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Abstract—We develop a family of key agreement protocols that
are correct by construction. Our work substantially extends
prior work on developing security protocols by refinement.
First, we strengthen the adversary by allowing him to com-
promise different resources of protocol participants, such as
their long-term keys or their session keys. This enables the
systematic development of protocols that ensure strong prop-
erties such as perfect-forward secrecy. Second, we broaden the
class of protocols supported to include those with non-atomic
keys and equationally defined cryptographic operators. We use
these extensions to develop key agreement protocols including
signed Diffie-Hellman and the core of IKEv1 and SKEME.

1. Introduction

Key agreement protocols are a central element of many
security architectures and hence methods for their rigorous
development and security analysis are of vital importance.
In this paper we propose an approach to developing key
agreement protocols that are correct by construction in the
presence of strong adversaries.

Our work is motivated by, and brings together, two sepa-
rate lines of research. The first is on models and verification
methods for security protocols that are secure against strong,
but realistic, adversaries. The cryptographic community has
developed numerous adversary models for evaluating the
security of key agreement protocols, e.g., [1]–[7]. These
models formalize different kinds of adversarial capabilities.
For example, in addition to the adversary being active and in
control of all network traffic (sometimes called the “Dolev-
Yao model”), the adversary can also compromise different
resources of the protocol participants, such as their long term
secrets, their session keys, parts of their session states, and
even their random number generators. This makes it possible
to distinguish between the protocols that provide security
guarantees when some of these resources are compromised
and those that do not. To enable automatic proofs, symbolic
versions of these adversary models have been formalized
and incorporated into security protocol model checkers,
cf. [8], [9].

In contrast to the first line of research, which focuses
on the post-hoc analysis of existing designs, the second line
is on developing protocols that are correct by construction.

Refinement is a popular formalism for developing systems
together with their correctness guarantees and it has been
applied to construct systems of all kinds [10]–[12]. Our
starting point here is our previous work [13], [14], where
we proposed a four-level refinement strategy for security
protocols. We presented abstractions and an associated
development method where protocols are designed through
a sequence of refinement steps, while preserving correct-
ness guarantees at each step. We formalized a supporting
infrastructure in the theorem prover Isabelle/HOL [15] and
used it to develop basic authentication and key establishment
protocols.

We now briefly review our four-level refinement strategy
and the related abstractions. Level 0, the most abstract
level, provides simple protocol-independent transition system
models of security properties, namely, secrecy and authenti-
cation. On Level 1, we model the protocol’s roles and runs,
but instead of exchanging messages on a communication
medium, the participants communicate by reading each
others’ local store. On Level 2, the protocol participants
exchange messages on communication channels with security
properties, e.g., insecure, authentic, confidential, and secure
channels. We also model an adversary whose access to
these channels is restricted depending on the channels’
properties. Finally, on Level 3, channels are implemented
by cryptographic operations and the adversary is a standard
Dolev-Yao adversary.

Approach taken. In this paper, we combine the two lines of
research described above: we present a method for developing
security protocols using stepwise refinement that are correct
in the presence of strong adversaries. We build on and
extend the above refinement strategy to bridge symbolic
models at different abstraction levels and we use this to
systematically derive a family of Diffie-Hellman-based key
agreement protocols, including signed Diffie-Hellman and
the core of particular modes of IKEv1 and SKEME. We
have formalized the entire approach, including the relevant
infrastructure, our case study, and all proofs in Isabelle/HOL.

While our work in [13], [14] served as a good starting
point, it had severe limitations. First, it cannot be used to
model key agreement protocols where each party contributes
information to the key, since the messages on the first three
levels of abstraction, including the secrets to be protected,



were required to be atomic. Second, it could not model
equational theories such as Diffie-Hellman exponentiation.
This rules out advanced key agreement protocols, such as
those based on Diffie-Hellman. Third, it only supported a
limited adversary model: the standard Dolev-Yao model
with the static compromise of honest agents’ long-term
keys. Hence, one cannot use it to prove stronger properties
such as perfect forward secrecy and key independence,
which are desirable for key agreement protocols. Finally,
the implementation of channels with security properties (e.g.,
authentic or confidential channels) as cryptographic messages
was done separately for each protocol, thereby preventing
their reuse. Overcoming these limitations required a major
redesign for the results described here.

Contributions. Our main contributions are to substantially
extend the scope of previous work and to apply the resulting
framework to a non-trivial case study. This includes both
extending the class of protocols supported and enabling the
verification of secrecy and authentication properties with
respect to strong adversaries. This has several aspects.

First, this required a major redesign of the framework
of [13], [14]. This includes the modeling of non-atomic
messages on all levels, adding support for equational rea-
soning by quotienting the set of messages by an equational
theory associated with Diffie-Hellman exponentiation, and
incorporating notions from cryptographic security definitions
such as partner and test runs.

Second, following [8], [9], we have strengthened the
adversary’s capabilities by enabling him to dynamically
compromise different resources of the protocol participants.
Namely, we add two forms of agent compromise and session
key compromise. The resulting symbolic adversary models
correspond to Bellare et al.’s computational models [2], [3],
[5]. By establishing secrecy properties in the presence of
an adversary endowed with these capabilities, the derived
key agreement protocols satisfy stronger guarantees, namely,
perfect forward secrecy and key independence.

Third, we implement channels in a parametric way, under
a set of assumptions that any concrete implementation must
satisfy. This approach sheds light on the conditions that
are needed for such implementations to be secure. It also
makes our approach more modular in that we can derive a
parametric Level 3 implementation that can be instantiated
in many different ways, for example, using symmetric or
asymmetric cryptography or some combination. We provide
two such implementations, based respectively on symmetric
and asymmetric cryptography, and use these to instantiate
parametric Level 3 protocols into concrete ones.

Finally, we validate our approach by developing a family
of Diffie-Hellman-based key agreement protocols. This shows
how one can use our refinement framework to develop
protocols that are secure against strong forms of adversarial
compromise, analogous to those found in cryptographic
security definitions.

All results reported in this paper have been verified using
the Isabelle/HOL theorem prover. Full proof scripts, including
all definitions and theorems are available online [16].

Structure of paper. The remainder of this paper is orga-
nized as follows. In Section 2 we introduce background on
Isabelle/HOL and refinement. In Section 3 we provide a more
detailed, but still informal, overview of our development
approach. In Section 4 we present our development of a
family of key agreement protocols satisfying strong security
properties. In Section 5 we make further discuss related work
and we draw conclusions in Section 6.

2. Background

We introduce background on Isabelle/HOL and refine-
ment, following the presentation in [14].

2.1. Isabelle/HOL and notation

Isabelle is a generic, tactic-based theorem prover. We
have used Isabelle’s implementation of higher-order logic,
Isabelle/HOL [15], for our development. To enhance read-
ability, we will use standard mathematical notation where
possible.

We use ≡ for definitional equalities. The notation f :
A ⇀ B denotes a partial function (or map) f from A to B
with domain dom(f). To specify a concrete map, we write
f = {a1 7→ b1, . . . , an 7→ bn}. Here, we have dom(f) =
{a1, . . . , an}. For a function or binary relation R ⊆ A×B
and set X ⊆ A, we define the image of X under R by
R(X) ≡ {y ∈ B | ∃x ∈ X. (x, y) ∈ R}. We use inductively
defined datatypes. For example, the type of lists is defined
by list(A) ≡ Nil | Cons(A, list(A)). We define multisets
over A by multiset(A) ≡ A → N. For X ∈ multiset(A),
the term X(e) denotes the multiplicity of e in X and we
define multiset union by (X]Y )(e) = X(e)+Y (e). Record
types may be defined, e.g., point ≡ (| x ∈ N, y ∈ N |) with
elements like r ≡ (| x = 1, y = 2 |) and projections r.x and
r.y. When it is clear from the context, we sometimes omit the
field names, e.g., r = (| 1, 2 |). The term r(| x := 3 |) denotes
r, where x is updated to 3, i.e., (| x = 3, y = 2 |). The type
cpoint ≡ point+ (| c ∈ color |) extends point with a color
field. For record types T and U , where T includes the set
F of fields of U , we denote the projection from T to U by
πF : T → U . For example, π{x,y} : cpoint → point with
π{x,y}((| 1, 2, red |)) = (| 1, 2 |).

2.2. Refinement

A development by refinement starts from a set of system
requirements and environment assumptions. We then con-
struct a series of models resulting in a system that fulfills the
requirements provided it runs in an environment satisfying the
assumptions. We summarize our refinement theory that we
developed in Isabelle/HOL, which is inspired by [11], [12].

Our models are transition systems T = (Σ,Σ0,→). The
state space Σ is a record type, whose fields are the state
variables, Σ0 ⊆ Σ are the initial states, and the transition
relation → is a finite union of parametrized relations, called
events. Events have the form

evt(~x) = {(s, s′) | G(~x, s) ∧ s′.~v := ~f(~x, s) },



where the arrow~· denotes a vector. G(~x, s) is a conjunction
of guards and s′.~v := ~f(~x, s) is an action with update
functions ~f . The guards depend on the parameters ~x and
the current state s and determine when the event is enabled.
The action is syntactic sugar denoting the relation s′ =
s(| ~v := ~f(~x, s) |), i.e., the simultaneous assignment of values
~f(~x, s) to the variables ~v in state s, yielding state s′.

Example 2.1. Consider an abstract file transfer protocol
specification Tf ≡ (Σf ,Σf ,→f ), where Σf ≡ (| f ∈ file |)
with file ≡ I → D for a finite index set I and a set of
data blocks D and →f ≡ xferf . The event xferf ≡ {(s, s′) |
s′.f := g} transfers a given file g in one shot to f . All states
are possible initial states.

In this paper, our notion of refinement is functional
simulation [11], although our Isabelle/HOL development
actually supports more general refinements. We say Tc refines
Ta using the refinement mapping π : Σc → Σa, written
Tc vπ Ta, if the following two conditions are met. (1)
Each concrete initial state maps to some abstract initial
state, i.e., π(Σ0

c) ⊆ Σ0
a. (2) For each concrete event evtc(~x)

(with guards Gc, state variables ~v, and update functions
~fc) we identify an abstract event evta(~z) (with guards Ga,
state variables ~u, and update functions ~fa) simulating it, i.e.,
π−1; evtc(~x);π ⊆ evta(~w(~x)), where ‘;’ is relational com-
position and the functions ~w(~x) reconstruct the parameters
for evta from those of evtc. This condition decomposes into
two proof obligations, called guard strengthening and action
refinement, both under the premises s ∈ Σc and Gc(~x, s):

(GRD) Ga(~w(~x), π(s))

(ACT) π(s)(| ~u := ~fa(~w(~x), π(s)) |) = π(s(| ~v := ~fc(~x, s) |))

Guard strengthening requires that if the concrete event
is enabled then so is the abstract one. Action refinement
expresses that the two states resulting from the execution
of the abstract and concrete actions are again related by π.
We assume that all models include a special event skip (the
identity relation), which new concrete events must refine.

We express the desired properties of a system T as
invariants. These are supersets of T ’s set of reachable states,
reach(T ). We can use an invariant J of Tc to soundly
strengthen the premise s ∈ Σc of the refinement proof
obligations above to s ∈ J . In this case, we may annotate
the refinement with the invariant: Tc vJπ Ta.

The following result implies that invariants are preserved
by a series of subsequent refinements.

Proposition 2.1. Suppose T2 vπ T1. Then
1) T3 vπ′ T2 implies T3 vπ◦π′ T1, and
2) reach(T1) ⊆ J implies π(reach(T2)) ⊆ J .

Example 2.2. We define a “protocol” implementing the
file transfer system Tf by Tp ≡ (Σp,Σ

0
p,→p), where Σp ≡

Σf+(| b ∈ I ⇀ D |) extends the state Σf with a buffer b. The
set Σp,0 consists of initial states of the form (| f = f0, b = ∅ |)
for some f0 ∈ file and the empty buffer. The protocol non-
deterministically transfers blocks of the file g into the buffer b
from where it is assigned to f , once the transfer is complete.

The transition relation→p≡ xferp∪
⋃
i∈I blk(i) is the union

of two events:

blk(i) ≡ {(s, s′) | i ∈ I ∧ s′.b(i) := g(i)}

and xferp ≡ {(s, s′) | dom(b) = I ∧ s′.f := s.b}.
Let us establish a refinement between Sp and Sf , using

the projection πf : Σp → Σf as a refinement mapping (where
we omit the singleton brackets around f ). We focus on point
(2), where we must show that blk(i) refines skip and that
xferp refines xferf . The guard strengthening (GRD) proof
obligation is trivial in both cases, since the abstract guards
are true. The action refinement (ACT) proof obligation for
blk(i) and skip (the identity relation) requires showing
(πf (s(| b(i) := g(i) |)) = πf (s), assuming i ∈ I . This holds
trivially. In the action refinement for xferp and xferf , we
must show that πf (s(| f := πf (s).b |)) = πf (s)(| f := g |)
assuming dom(b) = I . To prove this, we need additional
information about the relation between b and g, expressed
as the invariant Ip ≡ {s ∈ Σp | ∀i ∈ dom(b). s.b(i) = g(i)}
of Sp. We first establish this invariant and then use it to
prove Tp v

Ip
πf Tf .

In further refinements, one could develop a more re-
alistic implementation, for example, by eliminating non-
determinism and by modeling a communication medium.

3. Overview of approach and development

In this section, we describe our refinement approach
and how we develop key agreement protocols. We explain
our development in a high-level way, focusing on the main
ideas and design decisions. We also formally introduce some
basic elements of our framework, but keep the discussion
informal otherwise. In Section 4, we expand this description
and present more formal details.

3.1. Protocol refinement framework

Our development framework is organized into a four-
level refinement strategy. This strategy provides four views
of security protocols, each at a different abstraction level.
These levels are as follows.
Level 0 Security property models. These models provide

simple, protocol-independent specifications of secrecy
and authentication for which the requisite security
invariants are trivial to establish.

Level 1 Guard protocols. We introduce protocol roles and
runs. A run maintains the state of a protocol role
instance during its execution. The runs communicate
by reading each others’ local stores, whereby logical
conditions called security guards ensure secrecy or
authenticity if required. The adversary only loosely
interacts with the protocol: unguarded reads are com-
pletely non-deterministic and the adversary can learn
any message that does not allow him to derive a
protocol secret.

Level 2 Channel protocols. The runs communicate by ex-
changing messages over communication channels with
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Figure 1. Refinement graph of our case study

security properties, such as authentic or confidential
channels. The adversary interacts more closely with
the protocol: he can access channels depending on
their security properties and he can corrupt agents (and
hence access their channels) as well as session keys.

Level 3 Cryptographic protocols. We refine the channel
messages by cryptographic operations using long-term
keys. This refinement is parametrized by the message
implementation, subject to a set of assumptions. We can
then obtain different protocol variants by instantiating
the implementation in different ways and discharging
the related assumptions. The adversary is a Dolev-Yao
adversary with additional compromising capabilities.

We use the refinement framework from Section 2.2 to
establish a protocol’s secrecy and authentication properties
by refinement of the corresponding Level 0 models. We do
this at the highest possible abstraction level, namely Level 1.
The crucial point is that these properties, once proved as
invariants at Level 0, are inherited by subsequent refinements
down to the final models at Level 3 (see Proposition 2.1).

3.2. Methodology and key agreement case study

We start each development from a set of requirements and
environment assumptions. The latter include the adversarial
capabilities and the cryptographic setup. The goal of two-
party authenticated key agreement is to establish:
P1. a secret session key shared by the two parties, and
P2. agreement on (at least) each other’s role and identity

and on the session key.
The network environment is characterized by a Dolev-
Yao adversary with additional compromising capabilities.
Moreover, we consider both symmetric and asymmetric
cryptographic setups.

Figure 1 gives an overview of our development of
a family of key agreement protocols. The solid arrows
represent refinements and the dashed arrows instantiations.
Our development method proceeds as follows:
L0. We use the Level 0 models to formalize the security

properties P1 and P2 above.

L1. We determine the messages to be exchanged (the DH
public keys) or computed (DH key) and their individual
security properties, which we enforce by appropriate
security guards. This results in the model dh1, from
which all our other protocol models are derived. We
establish its security properties by a refinement of the
secrecy model (s0) and two refinements of the authenti-
cation model (a0i), one for each role. The model dh1n
refines dh1 by adding nonces. Its direct refinements of
a0i strengthen the authentication properties.

L2. We choose the channel types and messages such that
receiving a message implies the corresponding secu-
rity guards from Level 1 (guard strengthening), thus
explicitly relating these messages to their expected
security properties. We refine the models dh1 and
dh1n differently: using authentic channels (dh2) and
using confidential channels (sk2). The environment
assumptions determine the adversary’s capabilities.

L3. We refine the two channel protocol models into (para-
metric) cryptographic implementations (dh3 and sk3).
We then instantiate these with specific channel im-
plementations based on asymmetric and symmetric
cryptography, as defined by our assumptions on the
cryptographic setup. The model dh3asym represents a
signature-based authenticated Diffie-Hellman protocol,
while sk3asym models both the basic mode of the
SKEME protocol [17] and the variant of IKEv1’s
aggressive mode using public-key encryption [18].

Note that, at each level, different design choices are possible.
We next introduce protocol messages and the Dolev-Yao

adversary and then give a sketch of the models in Figure 1.

3.3. Messages and adversary derivation

We model protocol messages as terms constructed from a
set of atomic messages and a signature of constructors. The
atomic messages are agents A, B, natural number constants
i, nonces N , tags, and long-term keys, i.e. public keys
pub(A), private keys pri(A), and shared keys shr(A,B). The
composed messages are pairing 〈M1,M2〉, hashing h(M),
symmetric encryption {|M |}K , message authentication codes
(MACs) [[M ]]K , asymmetric encryption {M}K , signatures
[M ]K , and exponentiation exp(X,Y ), also written as XY .

We quotient these messages by the equivalence relation
associated to the following single-equation equational theory:

exp(exp(x, y), z) = exp(exp(x, z), y)

This equation is needed for Diffie-Hellman key exchange
protocols to be executable. A more detailed representation
of the adversary capabilities requires additional algebraic
structure in the exponent, e.g., a group.

Dolev-Yao adversary. We model standard Dolev-Yao ad-
versary capabilities using the closure operators synth for
message composition and analz for decomposition; this is
a variant of [19] that supports composed keys. Given a set
of messages S, synth(S) denotes the set of messages the



adversary can obtain by applying constructors to messages
in S and analz (S) is the set of messages he can extract
by decomposing messages in S (e.g., by projection or
decryption). These operators are inductively defined using a
set of rules. Here is an example rule:

{|X|}K∈ analz (S) K ∈ synth(analz (S))

X ∈ analz (S) .

Note that synth is required here for the derivation of com-
posed keys K. We define the set of messages derivable by the
adversary from those in S by DY (S) ≡ synth(analz (S)).
We also use parts(S) to denote the inductively defined set
of all accessible subterms of terms in S, i.e., the components
of pairs and the cleartexts of encryptions and signatures. We
describe the adversary’s advanced compromising capabilities
in Section 3.6 below.

We partly reuse Paulson’s Isabelle/HOL message the-
ory [19], but we extended it with composed keys and Diffie-
Hellman exponentiation with the equational theory above.

Payload messages. At Level 3, we will implement channel
messages with (symmetric or asymmetric) cryptographic
operations using long-term keys and tags. We call these
keys and the tags implementation material and we require
that the protocol uses them only for this purpose. That is,
the messages carried by the channels at Level 2 must not
contain any implementation material. We call such messages
payload messages. Our refinement proofs from Level 2
to Level 3 rely on the clear distinction between payload
messages and valid implementations of channel messages
(see Section 4.5). To achieve this, we use tags in the channel
message implementations and we impose the restriction that
protocols only accept and store payload messages in their
frames (see Section 3.5). Alternatively, we could require that
the protocol messages at Level 3 are fully decryptable [20]
or well-typed [21], but we prefer our weaker condition here.

3.4. Level 0: Security properties

The protocol-independent models for secrecy and au-
thentication are very simple. The secrecy model s0’s state
consists of two sets of messages: the adversary knowledge,
ik , and the secrets, secret . There are two events: one to add
a non-derivable message M (i.e., M /∈ DY (ik)) as a secret
and one where the adversary learns any message that does
not allow him to derive a secret. The secrecy invariant states
DY (ik) ∩ secret = ∅, i.e., no secret is derivable.

We formulate authentication properties in terms of in-
jective and non-injective agreement. Following standard
practice [22], we formalize them using signals to mark well-
defined stages in a role’s execution. For an agreement of
role A with role B on message M , (instances of) role A
emit commit signals Cmt(A,B,M) to express the claim
that there is a corresponding instance of role B that has
previously emitted a running signal Run(A,B,M). We have
two abstract models, which maintain a multiset of signals,
sigs . The model a0n for non-injective agreement has the

invariant that the existence of a commit signal implies the
existence of a matching running signal. The model a0i for
injective agreement guarantees the stronger invariant that
there are not more commit signals than matching running
signals. In each model, there is a running event, which adds
a running signal to the multiset, and a commit event, which
adds a commit signal guarded by a condition that maintains
the respective invariant.

3.5. Level 1: Guard protocols

We introduce protocol runs, which represent executing
instances of protocol roles. We model these as a function

runs ∈ rid→ (|role ∈ role,
owner ∈ agent ,
partner ∈ agent ,
frame ∈ var ⇀ msg |)

from run identifiers in rid to records containing the role
name (initiator or responder), the names of the owner and its
intended partner, and the frame corresponding to the local
message store. The frame maps variables to messages that are
generated, computed, or received during the run’s execution.

Next, we introduce three notions important for our
development: partner runs, the a-priori guessing of runs,
and the test run. Even though partnering is only used later
at Level 2 to model session key compromise, we introduce
it here to motivate some of our general design decisions.

Partner runs. We want to prove the secrecy of a given
session key under a strong adversary who can compromise
keys established in other sessions. To formalise session key
compromise, we have to identify the partner runs, which
are intended to share a session key. Intuitively, two runs are
partners if they play complementary roles and agree on the
participants and on the exchanged messages. To facilitate
the formal definition of partnering, which we will give in
Section 4.3, we guess the runs’ final states including their
frames in advance and use these for defining partnering.

Guessing. We guess the runs by fixing an arbitrary function
runs instead of making it a state variable. To track each
run’s progress, we use a state variable prog ∈ rid → P(var),
which maps each run identifier to the set of variables
representing its frame’s current domain. We then use guards
in the protocol events to ensure that the actual protocol
execution is consistent with the guessed runs.

We impose some conditions on runs. First, we store the
nonces generated locally by each run R in its frame. These
are of the fixed form R$l, where l is a label. Together R and
l ensure the nonce’s uniqueness. This condition is without
loss of generality and would be proved as an invariant in a
setting with dynamically updated runs. Second, we require
that the frames only store payload messages as discussed in
Section 3.3.



Security properties and test run. Suppose we have a
model where the adversary can unconditionally compromise
certain entities such as private keys or session keys (as in
computational models of authenticated key exchange [1]–[7]).
In such a setting, security properties can then be expressed
as invariants as follows:

ψ ≡ ∀R ∈ rid. clean(R) −→ φ(R).

Here, φ(R) is the actual security property for run R, e.g.,
“The adversary cannot deduce any secret of R”. The predicate
clean(R) restricts the possible compromises to avoid an
overly powerful adversary. For example, neither the private
keys of R’s owner or partner agents nor the session key of
R or its partner runs should be compromised.

In our setting, security properties are proved as invariants
of abstract (Level 0) models and then inherited by the
protocol models at Levels 1-3 through refinement. These
models inherit the variables secret , ik , and sigs from Level 0.
Since the notions of runs and compromise are unknown at
Level 0, these invariants cannot refer to them. We now sketch
in two transformation steps how the property ψ above is
related to our abstract formalization of security properties at
Level 0.

In the first step, we eliminate the quantification over all
runs and the clean predicate from the security property. We
do this by expressing the security property ψ relative to
an arbitrary but fixed run, called the test run. This notion
is standard in computational models and was adapted to
a symbolic model in [8]. Moreover, we model each of
the adversary’s compromising capabilities as a different
event whose guards express the respective restrictions from
clean(test) (see Section 4.3). Hence, we obtain the property

φ(test).

In the second step, we remove the remaining reference
to the test run. We achieve this by restricting the use of the
variables secret and sigs such that, in the resulting model,
the properties are only checked for the (arbitrary) test run. For
secrecy, only the test run can add secrets to secret . Secrecy
then corresponds to our Level 0 model: the adversary cannot
deduce any message in secret .

For authentication, we cannot restrict the signaling to
the test run alone since its partner run must emit the
complementary signal. However, if only these two runs could
emit signals, agreement would hold trivially. Therefore, we
restrict signal emissions to the test owner and its partner agent
and prior to the test run’s end. This ensures that signals are
only emitted by honest (i.e., uncompromised) agents, which
avoids trivial property violations. We will formalize this
as the predicate can_signal in Section 4.2. The resulting
authentication property also matches our Level 0 models.

Our formulation of properties has several advantages.
First, since the properties do not refer to runs or compromises,
they are much simpler and more abstract. Second, this allows
us to inherit Level 0 properties by refinement. Finally, our
formulation is independent of the adversary’s compromising
abilities and enables a modular adversary model.

A B
gx

gy, gx [, Nb, Na]

gx, gy [, Na, Nb]
Kab := (gy)x

Secret(Kab)  
Cmt(A,B,Kab[,Na,Nb])
Run(B,A,Kab[,Na,Nb])

Secret(Kab)
Cmt(B,A,Kab[,Na,Nb])

new y
[new Nb]
Kab := (gx)y 
Run(A,B,Kab[,Na,Nb])

B

B

new x
[new Na] E

Figure 2. Key agreement guard protocols dh1 and dh1n (with nonces)

Security guards and adversary interaction. In order to
authentically exchange and compare values, the runs read
each others’ frames. We achieve this using guards, called
authentication guards, which access another run’s frame
to check the presence of certain values and read others.
Likewise, secrecy guards ensure that messages that we would
like to remain secret cannot be derived by the adversary.

At this level, there is only a loose interaction with
the adversary: unprotected reads non-deterministically yield
arbitrary values and the adversary can learn any message
that does not help him derive a secret claimed by the
protocol. This loose coupling between protocol and adversary
simplifies security proofs at this abstraction level.

Guard protocols, with their memory-reading commu-
nication controlled by such security guards, provide an
abstraction layer that enables a unified view on protocols that
differ on lower levels. For example, all four key agreement
protocols that we develop are derived from the same guard
protocol. Other examples are challenge-response mechanisms
using either authentic or confidential channels, which we
can derive from a single guard protocol [13].

Guard protocol for key agreement. Figure 2 displays the
information exchange between an initiator A and a responder
B in the Level 1 models dh1 and dh1n, who share a public
group generator g. In dh1, the initiator A generates a private
key x and stores it alongside the public key gx in her frame.
Then the responder B generates a nonce y, computes gy,
and stores them in his frame. Then B non-authentically
obtains gx (indicated by the pointing hand), which may
yield an arbitrary value instead. Next, A checks the presence
of gx in B’s frame and reads gy using an authentication
guard (indicated by the picking hand). She then computes
the shared secret as Kab = (gy)x. In the final step, B
authentically reads gx from A’s frame, checks the presence
of gy , and computes Kab as (gx)y . In dh1n, nonces Na and
Nb (bracketed in Figure 2) are also generated and exchanged.

3.6. Level 2: Channel protocols

Here, we introduce channels with security properties. We
have four channel types: insecure, authentic, confidential,
and secure. For informal use, we adopt the notation of [23]
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Figure 3. Key agreement protocol with authentic channels (dh2)

for channels where A sends a message M to B:

A → B : M insecure channel
A •→ B : M authentic channel
A →•B : M confidential channel
A •→•B : M secure channel

A bullet at a channel’s endpoint indicates the respective
agent’s exclusive access to that end. For example, only A
can write into an authentic channel A •→ B, whereas only
B can read from a confidential channel A→• B. A secure
channel is both authentic and confidential. The adversary
can read from non-confidential and write to non-authentic
channels.

We also equip the adversary with various compromising
capabilities. As explained in Section 3.5, we model different
forms of compromise with respect to the test run. Moreover,
the restrictions of some forms of compromise refer to the
test run’s partner runs. Here are the types of compromises
that we model.
Compromise of other agents. The adversary can compro-

mise any agent except the owner of the test run and its
intended communication partner. These are excluded,
since security properties are required to hold only
between honest agents. This models a dynamically
compromising Dolev-Yao adversary.

Compromise of owner. By allowing the adversary to com-
promise the test run’s owner after the test run has
finished, we can strengthen a standard secrecy property
to perfect forward secrecy.

Session key compromise. The adversary can compromise
session keys that belong neither to the test run nor to
any of its partner runs. Showing secrecy in this setting
additionally guarantees key independence.

Similar to [8], we model each adversary capability in a
modular fashion by a single event. This enables us to consider
arbitrary combinations of these capabilities. With the three
events above, we cover the models by Bellare et al. [2], [3],
[5]. We do not cover the models by Canetti and Krawczyk [4],
[6], its extension in [7], or the model in [1], since these allow
the adversary to reveal state, randomness, or the test agent’s
long-term keys. We will discuss the possibility of including
these forms of compromise in Sections 5 and 6. For a more
detailed discussion of the relationship to the computational
models cited above, we refer the reader to [8].

Figure 3 shows the Level 2 model dh2 of our key
agreement case study, which uses authentic channels to

new x
new Na

A B

gx

gy, ⟦0,gx,gy,B,A⟧K

⟦1,gy,gx,A,B⟧K Secret(Kab)
Cmt(B,A,Kab,Na,Nb)

K := h(Na,Nb) 
Kab := (gy)x

Secret(Kab)  
Cmt(A,B,Kab,Na,Nb)
Run(B,A,Kab,Na,Nb)

new y
new Nb
K := h(Na,Nb)
Kab := (gx)y 
Run(A,B,Kab,Na,Nb)

Na

Nb

Figure 4. Key agreement with confidential channels (sk2)

exchange the DH public keys. In the first message, A sends
her public key to B. In the second and third messages, both
public keys are sent on authentic channels from B to A
and from A to B. We use the numbers 0 and 1 as tags to
disambiguate the interpretation of messages. Figure 4 shows
an alternative Level 2 model for key agreement, sk2, which
uses confidential channels to exchange the nonces Na and
Nb and insecure channels to exchange the DH public keys.
The public keys are authenticated in the final two messages
by MACing them using the key K = h(Na,Nb) derived
from the nonces.

Both of these Level 2 models refine the Level 1 model
dh1. In the corresponding refinement proofs, one must show
that the reception of an authentic message (in dh1) or a
MAC (in dh1n) implies the authentication guard in the
corresponding abstract event. This proof obligation, which
we prove as an invariant, precisely captures in a logical form
the property expected from the message.

3.7. Level 3: Cryptographic protocols

At this level, we refine the channel messages into
cryptographic messages. We do this in a parametric way by
stipulating the existence of a function impl that implements
the channel messages, without explicitly defining it. This
function is required to satisfy a number of assumptions
that characterize the different channel properties, that is, the
adversary’s capabilities to read from and write into channels
on Level 2. The main conditions express what the adversary
can learn from these messages and to which extent he can
fake them. To define the refinement mapping, we partition the
Level 3 adversary knowledge and relate different partitions
to the channel messages and to the adversary knowledge at
Level 2 (see Figure 6).

We obtain different instantiations of the channels by pro-
viding a concrete definition of the implementation function
impl using cryptographic operations with long-term keys
to realize the different channels. We must also prove that
the related assumptions hold for the given implementation.
It suffices to do this once. One can thus build a library of
different channel realizations that fit different cryptographic
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Figure 5. Key agreement protocol using asymmetric encryption (sk3asym)

setups. The channel implementations can then be reused in
different contexts. In our development, we provide two such
channel implementations, respectively based on:
asymmetric cryptography where we implement the chan-

nels using public-key encryption and digital signatures;
symmetric cryptography where we implement the chan-

nels using symmetric encryptions and MACs.
The Level 3 models dh3 and sk3 are parametrized by a

channel implementation and so are the refinement mappings
with the respective Level 2 models, dh2 and sk2. The
instantiation of these Level 3 protocols with concrete channel
implementations is thus performed after the refinement proof
and incurs no further proof obligations. In our case study,
we thus obtain symmetric and asymmetric realizations of the
generic protocols dh3 and sk3 (see Figure 1) “for free”.
For instance, the model sk3asym, displayed in Figure 5,
instantiates the generic model sk3 with the asymmetric
channel implementation where confidential channels are
realized by public-key encryption.

4. Development of key agreement protocols

We now present in more detail and formality how we use
our refinement strategy to develop key agreement protocols.
We focus our presentation on the SKEME protocol, depicted
in the right branch of our refinement graph (Figure 1). Note
that our development method is general and systematic at
all levels and can be applied to other case studies.

4.1. Level 0: Security properties

At this level, we define protocol-independent models
of secrecy and authentication, which we use to formalize
security requirements.

Secrecy model. The state of this model consists of two sets
of messages: the set of secrets secret and the adversary
knowledge ik . Both are initially empty.

This model has two events. The secret generation event
gens0(M) marks a message M as a secret by adding it to
secret , provided that it is not already deducible from ik :

gens0(M) = {(s, s′) |
M /∈ DY (s.ik) ∧
s′.secret := s.secret ∪ {M} }.

The adversary event learns0(M) represents the adversary
learning M by adding it to ik , provided that it does not enable
him to deduce a secret.

learns0(M) = {(s, s′) |
s.secret ∩DY (s.ik ∪ {M}) = ∅ ∧
s′.ik := s.ik ∪ {M} }

The secrecy property is then expressed as an invariant
stating that the adversary cannot derive any secret:

s.secret ∩DY (s.ik) = ∅.

Authentication models. We define two authentication mod-
els: a0n for non-injective and a0i for injective agreement.
These models and the related properties are based on signals,
which are emitted by the protocol events at lower levels.
These are defined as follows:

signal ≡ Cmt(agent, agent,msg)

| Run(agent, agent,msg).

The commit signal Cmt(A,B,M) represents the claim that
agent A runs a session of the protocol with B, and expects
that B is also running a session with A and that they agree
on the data M . The complementary signal Run(A,B,M)
simply represents the statement that agent B believes he is
running a session of the protocol with agent A and knows
some data M .

The state of both authentication models consists of a
single field sigs , which is a multiset of signals:

Σa0(i,n) ≡ (| sigs ∈ multiset(signal) |).
The agreement guarantee for A can be non-injective, i.e.

A knows that B is running at least one session with data
M , or injective, i.e. A knows that B is running at least as
many sessions as her with this data. We formalize injective
agreement as the following invariant. For all A, B, and M :

s.sigs(Cmt(A,B,M)) ≤ s.sigs(Run(A,B,M)).

This means that there is an injection from Cmt(A,B,M)
to Run(A,B,M) signals. In the non-injective case, we only
require that the existence of a commit signal implies the
existence of the matching running signal.

There are two events, one for emitting each type of signal.
The running(A,B,M) event adds a Run(A,B,M) signal
to the multiset. It is identical in both a0n and a0i.

runninga0(i,n)(A,B,M) ≡ {(s, s′) |
s′.sigs := s.sigs ] {Run(A,B,M)} }

The commit(A,B,M) event adds a Cmt(A,B,M) sig-
nal to the multiset. This event differs in the two models. The
version for injective agreement is

commita0i(A,B,M) ≡ {(s, s′) |
s.sigs(Cmt(A,B,M)) < s.sigs(Run(A,B,M)) ∧
s′.sigs := s.sigs ] {Cmt(A,B,M)} }.

The guard ensures that the invariant is preserved. In the
non-injective version of this event, the guard accordingly
only requires the existence of a running signal.



4.2. Level 1: Guard protocols

At this level, we introduce the notion of protocol runs.
As explained in Section 3.5, each run has a role, an owner
agent, a partner agent, and a frame. The runs communicate
by reading values directly from each other’s memory without
using an intermediate communication channel.

In our case study, we have two models at Level 1: dh1
for the basic exchange of the DH public keys and dh1n
where nonces are added (Figure 2). Here, we will describe
the model dh1n.

State and events. As explained in Section 3.5, the state of
both Level 1 models is

Σdh1n ≡ Σs0+(|sigs Init ∈ multiset(signal),

sigsResp ∈ multiset(signal),

prog ∈ rid→ P(var)|).

It consists of (1) the message sets ik and secret , inherited
from the secrecy model s0; (2) two multisets sigs Init and
sigsResp, inherited from the two refinements of the agreement
model a0i, one for showing that the initiator authenticates the
responder and the other one vice versa; and (3) the mapping
prog from run identifiers to sets of variables representing
each run’s current domain. There are two kinds of events:
the protocol events and the adversary’s learn event, which
is identical to the learn event of the model s0.

As explained in Section 3.5, we restrict signal emission
to the test run’s owner and its partner agent and it must
occur before the test run’s end. We define this condition as

can_signal(s,A,B) ≡ end /∈ s.prog(test) ∧
{A,B} = {runs(test).owner, runs(test).partner}.

Here, end is a frame variable that marks the end of a run’s
execution. We use typewriter font for frame variables.

As an example, we describe in detail the formal definition
of the event for Step 3. This example illustrates the general
form of a Level 1 protocol step.

step3 dh1n(Ra, A,B, σ,GY,Nb) = {(s, s′) |
- - fix run Ra’s role, agents, frame, and progress
runs(Ra) = (| Init, A,B, σ |) ∧
s.prog(Ra) = {nx, gx, na} ∧
- - check consistency with σ

σ(gy) = GY ∧ σ(nb) = Nb ∧ σ(kab) = GY σ(nx) ∧
- - authentication guard
authentication_guard(s,Ra, A,B, σ,Nb, GY ) ∧
- - secrecy guard
(Ra = test −→ σ(kab) /∈ DY (s.ik)) ∧
- - update the run’s progress, secrets, and signals
s′.prog(Ra) := s.prog(Ra) ∪ {gy, nb, kab, end}) ∧
s′.secret := s.secret ∪ {σ(kab) | Ra = test} ∧

s′.sigs Init := s.sigs Init ]
{Cmt(A,B, 〈σ(na),Nb, σ(kab)〉) |
can_signal(s,A,B)} ∧

s′.sigsResp := s.sigsResp ] . . . }

The event’s first guard fixes the role, Init, the names of
the owner and partner agents, A and B, and the frame σ
of the run Ra executing the step. The second guard checks
that the run is ready to execute Step 3 by requiring that the
current domain of its frame contains the variables bound in
Step 1, where Ra generated the following terms:

σ = {nx 7→ Ra$nx, gx 7→ gRa$nx, na 7→ Ra$na}.

The next three guards bind the parameters GY and Nb to the
variables gy and nb in the guessed frame σ and check that
the variable kab indeed maps to the computed DH session
key GY σ(nx). Next is the authentication guard:

authentication_guard(s,Ra, A,B, σ,GY,Nb) ≡
can_signal(s,A,B) −→ (∃Rb, σ′.

runs(Rb) = (| Resp, B,A, σ′ |) ∧
{ny, gx, gy, na, nb, kab} ⊆ s.prog(Rb) ∧
σ′(gx) = σ(gx) ∧ σ′(na) = σ(na) ∧ - - check
σ′(gy) = GY ∧ σ′(nb) = Nb) - - read

Provided the can_signal condition holds, this guard ensures
that there exists a responder run Rb owned by B with
partner A that has progressed far enough and has the required
values in its frame σ′. In particular, this guard authentically
reads the values GY and Nb from σ′ and ensures an
agreement with Ra’s frame σ on the variables gx and na.
Note that this suffices to establish the required agreement
on the session key kab, i.e., property P2 from Section 3.2.

In case a message is read unauthentically, as for instance
in Step 2, there is no authentication guard and the message
that is read is completely unconstrained. This corresponds
in lower levels to the fact that the message could have been
faked by the adversary. However at this level of abstraction,
the message that is actually read has no relation to the
adversary or the adversary knowledge.

The final guard is the secrecy guard. This ensures for
the test run that the adversary does not know the session
key σ(kab), thus safeguarding its declaration as a secret.

Ra = test −→ σ(kab) /∈ DY (s.ik)

Finally, we specify the event’s actions. First, the run Ra’s
progress is updated to reflect the new messages learnt in
this step. Note that the corresponding messages need not be
recorded as they are already in the guessed frame σ. Since the
authenticity of the other run’s public key GY and the secrecy
of the computed DH key σ(kab) = GY σ(nx) are guaranteed
by the security guards, the secret set is updated with σ(kab),
provided Ra is the test run. The signal multiset sigs Init is
updated with a commit signal for an agreement of the initiator
A with the responder B on the nonces Ra$na and Nb and on
the session key σ(kab), provided the can_signal(s,A,B)



condition holds, and similarly for sigsResp (where we omit the
added running signal). Note that can_signal is a condition
for both these updates and the authentication guard and,
similarly, the update of secret and the secrecy guard are
both conditioned on Ra being the test run.

By convention, our protocol events only use the variables
secret and sigs as history variables, i.e., to record messages
or signals without referring to them in their guards. Hence,
these variables do not influence the protocol’s execution,
which makes them suitable to express protocol properties.
The variable secret is however used in the guard of the
adversary’s learn event at Level 1.

Refinements. As mentioned above, we have two models at
Level 1, dh1 and dh1n, and several refinement relationships
(see Figure 1). The model dh1n refines dh1 by adding nonces
to the exchanged DH public keys. This refinement is easy
to prove: the refinement mapping π11 simply removes the
nonces from the dh1n frames to obtain the dh1 frames. The
other fields remain the same.

Next, we show that dh1 refines s0. Then, by transitivity,
dh1n also refines s0. The refinement with the Level 0 secrecy
model is easily proved. The sets ik and secret at Level 1 are
identical to their counterparts in s0, whereas the other state
variables, prog and sigs , have no counterpart. Hence, the
refinement mapping is defined as πs01 ≡ π{secret,ik}. The
protocol events that compute the session key K and mark
it as a secret refine gens0(K), whereas the others refine the
identity event skips0. This is easy to show since the secrecy
guard in the events that declare secrets at Level 1 directly
corresponds to gens0(K)’s guard in s0. The adversary event
learn is identical to its Level 0 counterpart and thus trivially
refines it. The following result establishes the secrecy of the
session key for each role, i.e., property P1 from Section 3.2.

Proposition 4.1. dh1n vπ11
dh1 vπs01

s0.

The refinement proofs of the agreement model a0i are
slightly more involved. We establish two refinements between
dh1 and a0i and two between dh1n and a0i. In dh1 the
agreement is only on the DH key, while in dh1n it is extended
to the two nonces. These stronger properties for dh1n cannot
be inherited and require separate refinements of a0i.

These four refinement proofs (two for each model) are
very similar. We focus here on the agreement of the initiator
with the responder on the session key in dh1. In this case,
only the sigs Init multiset is kept, while the variables ik ,
secret , sigsResp, and prog disappear in the refinement. The
learn event, as well as every protocol event that does not emit
any signal, refine skip. Suppose σ and σ′ respectively are
the initiator and responder’s frame. The responder’s step2
event emits the signal Run(A,B, σ′(kab)) and hence refines
runninga0i(A,B, σ

′(kab)), while the initiator’s step3 emits
Cmt(A,B, σ(kab)) and refines commita0i(A,B, σ(kab)).
For the latter refinement, we must establish the corresponding
guard strengthening proof obligation with the conclusion

sigs(Cmt(A,B, σ(kab))) < sigs(Run(A,B, σ(kab))).

We do this by proving invariants of the Level 1 model.
One invariant states that the guarantees about the responder
run Rb in the conclusion of the authentication guard implies
that Rb has emitted its Run(A,B, σ′(kab)) signal. Another
invariant implies that in the starting state of Step 3, there
is no Cmt(A,B, σ(kab)) signal, while there is at least one
matching running signal. This proves guard strengthening
for Step 3. The following proposition establishes mutual
injective agreement on the roles, agent identities, and the
session key, i.e., property P2 from Section 3.2.

Proposition 4.2. Let I Initdh1, IRespdh1 , I Initdh1n, and IRespdh1n be the
intersections of the invariants for each of the four refinements.
Then, for all p ∈ {dh1, dh1n} and r ∈ {Init,Resp}, we have

p vI
r
p
πsigsr

a0i

In general, although we must prove the stated invariants
for each protocol and agreement guarantee, their formulation
is canonical and their proofs are similar.

4.3. Level 2: Channel protocols

We add communication channels between agents: rather
than reading each other’s memory, they now exchange
messages over channels with intrinsic security properties.

Channel messages and basic adversary capabilities.
We define a type chan of channel messages representing
messages on different types communication channels.

tag ≡ insec | confid | auth | secure

chan ≡ Chan(tag, agent , agent ,msg)

A channel message Chan(c, A,B,M) denotes a payload
message M being sent from A to B on a channel of type c.
We abbreviate Chan(insec, A,B,M) by Insec(A,B,M)
and likewise for Confid(A,B,M), Auth(A,B,M), and
Secure(A,B,M). We now define the adversary’s capabilities
to eavesdrop payload messages on channels and to fake both
payload and channel messages.

The adversary can eavesdrop payload messages on
insecure and authentic (i.e., non-confidential) channels as
well as on channels where the agent at either endpoint is
compromised. We formalize this capability as a closure
operator, extr(bad, ik , chan), denoting the set of extractable
(payload) messages given a set bad of compromised agents,
a set ik of payload messages representing the adversary
knowledge, and a set chan of channel messages. We define
extr using two rules. The first rule states that the adversary
knowledge ik is included in the set of extractable messages
and the second one is as follows:

Chan(c, A,B,M) ∈ chan
c ∈ {insec, auth}
∨A ∈ bad ∨B ∈ bad

M ∈ extr(bad , ik , chan)

Next, we define the set of fakeable payload messages as
the Dolev-Yao closure of the extractable messages.

dy_fake_msg(bad , ik , chan) ≡ DY (extr(bad , ik , chan))



Finally, we specify the set of fakeable channel messages.
We define a closure operator fake(bad, ik , chan) using two
rules. One expresses that the set chan is included in the
set of fakeable messages and the other states that the
adversary can fake insecure and confidential (i.e., non-
authentic) channel messages as well as messages on channels
with a compromised agent at one endpoint. The latter rule
is formalized as

M ∈ ik c ∈ {insec, confid} ∨A ∈ bad ∨B ∈ bad
Chan(c, A,B,M) ∈ fake(bad , ik , chan) .

This definition ignores that the message M could itself
be faked. We therefore define the set of fakeable channel
messages using dy_fake_msg as

dy_fake_chan(bad , ik , chan) ≡
fake(bad , dy_fake_msg(bad , ik , chan), chan).

Note that if either of the agents A and B is compromised
the adversary can eavesdrop and fake messages between these
agents. This may appear strange at first, since in some cases
it may result in a more powerful adversary than necessary,
for instance, if the channels are later implemented by public-
key cryptography. Indeed, the message {A,M}pub(B) could
implement Confid(A,B,M), but it cannot be decrypted if
only A is compromised. However, this would not hold if M
was symmetrically encrypted. We choose to model channels
in a symmetric manner with respect to the two agents to
enable refinements of the same Level 2 model by Level 3
models using either symmetric or asymmetric cryptography.

State and protocol events. The Level 2 state extends the
Level 1 state with two variables: a variable chan storing a
set of channel messages and a variable bad holding the set
of compromised agents.

Σsk2 ≡ Σdh1n + (| bad ∈ P(agent), chan ∈ P(chan) |)

At this level, the runs communicate by writing and
reading channel messages to and from the channel variable
chan instead of reading from each other’s frame. We focus
our discussion again on Step 3.

step3sk2(Ra, A,B, σ,GY,Nb) ≡ {(s, s′) |
- - fix run Ra’s role, agents, frame, and progress
runs(Ra) = (| Init, A,B, σ |) ∧
s.prog(Ra) = {nx, gx, na} ∧
σ(gy) = GY ∧ σ(nb) = Nb ∧ σ(kab) = GY σ(nx) ∧
- - receive channel messages
Confid(B,A,Nb) ∈ s.chan ∧
Insec(B,A, 〈GY, [[0, σ(gx), GY,B,A]]h(σ(na),Nb)〉)
∈ s.chan ∧

- - actions:
s′.chan := s.chan ∪

{Insec(A,B, [[1, GY, σ(gx), A,B]]h(σ(na),Nb))} ∧
. . . (unchanged actions omitted) . . . }

Here, the authentication and secrecy guards from the Level 1
model have been replaced by the reception of the confidential
message containing Nb and the insecure message containing
〈GY, [[0, σ(gx), GY,B,A]]h(σ(na),Nb)〉. We prove the associ-
ated guard strengthening as an invariant that we will discuss
later in this section. This event sends the insecure message
Insec(A,B, [[1, GY, σ(gx), A,B]]h(σ(na),Nb)) as a response.
We elide the remaining actions since they are identical to
those in the model dh1n.

Adversary events. At this level, we explicitly model the
adversary’s capabilities to fake messages and to compromise
different entities. First, he can fake both payload and channel
messages. We therefore define two events using the closure
operators defined at the beginning of this section.

dy_fake_msg sk2(M) ≡ {(s, s′) |
M ∈ dy_fake_msg(s.bad , s.ik , s.chan) ∧
s′.ik := s.ik ∪ {M} }

dy_fake_chansk2(m) ≡ {(s, s′) |
m ∈ dy_fake_chan(s.bad , s.ik , s.chan) ∧
s′.chan := s.chan ∪ {m} }

Second, the adversary can compromise agents and session
keys. The following event models the compromise of an agent
other than the test run’s owner or its partner. This models
Dolev-Yao-style (dynamic) agent compromise and allows the
adversary to participate in protocol runs by impersonating
any of the compromised agents.

lkr_otherssk2(A) ≡ {(s, s′) |
A /∈ {runs(test).owner , runs(test).partner} ∧
s′.bad := s.bad ∪ {A} }

We also model two adversary events that go beyond a
standard Dolev-Yao model. The following event models the
compromise of any agent, including the test run’s owner
or partner, after the test run has ended. The presence of
this adversary event strengthens secrecy to perfect forward
secrecy.

lkr_after sk2(A) ≡ {(s, s′) |
end ∈ s.prog(test) ∧ - - test run ended
s′.bad := s.bad ∪ {A} }

The final adversary event allows the adversary to com-
promise a run and steal its session key. To avoid trivially
breaking the secrecy of the test run’s session key, we must
exclude the test run as well as any potential partner runs
(with whom it may share this key) from this compromise.

skr sk2(R,K) ≡ {(s, s′) |
R 6= test ∧R /∈ partner_runs(test) ∧
kab ∈ s.prog(R) ∧ runs(R).frame(kab) = K ∧
s′.ik := s.ik ∪ {K} }

Showing secrecy in the presence of this event establishes
key independence.



Level 2 Level 1
protocol event (sk2) protocol event (dh1n)
dy_fake_msgsk2(M) learndh1n(M)
dy_fake_chansk2(m) skipdh1n
lkr_otherssk2(A) skipdh1n
lkr_after sk2(A) skipdh1n
skr sk2(R,K) learndh1n(K)

Table 1. REFINEMENT BETWEEN THE LEVEL 1 AND 2 EVENTS

What remains is to precisely define the notion of part-
nering. Following the discussion in Section 3.6, we define
the set of partner runs of a run R as follows:

matching(σ, σ′) ≡
∀x ∈ dom(σ) ∩ dom(σ′). σ(x) = σ′(x)

partner_runs(R) ≡ {R′ |
runs(R).role = compl_role(runs(R′).role) ∧
runs(R).owner = runs(R′).partner ∧
runs(R).partner = runs(R′).owner ∧
matching(runs(R).frame, runs(R′).frame) }

The run R and a partner run R′ must play complementary
roles (function compl_role) and agree on their respective
partners. Furthermore, the frames of R and R′ must match on
common variables, i.e., those in the domain of both frames.

Invariants and refinement. The refinement mapping be-
tween the Level 2 and Level 1 state is π12 ≡ πF , where F is
the set of all fields of dh1n. Table 1 describes how events are
refined. Each protocol event refines its Level 1 counterpart.
The dy_fake_msg sk2 and skr sk2 events add messages to
ik sk2, and therefore refine learndh1n. All other adversary
events only change the channel (dy_fake_chansk2) or the
bad sk2 set (long-term key reveal events), which both have
no Level 1 counterpart. Hence, these events refine skipdh1n.

We have proved several invariants for the model sk2. Two
of these are needed to discharge the authentication guard
strengthening proof obligations in the refinement proofs of
Steps 3 and 4. For Step 3, this proof obligation is

runs(Ra) = (| Init, A,B, σ |) ∧
. . . (other guards of step3sk2 omitted) . . .
Insec(B,A, 〈GY, [[0, σ(gx), GY,B,A]]h(σ(na),Nb)〉)
∈ s.chan ∧

can_signal(s,A,B) −→
(∃Rb, σ′. runs(Rb) = (|Resp, B,A, σ′|) ∧
{ny, gx, gy, na, nb, kab} ⊆ s.prog(Rb) ∧
σ′(gx) = σ(gx) ∧ σ′(na) = σ(na) ∧
σ′(gy) = GY ∧ σ′(nb) = Nb),

where all variables are implicitly universally quantified.
This implication is implied by the following invariant:

inv4 sk2 ≡ {s. | ∀Ra, A,B, σ,GY,Nb.

runs(Ra) = (| Init, A,B, σ |) ∧ {A,B} ∩ s.bad = ∅ ∧

payload
(= iksk2)

valid
(= chansk2)

mat
(-)

other
(-)

iksk3

Figure 6. Partition of L3 adversary knowledge and refinement of L2 state

[[0, σ(gx), GY,B,A]]h(σ(na),Nb)

∈ parts(extr(s.bad , s.ik , s.chan)) −→
(∃Rb, σ′. runs(Rb) = (|Resp, B,A, σ′|) ∧
{ny, gx, gy, na, nb, kab} ⊆ s.prog(Rb) ∧
σ′(gx) = σ(gx) ∧ σ′(na) = σ(na) ∧
σ′(gy) = GY ∧ σ′(nb) = Nb) }.

In this invariant, we have weakened two premises of the guard
strengthening proof obligation to enable its inductive proof.
Namely, the premise [[0, σ(gx), GY,B,A]]h(σ(na),Nb)∈
parts(extr(s.bad , s.ik , s.chan)) replaces the premise
Insec(B,A, 〈GY, [[0, σ(gx), GY,B,A]]h(σ(na),Nb)〉)∈s.chan
and the premise {A,B} ∩ bad = ∅ replaces the condition
can_signal(s,A,B). We establish that can_signal(s,A,B)
implies {A,B} ∩ bad = ∅ as an auxiliary invariant.

Proposition 4.3. Let Isk2 be the intersection of the invariants
of sk2. Then sk2 vIsk2π12

dh1n.

4.4. Parametric channel implementation

We parametrize our Level 3 models with an implementa-
tion function impl : chan → msg mapping channel messages
to cryptographic messages. We formulate a set of assumptions
on impl that reflects the channel security properties that a
concrete implementation must realize. The refinement of the
Level 2 models will rely on these properties and thus holds
for any compliant implementation function.

To aid subsequent refinement proofs, we partition the set
of messages as illustrated in Figure 6:

1) the implementation material mat ≡ tag∪ ltk consisting
of tags and long-term keys,

2) the set of payload messages,

payload ≡ {M | ∀ subterms M ′ of M . M ′ /∈ mat},

3) the set of valid implementations,

valid ≡ {impl(Chan(c, A,B,M)) |M ∈ payload},

4) and all other messages, other .
We call core ≡ payload ∪ valid ∪mat the core messages.
The messages in other can be seen as intermediate products
arising in the construction of valid implementations: they
contain implementation material but are not valid implemen-
tations themselves. We also define the following relation on
agents:

broken(H) ≡ {(A,B) | keys(A,B) ∩H 6= ∅},



where keys(A,B) = {pri(A), pri(B), shr(A,B), shr(B,A)}
are the secret long-term keys for implementing channels
between A and B.

We distinguish three types of assumptions. The basic
assumptions separate the implementation messages from
each other and from payload messages. The analyze and
synthesize assumptions ensure that the Level 3 adversary is
not stronger than the one at Level 2. Together they enable
us to prove that the other messages (which have no Level 2
counterpart) are derivable from the core messages alone.

Basic assumptions. We assume the following basic proper-
ties of impl . For all m,m′ ∈ chan and M ∈ msg ,

1) impl is injective,
2) if impl(m) ∈ valid and impl(m′) ∈ parts(impl(m))

then m′ = m,
3) impl(m) is neither atomic nor in payload , and
4) if M ∈ valid then parts(M) ∩ ltk = ∅.

By the first two assumption, implementations of different
channel messages are different and implementations must
not be nested. The third property allows us to distinguish
payload messages from implementations and the fourth
avoids implementations that (potentially) expose long-term
keys to the adversary.

Analyze assumptions. These assumptions bound what an
adversary can extract from the implementation of channel
messages. The first assumption states that a payload message
extracted from a set of valid implementations can be derived
from their payloads. For confidential messages, we have:

G ⊆ payload ∧H ⊆ core −→
analz (impl(Confid(agent × agent , G)) ∪H)

⊆ DY (G ∪H) ∪ payload ,

where Confid(Ag,G) ≡ {Confid(A,B,M) | (A,B) ∈ Ag∧
M ∈ G} for Ag ⊆ agent × agent and G ⊆ msg and the X
denotes the complement of the set X .

In addition, no payload message can be extracted from
confidential or secure messages without knowing the relevant
long-term keys.1

G ⊆ payload ∧H ⊆ core ∧Ag ∩ broken(H) = ∅ −→
analz (impl(Confid(Ag,G)) ∪H) ⊆ DY (H) ∪ payload

No such assumption is needed for non-confidential messages.

Synthesize assumptions. These assumptions express that
if the adversary can construct the implementation I of a
channel message with payload M from a set H of core
messages then, unless I is already in H , he must also be
able to construct M and know the required long-term keys
of A and B. For example, for secure messages:

impl(Secure(A,B,M)) ∈ DY (H) ∧H ⊆ core −→
impl(Secure(A,B,M)) ∈ H ∨
(M ∈ DY (H) ∧ (A,B) ∈ broken(H)).

1. To simplify our presentation, this condition has a slightly stronger
assumption than in our formalization.

The conjunct (A,B) ∈ broken(H) is not needed for non-
authentic messages.

Instantiation. We provide two concrete implementation func-
tions: one using symmetric encryption and MACs, and one
using asymmetric encryption and signatures. For example,
we define the asymmetric implementation as follows:

implasym(Insec(A,B,M)) = 〈insec, A,B,M〉
implasym(Confid(A,B,M)) = {A,M}pub(B)

implasym(Auth(A,B,M)) = [B,M ]pri(A)

implasym(Secure(A,B,M)) = [{secure, A,M}pub(B)]pri(A)

Note that we use tags and agent identities in messages to
fulfill the requirement that the implementation function is
injective and that implementations cannot be nested.

We prove that the given implementations satisfy the
assumptions. This must be done only once. In this way,
one can build a library of implementations for different
cryptographic setups. We can then instantiate any parametric
Level 3 protocol with these implementations and establish, for
free, that the protocol satisfies the desired security properties.

4.5. Level 3: Cryptographic protocols

At Level 3, we implement channel messages by cryp-
tographic ones. Our Level 3 models and the refinement
proofs are parametric in such an implementation and depend
on a set of assumptions. We then define two different
concrete implementations and show that they satisfy the
assumptions. This allows us to instantiate the parametrized
Level 3 protocols into concrete ones.

State and events. The Level 3 state is similar to the Level 2
state, but does not include the channel messages since, in
the Dolev-Yao model, all communication goes through the
adversary.

Σsk3 ≡ Σdh1n + (| bad ∈ P(agent) |).

We derive the Level 3 protocol events from those at Level 2
by simply replacing each channel message m by its imple-
mentation impl(m) and references to chan by ik .

We replace the adversary events dy_fake_msg and
dy_fake_chan from Level 2 by the following standard Dolev-
Yao adversary event:

dy sk3(M) ≡ {(s, s′) |
M ∈ DY (s.ik) ∧ s′.ik := s.ik ∪ {M} }.

The compromise events at Level 3 are similar to those
on Level 2, but aside from adding the compromised agent to
the set bad , they also add its long-term keys to the adversary
knowledge ik .

Invariants and refinement. We show that the parametrized
model sk3(impl) refines sk2. Each protocol and compromise
event refines its Level 2 counterpart. The situation is more
involved for the Dolev-Yao event dy sk3(M) and the variable
ik sk3. Since the Level 2 adversary does not know any



Level 3 Level 2
protocol event (sk3) protocol event (sk2)
compromise event (sk3) compromise event (sk2)
dysk3(M) if M ∈ payload dy_fake_msgsk2(M)
dysk3(M) if M ∈ valid dy_fake_chansk2(impl−1(M))
dysk3(M) if M ∈ mat skip (M was already in ik sk3)
dysk3(M) if M ∈ other skip (other disappears at Level 2)

Table 2. REFINEMENT BETWEEN THE LEVEL 2 AND LEVEL 3 EVENTS

implementation material, we relate the payload messages in
ik sk3 to those in ik sk2 and the valid implementations to the
channel messages in chansk2. This leads to the partitioning
of ik sk3 and the refinement mapping π23 depicted in Figure 6.
Formally, for a concrete state s, we have:

π23(s).chan = impl−1(s.ik ∩ valid)

π23(s).ik = s.ik ∩ payload .

All other fields shared with sk2 remain unchanged. The
implementation material, mat , and the other messages have
no Level 2 counterpart. The event dy sk3(M) then refines
different Level 2 events, depending on which partition M is
in (see Table 2).

We prove several invariants for this refinement of which
we discuss the three main ones. The first main invariant
relates the variable bad to the long-term keys in ik . It states
that the adversary knows all public keys and at most the
compromised agents’ private and shared keys.

For the refinement to work, we must avoid strengthening
the adversary compared to his Level 2 colleague. Hence, the
second main invariant expresses that the messages in other
are deducible from the core messages in ik sk3:

inv3 sk3 ≡ {s | analz (s.ik) ⊆ DY (s.ik ∩ core)}.

Here, the restriction formulated in Section 3.3, that frames
only store payload messages, comes into play. This invariant
holds only if the protocol events always send valid imple-
mentations. Since received messages may be faked by the
adversary, non-payload elements may get into the frames
and hence the sent messages. The restriction prevents this.

The final main invariant helps proving the guard strength-
ening obligation for the event dysk3(M) if M ∈ payload . It
states that any payload message derivable by the adversary is
also in dy_fake_msg(s.bad, s.ik ∩ payload , impl−1(s.ik)).

While these invariants must be proved for every protocol,
they are canonical and their proofs are very similar. Let Isk3
be the intersection of all these invariants.

Proposition 4.4. Let H denote the assumptions on the
implementation function described in Section 4.4. Let π23
be the refinement mapping described above. Then, for all
impl such that H(impl),

sk3(impl) vIsk3(impl)
π23(impl) sk2.

By instantiating the model sk3 with the asymmetric
channel implementation, we obtain a variant of the SKEME
protocol (Figure 5) and the corresponding refinement of sk2.

theories defs lemmas lines CPU time
Infrastructure 15 theories 65 660 5815 1 min 23 sec
Level 1 dh1, dh1n 44 117 1832 1 min 22 sec
Diffie-Hellman dh2, dh3 56 137 2140 1 min 43 sec
SKEME/IKEv1 sk2, sk3 58 146 2548 4 min 41 sec
Total 25 theories 223 1283 12335 9 min 08 sec

Table 3. SPECIFICATION AND PROOF STATISTICS

4.6. Development statistics and discussion

Table 3 contains some statistics on our development,
divided into four groups of theories. The first group in-
cludes our infrastructure theories for refinement and protocol
modeling, including our Level 0 models. The other groups
consist of the two theories indicated and the Level 3
instantiations. For each of these, we list the number of
definitions and lemmas, the number of lines of the theory
files, and the CPU time required to proof-check these theories.
The measurements were made on a 2.6 GHz Intel Core i7
laptop with 8 GB RAM running Isabelle/HOL 2016-1.

Our development method proceeds stepwise and sys-
tematically across all four levels, whereby global security
properties are first mapped to security guards on the ex-
changed information before being cast into actual network
messages. We therefore provide a sizable infrastructure
(cf. Table 3), which can be applied to other case studies.
The state records and adversary events at all levels are
also reusable. The protocol events follow a clear structure
and only their concrete definitions depend on the protocol
being modeled. The refinement mappings are simple and the
required invariants are largely canonical, with similar proofs
for different protocols. The resulting protocols are correct
by construction.

5. Related work

There have been other proposals for developing se-
curity protocols by refinement using formalisms such as
the B method [24], its combination with CSP [25], I/O
automata [26], and abstract state machines (ASMs) [27].
None of these continue their refinements to the level of
a full Dolev-Yao adversary. Either they only consider an
adversary that is passive [26], defined ad-hoc [25], [27], or
similar to our Level 2 adversary [24]. We previously proposed
a systematic development method based on the four-level
refinement strategy that we use in this paper [13], [14]. This
prior work modeled a standard Dolev-Yao adversary, but not
the advanced capabilities we consider here. Including these
capabilities together with the possibility to model composed
secrets and Diffie-Hellman key agreement required a major
redesign of our framework.

Our advanced adversary model is based on the work of
Basin and Cremers [8], [9]. They use the Scyther tool, which
efficiently finds attacks, but for verification they sometimes
had to bound the number of runs in their case studies. Our
approach using theorem proving always guarantees security
properties for the unbounded case. They consider additional
forms of compromise such as the compromise of the test



run’s owner to prove resilience against key compromise
impersonation (KCI) [1] and randomness and state reveal
used in some computational models [4], [6], [7]. While
we could add these to our model, not all of them would be
meaningful in our current framework. In particular, resilience
against KCI typically requires asymmetric cryptography.
However, our Level 2 channels are designed to enable both
symmetric and asymmetric implementations, which prevents
achieving resilience against KCI at Level 2. Supporting this
would require a separation of symmetric/bidirectional and
asymmetric/unidirectional channels.

A number of works have considered channels with secu-
rity properties and their cryptographic implementations [20],
[21], [28]–[30]. Bugliesi and Modesti [28] propose an
Alice&Bob language extended with various forms of channels
and a translation to standard Alice&Bob notation without
channel abstractions. In [20], [21], the authors present two
protocol models, an idealized one using channels (called
ICM) and a cryptographic one (called CCM), where the
channels are implemented using asymmetric cryptography,
and prove that they simulate each other. However, the
ICM simulates the CCM only under the assumption that
messages can be fully decrypted [20] or that protocol are
typable [21]. Our refinements proofs between Levels 2 and 3
use the weaker assumption that frames only contain payload
messages (i.e., no implementation material) and they are
decoupled from the concrete channel implementations by
only relying on our assumptions from Section 4.4.

The works [20], [29], [30] present compositionality
results for multi-layered protocols, where an abstract appli-
cation protocol relying on a channel with security properties
must remain secure when instantiated with an entire lower-
level protocol providing a secure implementation of that
channel. Their soundness conditions ensure that there is no
interference between the application protocol and the protocol
implementing the channel and enables the independent
verification of these two protocols. In contrast, we work
in a simpler setup where each channel type is implemented
by a single message. Accordingly, our assumptions on such
implementations suffice to guarantee the desired channel
properties at Level 3 and we can statically verify that concrete
channel implementations satisfy these assumptions, without
the need to consider protocol behaviors.

Abadi et al. [31] define a high-level process language
with constructs for secure channels and compile it into a
low-level language with cryptographic messages. They show
a full abstraction result for their translation.

Datta et al. [32] use protocol templates with messages
containing function variables to specify and prove properties
of protocol classes. Refinement here means instantiating
function variables and discharging the associated assumptions.
Pavlovic et al. [33], [34] similarly refine protocols by
transforming messages and propose specialized formalisms
for establishing secrecy and authentication properties. While
the instantiation and discharge of assumption is similar
to our treatment of parametric channel implementations,
their refinements do not involve fundamental changes of the
abstraction level since one instantiates abstract operations

on messages (at Level 3).

6. Conclusions

We have presented a protocol refinement framework
that enables the development of key agreement protocols in
the presence of a strong adversary. This required a major
redesign and extension of our previous framework [13], [14],
in particular, to handle composed secrets, Diffie-Hellman
key agreement, and the strong adversaries.

There are some limitations in our framework that we
would like to address in future work. As discussed in
Section 5, additional forms of compromise could also be
covered. However, in some of the related adversary models,
only protocols using more complex equational theories,
e.g., with a group structure in the DH exponents, achieve
security. Such equational theories would likely result in
substantially more complex security proofs. One could
possibly alleviate this problem by formalizing unification
algorithms for decidable theories or by connecting Isabelle
with external unification tools for such theories. Moreover,
our current implementations of channel messages cannot use
fresh nonces. These are useful, for instance, to construct
a channel implementation using probabilistic or hybrid
encryption or to build replay protection directly into the
channels.
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