
Learning Tree Languages from Positive Exam-

ples and Membership Queries

Jérôme Besombes a,b Jean-Yves Marion b,c

a France Telecom R&D
2 avenue Pierre Marzin
22300 Lannion

b LORIA
615, rue du jardin botanique
54602 Villers-lès-Nancy, France

c INPL-Ecole Nationale Supérieure des Mines de Nancy
Parc de Saurupt,
54042 Nancy CEDEX, France

Jerome.Besombes@rd.francetelecom.com, Jean-Yves.Marion@loria.fr

1 Introduction

1.1 Some linguistic motivations

One of the most astonishing discovery of Chomsky [13] is the
universal grammar which is a model of how human language
works. The universal grammar is an innate combinatorial system
from which every language, French, English, Japanese, can be de-
rived. What is the implication of Chomsky’s universal grammar
for grammatical inference? We think it gives a strong intuition
for the mathematical modeling of language learning. Before go-
ing further, let us focus on the linguistic aspect of the language
acquisition processes.

Recent works of psycho-linguists like Pinker [27] or Christophe [14]

1



advocate that the universal grammar plays the role of a learning
device for children. A child is able to determine whether or not a
sentence is grammatically correct, even if (s)he does not know the
meaning of each word. Of course, semantics speed up the learning
process, but they are not necessary. And, it is fascinating to see
that a child needs only few pieces of information in order to learn
a language (poverty-of-stimulus hypothesis [13]).

Another important feature is our capacity to guess mental tree
structured representations of phrases. How a child is able to do
that is beyond the scope of this paper. However the child language
acquisition process is not based on the construction of a huge
finite automaton with probabilistic transitions, because there is
an infinity of valid sentences and so he cannot learn it. On the
other hand, we have the ability to generate an infinite number of
sentences.

To sum up this brief discussion, we take as hypothesis that a
child computes a grammar from tree structured sentences.

1.2 A mathematical model

Can we give a mathematical model of the language acquisition
which corroborates this theory?
The grammatical inference paradigm of Gold [22] is a good candi-
date. Indeed, the inputs of the learning process are just examples
of the target language. And there is no interaction with the envi-
ronment. But this paradigm is too weak to be plausible. For this
reason, we add to Gold’s paradigm an oracle which answers to
membership queries. Hence, the grammatical inference is based
on positive examples and membership questions of computed el-
ements, as introduced by Angluin in [2]. This learning model
agrees with the poverty-of-stimulus hypothesis. Indeed the inter-
action with the environment is very weak. For example, a child
asks something, but nobody understands. From this lack of re-
action from the environment, he may deduce that the sentence

2



is wrong, and so not in the language. We insist on the fact that
membership queries are a minimal information which can be in-
ferred from a dialog.

On the other hand, negative examples are not necessary because
for example a parent does not say incorrect sentences to a child.
One might think about other kind of queries like equivalence
queries as suggested by Angluin [3]. But there are not necessary
as we shall see and there are unrealistic in a linguistic context. In
conclusion, our learning model seems quite adequate with respect
to our initial motivation, even if we are aware that our description
is a bit rough.

Now, we have set the learning paradigm, we have to say what are
the languages which are targeted. As we have said, we can as-
sume that a child has a kind of parser which transforms a (linear)
sentence into a tree representation. So, we learn tree languages.
Regular tree languages are the bare bone of several linguistic for-
malisms like classical categorial grammars for which learnability
has been studied in [24, 11], dependency languages [16, 7, 10] or
TAG derivations.

1.3 The results

We establish that the whole set of regular tree languages is effi-
ciently identifiable from membership queries and positive exam-
ples. The running time of the learning algorithm is polynomial
in the size of the input examples. The efficiency is a necessary
property of our model. The difficulty is to construct trees to ask
membership queries and which give useful information to proceed
in the inference process.

3



1.4 A web application

There are other applications of our result. For example, an XML
document is a tree, if we forget links. Now, say that we try to de-
termine a Document Type Definition (the DTD grammar which
generates XML documents). For this, we can read correct XML
documents from a server which forms a set of positive examples.
Then, we can build an XML document and make a membership
query by sending it to the server. If no error occurs then the
document is in the language, otherwise it is not.

1.5 Related works

1.5.1 Learning from positive examples and membership queries

Angluin considers the same learning paradigm in [2] for the class
of regular word languages. The notion of observation table which
is defined in [3] is already implicitly used in [2]. However, we can
not extend in a straight-forward way the algorithm of [2] as it is
explained by Sakakibara in [29]. In Section 4.3, we shall compare
more precisely these works with our approach.

1.5.2 Other paradigms

Sakakibara studied grammatical inference of languages of unla-
beled derivation trees of context free grammars. In [30], he ex-
tends the result of [3] by learning with membership queries and
equivalence queries. The possibility of asking the teacher whether
a calculated hypothesis corresponds to the target language seems
not to be relevant for the aim of constructing a model of natural
language process. In [29, 28] Sakakibara uses positive and neg-
ative examples with membership queries in two slight different
contexts. In Comparson with [28], we have shown that negative
examples are not necessary and that the running time of our
learning algorithm is polynomial. It is worth noticing that the

4



set of all unlabeled context free derivation tree languages is a
strict subclass of the set of regular tree languages. Therefore, we
learn more and in a weaker setting since negative examples are
not necessary in our work. This is important when we are learn-
ing from structured examples. Indeed, the language of structured
examples may not come from a context free grammar but still
the word language is context free.

Inference of regular tree languages from positive examples only,
has been studied in [20, 23, 21]. In [7], we define the notion of
reversible tree languages following the concept of reversible word
languages suggested by Angluin [1]. We study further reversible
tree grammars in [8, 9, 6]. All these studies are in the PhD thesis
of Besombes [5]. Finally, we refine this notion in order to delin-
eate a class of reversible categorial grammars [11]. Note also the
work [26] on reversible grammars. In [19], Fernau defines a learn-
able subclasses of tree languges, and in [12], learning is studied
from a stochastic point of view.

Inference of regular tree languages has been studied in [17]; the
learning algorithm is based on membership queries and equiva-
lence queries and this result constitutes an extension of Sakak-
ibara’s works. In [18], a polynomial version of the former learning
algorithm has been developed.

2 Regular tree languages

We give a short presentation of regular tree languages, which is
based on [15].

2.1 Terms, contexts and subterms

A ranked alphabet V is a finite set of symbols with a rank function
arity from V to N. The set T (V) of terms is inductively defined
as follows. A symbol of arity 0 is in T (V), and if f is a symbol of

5



arity n and t1, . . . , tn are in T (V), then f(t1, . . . , tn) is in T (V).
The size of a term is the number of symbols occurring in it.

A context is a term c[�] containing a special variable � which has
only one occurrence. The variable � marks an empty place in a
term. In particular, � is a context called the empty context. The
substitution of � by a term s is the term noted c[s].

A subterm s of a term t is a term such that there is a context
c[�] which satisfies t = c[s]. For a set of terms E , S(E) is the set
of subterms of the terms of E .

We define the set E [�] as the set of contexts obtained by replacing,
in each term of E , one occurrence of a subterm by �. In particular,
the empty context � is in E [�]. More precisely,

E [�] = {c[�] | ∃s, c[s] ∈ E}

2.2 Automata and regular tree languages

A bottom up non-deterministic tree automaton (NFTA) is a quadru-
ple A = 〈V ,Q,QF ,−→

A
〉 where V is a ranked alphabet, Q is a

finite set of states, QF ⊆ Q is the set of final states, and −→
A

is

the set of transitions. A transition is a rewrite rule of the form
f(q1, . . . , qn) −→A q where q and q1, . . . , qn are states of Q, and f

is a symbol of arity n. In particular, a transition may be just of
the form a −→

A
q where a is a symbol of arity 0.

The single derivation relation −→
A

is defined so that t −→
A

s if and

only if there is a transition f(q1, . . . , qn) −→
A

q such that for a

context c[�], t = c[f(q1, . . . , qn)] and s = c[q ]. The derivation
relation

∗−→
A

is the reflexive and transitive closure of −→
A

.

The automaton A recognizes the language LA where

LA = {t ∈ T (V) : t
∗−→
A

qF and qF ∈ QF}

6



A tree language is regular if and only if it is recognized by an
automaton. Throughout, we say “automaton” to refer to NFTA.

A finite tree automaton is deterministic (DFTA) if there are no two
rules with the same left hand side. It is well known that NFTA and
DFTA recognize the same class of languages.

Example 1 Consider the DFTA A = 〈{a, b, c}, {qF , q1, q2, q3, q4},
{qF},−→A 〉, where −→

A
is the following set of transitions:

a(q2, q3) −→A qF

b(q2) −→A q1 c(q4) −→A q3

b(q1) −→A q2 c(q3) −→A q4

b −→
A

q1 c −→
A

q3

The tree a(b(b), c(c(c))) belongs to LA. Indeed we have:

a(b(b), c(c(c))) −→
A

a(b(q1), c(c(c))) −→A a(q2, c(c(c)))

−→
A

a(q2, c(c(q3))) −→A a(q2, c(q4)) −→A a(q2, q3) −→A qF

LA is the tree language {a(b2n+2, c2m+1) : n,m ∈ N}.

2.3 Canonical automaton

For a given tree language L, the congruence ≡L is defined by
t ≡L s iff for every context c[�], c[t] ∈ L iff c[s] ∈ L.

Theorem 1 (Myhill-Nerode Theorem for trees) Let L be a
tree language. L is a regular tree language iff the congruence ≡L
is of finite index.

Kozen in [25] has written an elementary proof of the Myhill-
Nerode Theorem and has told the story behind.

Throughout, we denote δ(t) the equivalence class of the term t
wrt the congruence ≡L.

7



A finite congruence ≡L defines the minimal automaton for L (up
to a renaming of states) as follows.

• the state set is the set of equivalence classes of ≡L.
• the set of final states is the set of states such that δ(t) is con-

tained in L,
• the transition rule −→

L
is the smallest relation such that

a −→
L

δ(a)

f(δ(t1), . . . , δ(tn)) −→L δ(f(t1, . . . , tn))

A state q of an automaton A accepts a context c[�] if c[q ]
∗−→
A

qF . The canonical automaton AL for L is the restriction of the
minimal automaton of L to states, which accept at least one
context. In other word, a canonical has no “trash” state, but on
the other hand it is incomplete.

An automaton homomorphism between the NFTA A = 〈V ,Q,QF ,

−→
A′
〉 and A′ = 〈V ′,Q′,Q′

F ,−→
A′
〉 is a mapping φ from Q and Q′

such that :

(1) φ is surjective.
(2) For each transition f(q1, . . . , qn) −→A q of A, there is a transi-

tion f(φ(q1), . . . , φ(qn)) −→A′
φ(q) in A′.

(3) φ(QF ) ⊆ Q′
F .

This implies that if there is a homomorphism from A to A′, then
LA ⊆ LA′. If φ is bijective, it consists in a renaming of the states
and LA = LA′. Notice that A has no more states than A′.

8



3 Learning regular tree languages

3.1 The learning paradigm

The goal is the identification of any unknown regular tree lan-
guage L with help of a teacher. The teacher is an oracle which
answers to membership queries. The learning process begins with
a set of positive examples. Then, a dialogue is established between
the learner and the teacher. The learner asks whether or not a
new tree belongs to the unknown language. The teacher answers
by “yes” or “no” to this query. This learning process halts after
a finite number of queries.

We shall provide a necessary and sufficient condition on the ex-
amples, to guess the unknown language and so to construct a
DFTA which recognizes it.

3.2 Representative samples

Informally, a representative sample E is a finite subset of a reg-
ular tree language L such that each transition of the canonical
automaton of L is used to produce a term of E .

The set E is a representative sample of L if for each transition
f(q1, . . . , qn) −→L q , there is a term f(t1, . . . , tn) in S(E) such that

∀1 ≤ i ≤ n, δ(ti) = qi. That is, f(t1, . . . , tn) matches the rule
f(q1, . . . , qn) −→L q .

As a consequence, for each state q of the canonical automaton
AL of L, there is a subterm t of S(E) such that δ(t) = q . And
inversely, for each subterm t in S(E), there is a state q of AL such
that δ(t) = q . Indeed, there is a term s ∈ E and a context c[�] of
E [�] such that q accepts c[�] and s = c[t].

Example 2 This example illustrates the fact that several distinct
languages can have identical representative samples. This is not

9



surprising since Gold demonstrated that word regular languages
are not learnable from positive examples. So, the knowledge of
any set of example, and a fortiori a representative sample, is not
sufficient in order to infer the right language.

Let A be the DFTA defined in Example 1 and A′ the DFTA defined
by:

a(q1, q2) −→A′
qF

b(q1) −→A′
q1 c(q2) −→A′

q2

b −→
A′

q1 c −→
A′

q2

where qF is the unique final state of A′. From this definition, we
have

LA′ = {a(bn, cm) : n,m ∈ N∗}
and the singleton set

{a(b(b), c(c(c)))}

is a representative sample for both LA and LA′.

Remark 1 The question of the size of a minimal representative
sample relative to the size of the minimal automaton A of a lan-
guage L is of interest to be discussed. In contrast with the case
of word language, there is no polynomial relation between the size
(the total number of nodes) of a minimal representative sample
and the size (the number of states) of the canonical DFTA. For
instance, for two integers n and m, the singleton language con-
taining the following tree:

a
a

a
b . . . b

. . . a
b . . . b

. . . a
a

b . . . b

. . . a
b . . . b

 n

︸ ︷︷ ︸
mn

where the arity of a is m and the arity of b is 0, is a regular tree
language recognized by the above canonical DFTA.

10



a(qn, . . . , qn) −→ qF

...

a(q1, . . . , q1) −→ q2

b −→ q1

The size of the representative sample which the singeton language
above, is mn+1 − 1.

3.3 Observation tables

Following the method of Angluin [4], information obtained from
the queries is stored in a table. Let L be a tree language, E be a
finite set of terms and F be a finite set of contexts.

The observation table T = TL(E , F) is the table defined as follows

• Rows are indexed by subterms in S(E),
• Columns are indexed by contexts of F.
• The cell indexed by the subterm t and the context. c[�] is noted

TL(t, c[�]). The content of TL(t, c[�]) is defined by

TL(t, c[�]) =


1 if c[t] ∈ L

0 otherwise

We call row(t) the binary word of {0, 1}∗ corresponding to the
reading from left to right of the row labeled by t in T .

The induced automaton AT = 〈V ,Q,QF ,−→
T
〉 build from an ob-

servation table T = TL(E , F) is defined thus.

• the ranked alphabet V is the set of symbols occurring in E ,
• the set of states is Q = {row(t), t ∈ S(E)},
• the set of final states QF = {row(t), t ∈ L} ,

11



• the set of transitions −→
T

is the smallest relation satisfying

a −→
T

row(a)

f(row(t1), . . . , row(tn)) −→
T

row(f(t1, . . . , tn))

In general, AT is nondeterministic and not complete. The lan-
guage recognized by AT is LAT

.

Lemma 1 Let L be a regular tree language. Assume that E is a
representative sample for L, and F is a finite set of contexts.
If T = TL(E , F), then we have L ⊆ LAT

.

Proof We define an automaton homomorphism φ from the
canonical automaton AL onto AT . For each subterm t of E , we
set φ(δ(t)) = row(t). The mapping φ is well defined because if
δ(t) = δ(s) then we necessarily have row(t) = row(s). Since E is a
representative sample of L, φ is defined on all states of AL. It is
clearly surjective. Finally, for each transition f(q1, . . . , qn) −→L q ,

there is a term f(t1, . . . , tn) in S(E) which matches f(q1, . . . , qn).
That is ∀1 ≤ i ≤ n, δ(ti) = qi and necessarily δ(f(t1, . . . , tn)) = q .
So, f(φ(q1), . . . φ(qn)) −→AT

φ(q). 2

The number of states of the automaton AT is always less than
or equal to the number of states of AL. This remark and the
previous Lemma lead to the following conclusion.

Corollary 2 Let T = TL(E , F) be an observation table where L
is a regular tree language, E a representative sample for L, F a
set of contexts.

If L 6= LAT
, then there are two subterms t and t′ of E such that

row(t) = row(t′) and δ(t) 6= δ(t′).

Proof By contradiction, if it is not the case, then the homomor-
phism φ defined in the previous proof should be an isomorphism,
and so L = LAT

. 2

12



Example 3 Consider the tree language LA defined in Example 1.
Put

E = {a(b(b), c(c(c)))}

The set E is a representative sample. Next, define

F = E [�] ={�, a(�, c(c(c))), a(b(�), c(c(c))), a(b(b), �), a(b(b), c(�)),
a(b(b), c(c(�)))}

The corresponding observation table T = TL(E , F) is the follow-
ing:

� a(�, c(c(c))) a(b(�), c(c(c))) a(b(b), �) a(b(b), c(�)) a(b(b), c(c(�)))

a(b(b), c(c(c))) 1 0 0 0 0 0

b(b) 0 1 0 0 0 0

b 0 0 1 0 0 0

c(c(c)) 0 0 0 1 0 1

c(c) 0 0 0 0 1 0

c 0 0 0 1 0 1

The table T defines the NFTA AT as:

• VT = {a, b, c}
• QT = {100000, 010000, 001000, 000101, 000010}
• QF,T = {100000}
• −→

T
is the following set of transitions

a(010000, 000101) −→
AT

100000

b(010000) −→
AT

001000 c(000010) −→
AT

000101

b(001000) −→
AT

010000 c(000101) −→
AT

000010

b −→
AT

001000 c −→
AT

000101

We remark that AT = φ(A), where A is the DFTA introduced in
Example 1 and φ is the renaming defined by: φ(qF ) = 100000,

13



φ(q1) = 001000, φ(q2) = 010000, φ(q3) = 000101, φ(q4) =
000010.

An observation table T = TL(E , F) is said to be consistent if for
any terms f(t1, . . . , tn) and f(t′1, . . . , t

′
n) in S(E) , if ∀1 ≤ j ≤ n

we have :

row(tj) = row(t′j)

then

row(f(t1, . . . , tn)) = row(f(t′1, . . . , t
′
n))

Lemma 2 Assume that L is a regular tree language, E is a finite
set of terms and F is a finite set of contexts.

Then,the observation table T = TL(E , F) is consistent if and only
if the induced automaton AT is deterministic.

Proof This equivalence is straightforward from definitions of
consistency of T and of the induced automaton AT . 2

Given an observation table T = TL(E , F), a context c[�] is a
separating context if there are two subterms t and t′ of E such
that

row(t) = row(t′)

and

c[t] ∈ L and c[t] 6∈ L

This implies that δ(t) 6= δ(t′). It is worth noticing that a separat-
ing context c[�] is not in F because both lines row(t) and row(t′)
are identical in T .

Lemma 3 Let L be a regular tree language, E a set of terms and
F a set of contexts. Assume that T = TL(E , F) is an observation
table which is not consistent. Then, there is a separating context.

Proof Since T is not consistent, there are two terms of f(t1, . . . , tn)
and f(t′1, . . . , t

′
n) of S(E) such that ∀1 ≤ j ≤ n, row(tj) = row(t′j)

14



and on the other hand

row(f(t1, . . . , tn)) 6= row(f(t′1, . . . , t
′
n))

This means that δ(f(t1, . . . , tn)) 6= δ(f(t′1, . . . , t
′
n)) This implies

that there is at least an index i such that δ(ti) 6= δ(t′i). So, there
is a separating context c[�] such that c[t] ∈ L and c[t] 6∈ L. 2

From all this, it follows that an observation table induces an au-
tomaton AT which approximates from below the target language
L. Indeed, Lemma 1 claims that the number of states of AT is
always less than the one of the canonical automaton AL of L. By
finding a separating context, we increase the number of states
of AT and we get closer to the canonical automaton of L. The
process is repeated until the observation table is consistent. This
poses the question of whether the automaton AT induced by a
consistent observation table is the correct one. Recall that an
observation table T = TL(E , F) is built from a set E of positive
examples and from F a set of contexts. A consistent observation
table T = TL(E , F) yields the canonical automaton for L, if two
conditions are satisfied, as we shall establish in the next Lemma.
First, the set E is a representative sample. Second, for each state
q of the canonical automaton AL, there is a context of F which
is accepted by q . The later condition is fulfils by requiring that
F contains E [�].

The next question to solve is how to find a separating context.
The following Lemma is the cornerstone of the paper because:

• it explains how to construct a separating context from a non-
consistent observation table

• it claims that it is sufficient to consider only context with one
hole. That means that there is only one error and not several
which would imply to consider contexts with many holes. This
observation implies that we need to consider only a linear num-
ber of contexts wrt the symbol arity. Otherwise, it would be
exponential in the symbol arity.

15



Lemma 4 Let T = TL(E , F) be an observation table where L is
a regular tree language, E a representative sample for L, and F a
set of contexts containing E [�].

Assume that T is not consistent. Then, there are two terms f(t1, . . . , tn)
and f(t′1, . . . , t

′
n) of S(E) such that

row(f(t1, . . . , tn)) 6= row(f(t′1, . . . t
′
n))

row(ti) = row(t′i) ∀1 ≤ i ≤ n

and there is an index i such that

δ(ti) 6= δ(t′i)

δ(tj) = δ(t′j) ∀j 6= i

Proof Since T is not consistent, there are separating contexts by
Lemma 3. Take c[�] to be a separating context which is minimal
with respect to the size. There are two terms s and s′ in S(E)
such that

rowT (s) = rowT (s′)

c[s] ∈ L and c[s′] /∈ L

Since c[�] is not in F and � ∈ F, we see that for some context d[�]
and terms s1, . . . , si−1, si+1, . . . , sn, we have

c[�] = d[f(s1, . . . , si−1, �, si+1, . . . , sn)]

Notice that the size of d[�] is strictly smaller than the size of c[�].
So, d[�] is not a separating context. Otherwise, it would falsify
the minimality condition on c[�].

Since c[s] = d[f(s1, . . . , si−1, s, si+1, . . . , sn)] is in L, there is a tran-
sition in AL of the form

f(q1, . . . , qn) −→L r

where δ(sj) = qj for each j 6= i and δ(s) = qi.

16



By definition of a representative sample of L, there is a term
f(t1, . . . , tn) in S(E) which matches the above transition. That
is, δ(tj) = qj for each j and

δ(f(t1, . . . , tn)) = r

Now, there is a context d′[�] such that d′[f(t1, . . . , tn)] ∈ E ⊆ L.
Since F contains E [�], the context d′[f(t1, . . . , ti−1, �, ti+1, . . . , tn)]
is also in F. We have d′[f(t1, . . . , ti−1, s, ti, . . . , tn)] ∈ L because
δ(ti) = δ(s).
Moreover, row(s) = row(s′). So d′[f(t1, . . . , ti−1, s

′, ti+1, . . . , tn)] ∈
L. Therefore, there is a transition in AL

f(q1, . . . , qi−1, δ(s
′), qi+1, . . . , qn) −→L r ′

Now, we necessarily have r 6= r ′ because c[�] is a separating con-
text. Again, there is a subterm f(t′1, . . . , t

′
n) in E which matches

the above transition rule.

By contradiction, suppose that

row(f(t1, . . . , tn)) = row(f(t′1, . . . , t
′
n))

We see that d[�] becomes a separating context because

d[f(t1, . . . , tn)] ∈ L

and

d[f(t′1, . . . , t
′
n)] /∈ L

Our assumption violates the minimality of c[�] and leads to the
conclusion. 2

Lemma 5 Let L be a regular tree language, E a representative
sample for L and F a set of contexts including E [�]. If the table
T = TL(E , F) is consistent, then LAT

= L.

17



Proof Lemma 4 yields that if a table is consistent then two
equivalent terms wrt Myhill-Nerode congruence have the same
row. From this, we define an automaton homomorphism from
AT onto AL. So, LAT

⊆ L. The conclusion follows by Lemma 1.
2

4 The algorithm Altex

4.1 Definition

The algorithm Altex is described in Figure 1. Altex first re-
ceives a finite subset E of an unknown language L. Altex con-
structs the first observation table T = TL(E , E [�]) by asking mem-
bership queries. Then, it checks the consistency of the table. Each
time Altex finds the table non-consistent, new contexts are con-
structed from terms that contradict the consistency. Those cal-
culated contexts are added to the table which is then completed
with queries. The process stops when the table is consistent and
the automaton AT is output.

Input: a finite set of terms E
Initialization: F = E [�];
Construct the table T = TL(E , F);
while there is f(t1, . . . , tn) and f(t′1, . . . , t

′
n) in S(E) such that

row(f(t1, . . . , tn)) 6= row(f(t′1, . . . , t
′
n)) and ∀1 ≤ i ≤ n, row(ti) = row(t′i)

do
Find a context c[�] in F such that
c[f(t1, . . . , tn)] ∈ L and c[f(t′1, . . . , t

′
n)] /∈ L;

F = F ∪ {c[f(t1, . . . , ti−1, �, ti+1, . . . , tn)], 1 ≤ i ≤ n};
{n contexts are added}
Construct T = TL(E , F);

end while;
Return the automaton AT .

Fig. 1. The learning algorithm Altex

18



4.2 Correctness and termination

From the definition of consistency, Altex can easily verify whether
the table T constructed with help of membership queries is con-
sistent or not. In the case where T is not consistent, the problem
is that the algorithm has to find by itself (no counter-example
is allowed) a new context that will separate two equivalent rows.
The key point is that the input set of terms E is representative
which provides the ability to determining such separating con-
texts.

Lemma 6 Assume that the inputs of Altex is a representative
sample. If the table T = TL(E , F) is not consistent, Altex cal-
culates a separating-context.

Proof Altex collects every pair of terms f(t1, . . . , tn) and f(t′1, . . . , t
′
n)

in S(E), such that there is a context c[�] in F with

∀1 ≤ i ≤ n, row(ti) = row(t′i)

c[f(t1, . . . , tn)] ∈ L and c[f(t′1, . . . , t
′
n)] /∈ L

Among the pairs gathered as above, Lemma 4 states that there
is an index i such that

∀1 ≤ j 6= i ≤ n, δ(tj) = δ(t′j)

and

δ(ti) 6= δ(t′i)

So, c[f(t1, . . . , ti−1, �, ti+1, . . . , tn)] is a separating context which
is added to F. The rows of ti and t′i are now different in

TL(E , F ∪ {c[f(t1, . . . , ti−1, �, ti+1, . . . , tn)]})

2

Theorem 1 The algorithm Altex identifies the class of regular
tree languages in polynomial time.

19



Proof The algorithm Altex starts with the construction of
TL(E , E [�]) and enters the while-loop. If the program leaves this
loop, the observation table is consistent and by Lemma 5, the
automaton given as output is correct. It remains to show that
Altex terminates. From Lemma 6, each time the loop is pro-
cessed, a new separating-context is added to the table. And, two
faulty rows which were identical are now different. The number
of states of the automaton AT strictly increase. From Lemma 1,
this number is always lower than or equal to the number of states
of the canonical automaton for L. This implies that the loop may
be processed only a finite number of times and by consequence,
Altex terminates.

The algorithm identifies the class of regular languages because
the observation table is consistent at the end of Altex run. If the
inputs contain a representative sample of the target language,
then the induced automaton is a canonical automaton for the
target language by Lemma 5.

The time complexity of Altex depends on the size n of a rep-
resentative sample E (the sum of the size of terms in E) and the
size m of the canonical automaton (number of states) for the lan-
guage L to identify. The first observation table has n2 cells. Then,
the number of rows doesn’t change and the number of columns
increases until the table is consistent. Let p ≤ n be the greatest
arity of a symbol. At each step, there is at most p new contexts
which are added to the table. And the while loop is bounded by
m. Now, since we have m ≤ n, we conclude that the runtime is
bounded by O(n3). 2

We noticed that any finite set containing a representative sample
is also a representative sample. This implies that if we consider an
incremental version of Altex (the table is completed as the set
of positive examples increases during the process), the algorithm
converges. Now, if the input set doesn’t contain a representative
sample yet, the algorithm calculates a sub-automaton (the recog-
nized language is strictly contained in the target language). The

20



algorithm terminates on any input and the success of learning is
guaranteed if a representative sample is presented as input, which
constitutes a weak hypothesis.

4.3 Why does it not blow up?

In [2], Angluin studies the paradigm of learning regular (word)
languages from positive examples and queries and in [4], the idea
of observation table is introduced. It’s interesting to see whether
these results may be applied in the case of tree languages. An-
gluin’s algorithm tries any possible transition by considering the
set of words ωα, where ω is a prefix and α is a letter of the
alphabet. (By analogy, the suffix α is a context when we deal
with trees.) To apply this technique in the case of trees, we
have to construct, for any subterm t of E , all terms of the form
f(t1, . . . , t, . . . , tn), for each subterm tj of E and each element f

of arity n in the alphabet. This straight generalization leads to
an exponential procedure in the maximum arity of the alphabet.

Altex proceeds in a different way. It determines at most p con-
texts which are candidates to be a separating context. Here p is
the maximum arity of a symbol. We are certain that among those
p contexts there is one separating contexts.

5 Examples

In Example 2, we saw that the tree a(b(b), c(c(c))) is a represen-
tative sample for the tree language

LA = {a(b2n+2, c2m+1) : n,m ∈ N}

Now suppose that the above singleton is given to Altex ; the
table constructed with help of membership queries is the table
of Example 3. This table is consistent and then, Altex outputs
the automaton given in the same example. This automaton is a

21



renaming of A and the language is learned. If we suppose that,
with the same input, the language to learn is

LA′ = {a(bn, cm) : n, m ∈ N∗}

({a(b(b), c(c(c))} is representative for this language too), the table
is now:

� a(�, c(c(c))) a(b(�), c(c(c))) a(b(b), �) a(b(b), c(�)) a(b(b), c(c(�)))

a(b(b), c(c(c))) 1 0 0 0 0 0

b(b) 0 1 1 0 0 0

b 0 1 1 0 0 0

c(c(c)) 0 0 0 1 1 1

c(c) 0 0 0 1 1 1

c 0 0 0 1 1 1

Altex checks again that this table is directly consistent and
output the automaton φ′(A′), where φ′ is the automaton ho-
momorphism defined by: φ′(qF ) = 100000, φ′(q1) = 011000,
φ′(q2) = 000111.

Altex is defined as an iterative algorithm; if during the process,
the observation table is found not to be consistent, the canonical
automaton for the target language must have some particular
rules: rules which are identical except in a single state of its left
hand side. If the canonical automaton has no such rules, the first
table constructed by Altex is consistent and the language is
learned immediately. With the aim of illustrating the iterative
behavior, we now propose an automaton specially constructed to
have this property. Let so be LA′′ the language defined by the
following canonical automaton A′′:

a(q1) −→A qF d(q3, q5) −→A q1 e(q7) −→A q3 g −→
A

q7

a(q2) −→A qF d(q4, q5) −→A q1 e(q8) −→A q4 h −→
A

q8

b(q1) −→A qF d(q3, q6) −→A q1 f(q9) −→A q5 i −→
A

q9

c −→
A

q1 d(q4, q6) −→A q2 f(q10) −→A q6 j −→
A

q10

22



where qF is the unique final state. From this definition, we estab-
lish that LA′′ is the finite language corresponding to the following
set of terms:

LA′′ = {a(c), b(c), a(d(e(g), f(i))), a(d(e(h), f(i))), a(d(e(g), f(j))),

a(d(e(h), f(j))), b(d(e(g), f(i))), b(d(e(h), f(i))), b(d(e(g), f(j)))}.

Let suppose that a teacher constructs the representative sample:

E = {b(c), a(d(e(g), f(i))), a(d(e(h), f(i))),

a(d(e(g), f(j))), a(d(e(h), f(j)))}.
The learner Altex starts with the construction of F = E [�] and
T = TLA′′(S(E), F).

Altex now notices the three problematics pairs of terms

d(e(h), f(i)) and d(e(h), f(j)),

d(e(g), f(i)) and d(e(h), f(j))

and
d(e(g), f(j)) and d(e(h), f(j)).

Indeed

row(e(g)) = row(e(h)) and row(f(i)) = row(f(j))

but

b(d(e(g), f(i))) ∈ L, b(d(e(g), f(j))) ∈ L, b(d(e(h), f(i))) ∈ L

and
b(d(e(h), f(j))) /∈ L (Figure 2).

Altex adds
b(d(e(g), �)),
b(d(e(h), �)),
b(d(�, f(i)))

and
b(d(�, f(j)))

23



. . . b(�) . . .
...

d(e(g), f(i)) 010011 . . . 1 . . . 100110

d(e(g), f(j)) 010011 . . . 1 . . . 100110

d(e(h), f(i)) 010011 . . . 1 . . . 100110

d(e(h), f(j)) 010011 . . . 0 . . . 100110
...

e(g) 001000 . . . 0 . . . 000101

e(h) 001000 . . . 0 . . . 000101
...

f(i) 000100 . . . 0 . . . 001010

f(j) 000100 . . . 0 . . . 001010
...

Fig. 2.

to F and complete the table T with help of the teacher. The new
contexts b(d(�, f(j))) and b(d(e(h), �)) respectively, separate the
rows of e(g) and e(h) and the rows of (f(i) and f(j)(Figure 3).

Altex now finds out that

b(d(e(h), f(i))) ∈ L, b(d(e(h), f(j))) /∈ L but row(i) = row(j)

and that

b(d(e(g), f(j))) ∈ L, b(d(e(h), f(j))) /∈ L but row(g) = row(h) (Figure 4).

The new contexts

b(d(e(�), f(j)))

and

b(d(e(h), f(�)))
are added into F and the table T is completed one last time with
the help of the teacher (Figure 5). The rows of i and j and the
rows of g and h are separated.

24



. . . b(�) . . . b(d(e(g), �)) b(d(e(h), �)) b(d(�, f(i))) b(d(�, f(j)))
...

d(e(g), f(i)) 010011 . . . 1 . . . 100110 . . . 0 0 0 0

d(e(g), f(j)) 010011 . . . 1 . . . 100110 . . . 0 0 0 0

d(e(h), f(i)) 010011 . . . 1 . . . 100110 . . . 0 0 0 0

d(e(h), f(j)) 010011 . . . 0 . . . 100110 . . . 0 0 0 0
...

e(g) 001000 . . . 0 . . . 000101 . . . 0 0 1 1

e(h) 001000 . . . 0 . . . 000101 . . . 0 0 1 0
...

f(i) 000100 . . . 0 . . . 001010 . . . 1 1 0 0

f(j) 000100 . . . 0 . . . 001010 . . . 1 0 0 0
...

Fig. 3.

. . . b(d(e(h), �)) . . . b(d(�, f(j)))
...

e(g) 011100 . . . 0 . . . 1 . . .

e(h) 011100 . . . 0 . . . 0 . . .

f(i) 011100 . . . 1 . . . 0 . . .

f(j) 011100 . . . 0 . . . 0 . . .
...

g 000010 . . . 0 . . . 0 . . .

h 000010 . . . 0 . . . 0 . . .
...

i 000001 . . . 0 . . . 0 . . .

j 000001 . . . 0 . . . 0 . . .
...

Fig. 4.

25



. . . b(d(e(h), �)) . . . b(d(�, f(j))) b(d(e(�), f(j))) b(d(e(h), f(�)))
...

e(g) 011100 . . . 0 . . . 1 . . . 0 0

e(h) 011100 . . . 0 . . . 0 . . . 0 0

f(i) 011100 . . . 1 . . . 0 . . . 0 0

f(j) 011100 . . . 0 . . . 0 . . . 0 0
...

g 000010 . . . 0 . . . 0 . . . 1 0

h 000010 . . . 0 . . . 0 . . . 0 0
...

i 000001 . . . 0 . . . 0 . . . 0 1

j 000001 . . . 0 . . . 0 . . . 0 0
...

Fig. 5.

T is now consistent and Altex output AT which verify LAT
=

LA′′.

References

[1] D. Angluin. Inductive inference of formal langage from pos-
itive data. Information and Control, 45:117–135, 1980.

[2] D. Angluin. A note on the number of queries needed to
identify regular languages. Information and Control, 51:76–
87, 1981.

[3] D. Angluin. Learning regular sets from queries and counter
examples. Information and Control, 75:87–106, 1987.

[4] D. Angluin. Queries and concept learning. Machine learning,
2:319–342, 1988.

[5] J. Besombes. Un modèle algorithmique de la généralisation
de structures dans le processus d’acquisition du langage. PhD
thesis, Université Nancy 1 - UHP, 2003.

26



[6] J. Besombes and J-Y Marion. Apprentissage de langages
réguliers d’arbres et applications. Traitement Automatique
des Langues, Hermès, 44(1):121–153, 2003.

[7] J. Besombes and J.Y. Marion. Identification of reversible
dependency tree languages. Proceedings of the third Learning
Language in Logic workshop, pages 11–22, 2001.

[8] J. Besombes and J.Y. Marion. Apprentissage des lan-
gages réguliers d’arbres et applications. Conférence
d’Apprentissage, Orléans 17, 18 et 19 juin 2002, pages 55–
70, 2002.

[9] J. Besombes and J.Y. Marion. Learning regular tree
languages and applications. Quatrièmes Rencontres de
l’Informatique Messine, pages 169–180, 2003.

[10] J. Besombes and J.Y. Marion. Learning dependency lan-
guages from a teacher. In Proceedings of Formal Grammar
2004, pages 17–28, 2004.

[11] J. Besombes and J.Y. Marion. Learning reversible catego-
rial grammars from structures. In Proceedings of the interna-
tional IIS:IIPWM’04, Advances in Soft Computing, Springer
Verlag, pages 181–190, 2004.

[12] R.C. Carrasco, J. Oncina, and J. Calera. Stochastic infer-
ence of regular tree languages. Lecture Notes in Computer
Science, 1433:185–197, 1998.

[13] N. Chomsky. Knowlege of Language. Praeger, New York,
1986.

[14] A. Christophe. L’apprentissage du langage. In Université de
tous les savoirs, volume 2, pages 41–51. Odile Jacob, 2000.

[15] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree au-
tomata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

[16] A. Dikovsky and L. Modina. Dependencies on the other
side of the curtain. Traitement automatique des langues,
41(1):67–96, 2000.

[17] F. Drewes and J. Högberg. Learning a regular tree language
from a teacher. In Z. Ésik and Z. Fülöp, editors, Proc. Devel-

27



opments in Language Theory 2003, volume 2710 of Lecture
Notes in Computer Science, pages 279–291. Springer, 2003.

[18] F. Drewes and J. Högberg. Learning a regular tree language
from a teacher even more efficiently. Technical Report 03.11,
UmeaUniversity, 2003.

[19] H. Fernau. Learning tree languages from text. 2375:153–168,
2002.

[20] H. Fukuda and K. Kamata. Inference of tree automata from
sample set of trees. International Journal of Computer and
Information Sciences, 13(3):177–196, 1984.

[21] P. Garćıa. Learning k-testable tree sets from positive data.
Technical Report DSIC/II/46/1993, Departamento de Sis-
temas Informáticos i Computación, Universidad Politécnica
de Valencia, 1993.

[22] M.E. Gold. Language identification in the limit. Information
and Control, 10:447–474, 1967.

[23] K. Kamata. Inference methods for tree automata from sam-
ple set of trees. IEEE International Conference on Systems,
Man and Cybernetics, pages 490–493, 1988.

[24] M. Kanazawa. Learnable classes of Categorial Grammars.
CSLI, 1998.

[25] D. Kozen. On the myhill-nerode theorem for trees. EATCS
Bulletin, 47:170–173, June 1992.

[26] D. López, J.M. Sempere, and P. Garćıa. Inference of re-
versible tree languages. IEEE Transactions on Systems, Man
and Cybernetics, 34(4):1658–1665, 2004.

[27] S. Pinker. The language instinct. Harper, 1994.
[28] Y. Sakakibara. Inductive inference of logic programs based

on algebraic semantics. Technical Report ICOT, 79, TR-260,
1987.

[29] Y. Sakakibara. Inferring parsers of context-free languages
from structural examples. Technical Report ICOT, 81, TR-
330, 1987.

[30] Y. Sakakibara. Learning context-free grammars from struc-
tural data in polynomial time. Theoretical Computer Sci-
ence, 76:223–242, 1990.

28


