided
id ∈ U1\CU1, C calls Oc(id,vβ ′′). C obtains a ballot b, removes all elements of the form (id, ∗) from V, and appends (id,vβ ′′) to V,
and b to hL. Finally C returns b.
• A2 eventually returns a board BB. C then draws at random a ballot of BB and returns it.

Note that the lists BB, hL are the same for C in ExpNM at the point C2 returns, and for B in Expind at the point the simulated A2 returns.
Similarly V in C is the same as Vβ ′′ in B. Let us also notice that hL in C is equal to the list L in the game ExpNM.

We will now prove that if A wins Exppriv−careful, then B wins Expind provided C does not win ExpNM.

The adversary C is polynomial, i.e. there exists a polynomial q(λ) bounding its number of operations. q(λ) necessarily also bounds the
length of the board BB that C computes.

For any β , assume BB\hL contains a ballot b such that there exists honest (id, cred) ∈ U\CU, and a votev , such that open(b, sk) = (cred,v)
(note that U,CU in ExpNM are equal to U1, CU1 in B). Thus, provided C correctly guesses β ′′ = β , and chooses this b from BB, the condition
b < L ∧ ∃(id, cred) ∈ U\CU. open(b, sk) = (cred, ∗) in ExpNM

C
holds. Indeed, since b < hL, b < L. and thus ExpNM

C
= 1.

Therefore, such a ballotb exists with probability at most 2|BB| P
[
ExpNM
C
= 1

]
, which is smaller than 2q(λ) P

[
ExpNM
C
= 1

]
since |BB| ≤ q(λ).

For any β , Expind,β
B
(λ) = 1 if and only if B2 returns 1 in this game.

Assume BB\hL does not contain any ballot associated with a honest credential (i.e. a credential in U1\CU1), which, as we have established,
holds except with probability at most 2q(λ) P

[
ExpNM
C
= 1

]
.

32

Note that this assumption notably implies that no ballot in BB\hL has the same ciphertext as a ballot generated by a call to Oic , that is, for
all b ∈ BB\hL, extract(b) < L. Indeed, the ciphertext part of the ballot, for Belenios, is signed with the credential. Hence any c ∈ L is (by
definition of Oic) signed with a honest credential, which, by the assumption, is not the case of any of the ballots in BB\hL. Therefore, as
stated earlier, Oid accepts to open all (valid) ballots in BB\hL.

Let us then show thatA4 is accurately simulated by B2, i.e. it is provided by B2 with the same input as when it is called in Exppriv,β
A

, that
is the actually tally of the board BB (which A2 returned) if ρ(V0) = ρ(V1)) and if ∀id . (id, ∗) ∈ V0,V1 ⇒ id ∈ H; and ⊥ otherwise.

It is clear from the definition of B that when either the equality condition ρ(V0) = ρ(V1)) or the voter verification condition ∀id . (id, ∗) ∈
V0,V1 ⇒ id ∈ H do not hold, A4 is indeed given ⊥ as an argument.

Let us now study the case where both these conditions are met. Among the ballots in BB, some are also in the list hL of ballots created by
the oracle Oic . We will thus see BB as an interleaving of the ballots in BB\hL and BB ∩ hL (keeping the same order within each of these two
lists).

By assumption, BB\hL contains no ballot for honest credentials, whereas by construction hL (and thus BB ∩ hL) only contains ballots for
honest credentials.

Moreover, we assumed the voter verifications succeeded, i.e. ∀id . (id, ∗) ∈ V0,V1 ⇒ id ∈ H holds. According to the specification of
VerifVoter for Belenios, this means that for all id occurring in V0, V1, the last ballot b in Lid , i.e. the last ballot produced by Op,cvote(id, ∗, ∗), is
also the last ballot signed by credid in BB. (credid being the credential associated with id in CU2). Since id (and thus credid) is honest by
definition of V0, V1, b is actually the last ballot signed by credid in BB ∩ hL.

Consider a credential cred such that BB ∩ hL contains at least one ballot signed by cred. This ballot can only have been added to hL by
a call to Op,cvote, and therefore, by definition of this oracle, the associated id was at one point added to V0 and V1. Since no identity is ever
removed from these lists, at the time of tallying, id still occurs in V0,V1.

Hence, the list hL′ of the last ballots signed by each credential in BB ∩ hL is exactly the list of the last ballots produced by Op,cvote for
each id in V0, V1. By construction, this list contains ballots for either the votes in V0 or those in V1, depending on β . Since at that point
ρ(V0) = ρ(V1), we have ρ(V0) = Tally(hL′, sk,U1). In addition, the revote policy specified for Belenios is to count only the last ballot signed
by each credential. Therefore, Tally(BB ∩ hL, sk,U1) = Tally(hL′, sk,U1) = ρ(V0).

Besides, the oracle Oid returns the list L of the credentials and votes of each ballot in BB\hL. Since L′ is the list of the last votes associated
with each credential in L, we thus have Tally(BB\hL, sk,U1) = ρ(L′).

Since BB can be separated into the lists BB\hL and BB ∩ hL (whose ballots do not share any credential, by assumption), and since the
ballots of each of these two lists occur in the same order in BB, we have

Tally(BB, sk,U1) = Tally(BB ∩ hL, sk,U1) ∗ Tally(BB\hL, sk,U1) = ρ(V0) ∗ ρ(L′).

Therefore, ρ(V0) ∗ ρ(L′), which is the result computed by B2, is indeed Tally(BB, sk,U1), which concludes the proof that A4 is accurately
simulated by B2.

Hence, unless BB\hL contains a ballot associated with a honest credential, Expind,β
B
(λ) = 1 if and only if the accurately simulated A4

returns 1, i.e. if and only if Exppriv−careful,β
A

(λ) = 1.
Thus ���P [Expind,β

B
(λ) = 1

]
− P

[
Exppriv−careful,β
A

(λ) , 1
] ��� ≤ 2q(λ) P

[
ExpNM
C
= 1

]
. (8)

We thus have:���P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ���

=

���(P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Expind,0
B
(λ) = 1

])
+
(
P
[
Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

])
+

(
P
[
Expind,1
B
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
])���

≤

���P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Expind,0
B
(λ) = 1

] ��� + ���P [Expind,1
B
(λ) = 1

]
− P

[
Expind,0
B
(λ) = 1

] ���
+

���P [Expind,1
B
(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ���

≤

���P [Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

] ��� + 4q(λ) P [ExpNM
C
= 1

]
Therefore, if A breaks privacy with careful voters, i.e. if

���P [Exppriv−careful,0
A

(λ) = 1
]
− P

[
Exppriv−careful,1
A

(λ) = 1
] ��� is not negligible, then

B breaks Expind, or C breaks ExpNM.
□

33

C.2.4 Helios is private for Exppriv.

Theorem C.4. Assuming no adversary wins Expind with non-negligible probability, Helios is private for Exppriv.

Proof. Let A = A1,A2,A3 be an adversary that wins Exppriv. We consider an adversary B = B1,B2 that plays Expind:

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping lists U1, CU1 of

the identities it declares and corrupts by calling Oreg and Ocorr. A returns some state′1. B1 then corrupts each user A1 has registered,
i.e., B1 calls Ocorr(id) for each id A1 has declared, and stores each id’s credential in a list CU2.

• B
Oic ,O

i
d

2 (state1, pk) maintains lists V0,V1,BB, initially empty, which will be used to simulate the lists with the same name in Exppriv.
B2 will also use a list hL, initially empty.
B2 first simulates AO

p
vote,Ocast

2 (state′1, pk):
– for each call to Opvote(id,v0,v1), provided id ∈ U1\CU1, B retrieves id’s credential credid from CU2, and calls Oic(id, credid,v0,v1).
B obtains a ballot b. B then removes from V0 and V1 all elements of the form (id, ∗), and appends (id,v0) to V0, (id,v1) to V1, b to
hL and to BB. Finally, B returns b to A.

– for each call to Ocast(id,b), provided id ∈ CU1 and Valid(id,b,BB, pk) (which implies, for Helios, that extract(b) does not already
occur in BB, and that openid (b) = id). B appends b to BB. Finally B returns b to A.

• B2 then computes ρ(V0), ρ(V1), and checks they are equal. If not, B2 blocks.
• B then checks whether two ballots in BB have the same ciphertext, i.e. if there exist two ballots b,b ′ in BB such that extract(b) =
extract(b ′). If so, following the specification of Helios, B lets r = ⊥.
Otherwise, we write BB\hL (resp. BB∩hL) the sublist of BB of ballots that do not occur (resp. do occur) in hL. Note that by construction
all ballots in hL occur in BB.
• B2 calls Oid(BB\hL), and obtains a list L of votes. Note that, if that point is reached, no two ballots in BB have the same ciphertext.
Hence, no ballot in BB\hL has the same ciphertext as a ballot in hL, which is the list of all ballots produced by Oic . Thus Oid accepts to
open all ballots in BB\hL. B2 computes (using BB and L) the list L′ of the last vote from each id.
• B2 computes r = ρ(V0) ∗ ρ(L′).
• In any case, i.e. even if r = ⊥, B2 calls A3 on r , and obtains a bit β ′. B2 returns β ′.

Note that the lists BB, V0, V1 in B are equal to the lists of the same name in Exppriv,β
A

. Then, by construction, A2 is always accurately
simulated by B2, i.e. it is called on the same inputs, shown the same board, and provided with the same oracles as what would happen in
Exppriv,β
A

.

We will now prove that if A breaks privacy, then B wins Expind.

For any β , Expind,β
B
(λ) = 1 if and only if B2 returns 1 in this game.

Let us then show that A3 is accurately simulated by B2, i.e. it is simulated by B2 only when it is called in Exppriv,β
A

(that is, when
ρ(V0) = ρ(V1)); and it is provided with the actually tally of the board BB (which A2 interacted with).

It is clear from the construction of B that if ρ(V0) , ρ(V1), A3 is not simulated. Hence, it is simulated by B2 only when it is called in
Exppriv,β
A

.
When A3 is called:
• either BB contains duplicate ciphertexts, and A3 is called on r = ⊥, which corresponds to what happens in Exppriv,β

A
;

• or BB does not contain duplicate ciphertexts.
In the first case, A3 is accurately simulated. Let us study the second case. Let us first partition BB into two boards BBh ⊎ BBd , containing

respectively the ballots whose id is honest and dishonest (in the same order). By construction, BBh is equal to hL, and BBd is equal to BB\hL.
By assumption, BB contains no duplicate ciphertexts. Hence, the lists BBh and BBd do not have any identity or ciphertexts in common,

and according to the specification of Helios we have
Tally(BB, sk,U1) = Tally(BBh, sk,U1) ∗ Tally(BBd , sk,U1) = Tally(hL, sk,U1) ∗ Tally(BB\hL, sk,U1).

By construction of B2, the list of the last ballot associated with each honest id in hL contains ballots for either the votes in V0 or those in
V1, depending on β . Since at that point ρ(V0) = ρ(V1), we thus have ρ(V0) = Tally(hL, sk,U1).

In addition, the oracle Oid returns the list L of the votes of each ballot in BB\hL. Since L′ is the list of the last vote in L associated in BB\hL
to each id, we thus have Tally(BB\hL, sk,U1) = ρ(L′).

Therefore, we indeed have
Tally(BB, sk,U1) = Tally(hL, sk,U1) ∗ Tally(BB\hL, sk,U1) = ρ(V0) ∗ ρ(L

′),

34

which is the result computed by B2. This concludes the proof that A3 is accurately simulated by B2.

Hence Expind,β
B
(λ) = 1 if and only if the accurately simulated A3 returns 1, i.e. if and only if Exppriv,β

A
(λ) = 1.

Thus
P
[
Expind,β
B
(λ) = 1

]
= P

[
Exppriv,β
A

(λ) , 1
]
. (9)

We thus have: ���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� = ���P [Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

] ��� .
Therefore, if A breaks privacy, i.e. if

���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� is not negligible, then B breaks Expind.
□

C.2.5 Simple is private for Exppriv.

Theorem C.5. Assuming no adversary wins Expind with non-negligible probability, Simple is private for Exppriv.

Proof. Let A = A1,A2,A3 be an adversary that wins Exppriv. We consider an adversary B = B1,B2 that plays Expind:

• B
Oreg,Ocorr
1 (pk) first simulates AOreg,Ocorr1 (pk), i.e. B registers and corrupts the same identities as A, while keeping lists U1, CU1 of

the identities it declares and corrupts by calling Oreg and Ocorr. A returns some state′1. B1 then corrupts each user A1 has registered,
i.e., B1 calls Ocorr(id) for each id A1 has declared, and stores each id’s credential in a list CU2.

• B
Oic ,O

i
d

2 (state1, pk) maintains lists V0,V1,BB, initially empty, which will be used to simulate the lists with the same name in Exppriv.
B2 will also use a list hL, initially empty.
B2 first simulates AO

p
vote,Ocast

2 (state′1, pk):
– for each call to Opvote(id,v0,v1), provided id ∈ U1\CU1 does not already occur in V0, V1, B retrieves id’s credential credid from
CU2, and calls Oic(id, credid,v0,v1). B obtains a ballot b. B then appends (id,v0) to V0, (id,v1) to V1, b to hL and to BB. Finally B
returns b to A.

– for each call to Ocast(id,b), provided id ∈ CU1 and Valid(id,b,BB, pk) (which implies, for Simple, that b does not already occur in
BB). B appends b to BB. Finally B returns b to A.

• B2 then computes ρ(V0), ρ(V1), and checks they are equal. If not, B2 blocks.
• B then checks whether two ballots in BB are equal. If so, following the specification of Simple, B lets r = ⊥.
Otherwise, we write BB\hL (resp. BB∩hL) the sublist of BB of ballots that do not occur (resp. do occur) in hL. Note that by construction
all ballots in hL occur in BB in that order.
• B2 calls Oid(BB\hL), and obtains a list L of votes. Note that, if that point is reached, no two ballots in BB are equal. Hence, no ballot in
BB\hL is equal to a ballot in hL, which is the list of all ballots produced by Oic . Thus Oid accepts to open all ballots in BB\hL.
• B2 computes r = ρ(V0) ∗ ρ(L).
• In any case, i.e. even if r = ⊥, B2 calls A3 on r , and obtains a bit β ′. B2 returns β ′.

Note that the lists BB, V0, V1 in B are equal to the lists of the same name in Exppriv,β
A

. Then, by construction, A2 is always accurately
simulated by B2, i.e. it is called on the same inputs, shown the same board, and provided with the same oracles as what would happen in
Exppriv,β
A

.

We will now prove that if A breaks privacy, then B wins Expind.

For any β , Expind,β
B
(λ) = 1 if and only if B2 returns 1 in this game.

Let us then show that A3 is accurately simulated by B2, i.e. it is simulated by B2 only when it is called in Exppriv,β
A

(that is, when
ρ(V0) = ρ(V1)); and it is provided with the actually tally of the board BB (which A2 interacted with).

It is clear from the construction of B that if ρ(V0) , ρ(V1), A3 is not simulated. Hence, it is simulated by B2 only when it is called in
Exppriv,β
A

.
When A3 is called:
• either BB contains duplicate ballots, and A3 is called on r = ⊥, which corresponds to what happens in Exppriv,β

A
;

• or BB does not contain duplicate ballots.
35

In the first case, A3 is accurately simulated. Let us study the second case. Let us first partition BB into two lists (BB ∩ hL) ⊎ (BB\hL).
By construction of B, all ballots in hL are present in BB in the same order, and, since BB contains no duplicates, this means BB ∩ hL = hL.
By assumption, BB contains no duplicate ballots. Hence, the lists hL and BB\hL do not have any ballot in common, and according to the

specification of Simple we have
Tally(BB, sk,U1) = Tally(hL, sk,U1) ∗ Tally(BB\hL, sk,U1).

By construction ofB2, the list hL contains ballots for either the votes in V0 or those in V1, depending on β . Since at that point ρ(V0) = ρ(V1),
we thus have ρ(V0) = Tally(hL, sk,U1).

In addition, the oracle Oid returns the list L of the votes of each ballot in BB\hL. We thus have Tally(BB\hL, sk,U1) = ρ(L).
Therefore, we indeed have

Tally(BB, sk,U1) = Tally(hL, sk,U1) ∗ Tally(BB\hL, sk,U1) = ρ(V0) ∗ ρ(L),

which is the result computed by B2. This concludes the proof that A3 is accurately simulated by B2.

Hence Expind,β
B
(λ) = 1 if and only if the accurately simulated A3 returns 1, i.e. if and only if Exppriv,β

A
(λ) = 1.

Thus
P
[
Expind,β
B
(λ) = 1

]
= P

[
Exppriv,β
A

(λ) , 1
]
. (10)

We thus have: ���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� = ���P [Expind,0
B
(λ) = 1

]
− P

[
Expind,1
B
(λ) = 1

] ��� .
Therefore, if A breaks privacy, i.e. if

���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� is not negligible, then B breaks Expind.
□

36

	Abstract
	1 Introduction
	2 Preliminaries
	3 Symbolic model
	3.1 Model
	3.2 Voting protocols
	3.3 Security properties
	3.4 Privacy implies verifiability

	4 Computational model
	4.1 Voting system
	4.2 Security properties
	4.3 Privacy implies individual verifiability

	5 Privacy with a dishonest board
	5.1 Privacy with careful voters
	5.2 Privacy implies individual verifiability against a dishonest box too

	6 Comparing privacy
	6.1 PrivacyBS
	6.2 Protocols
	6.3 Attacks
	6.4 Comparison

	7 Conclusion
	Acknowledgments
	References
	A Symbolic proof
	A.1 Assumptions summary
	A.2 Theorem

	B Computational proof
	B.1 Assumptions summary
	B.2 Privacy implies individual verifiability with a honest board (proof of Theorem 4.4)
	B.3 Privacy implies individual verifiability with a dishonest board and careful voters (proof of Theorem 5.2)

	C Case study
	C.1 Assumptions
	C.2 Proofs

