
Towards an implicit characterization of NCk

G. Bonfante1, R. Kahle2, J.-Y. Marion1, and I. Oitavem3

1 Loria - INPL, 615, rue du Jardin Botanique, BP-101, 54602 Villers-lès-Nancy,
France, {Jean-Yves.Marion|Guillaume.Bonfante}@loria.fr

2 Dept. Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra,
Portugal, and CENTRIA, UNL, 2829-516 Caparica, Portugal, kahle@mat.uc.pt
3 CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa,

Portugal, and DM, UNL, 2829-516 Caparica, Portugal, isarocha@ptmat.fc.ul.pt

Abstract. We define a hierarchy of term systems T k by means of re-
strictions of the recursion schema. We essentially use a pointer technique
together with tiering. We prove T k ⊆ NCk ⊆ T k+1, for k ≥ 2. Special
attention is put on the description of T 2 and T 3 and on the proof of
T 2 ⊆ NC2 ⊆ T 3. Such a hierarchy yields a characterization of NC.

1 Introduction

The present work enters the field of Implicit Complexity. By Implicit, we mean
that focus is done on algorithms rather than functions. In particular, the question
of how to compute a function with respect to of one of its algorithms arise.

Apart from its theoretical interest, the present study has some practical con-
sequences. Since the tiering condition we consider on programs is decidable, the
term systems can be used for static analysis of programs, that is for certification
of bounds on the time/space usage of programs. In an other context, such an ap-
proach has been established on the theoretical study of Hofmann [Hof99,Hof02]
which found applications in the Embounded Project1.

The present approach of Implicit Complexity is in the vein of Bellantoni-
Cook/Leivant, that is, we use some tiering discipline. Since the seminal papers
of Simmons [Sim88], Bellantoni-Cook [BC92], and Leivant-Marion [LM93], the
approach has shown to be fruitful. For instance, see Mairson and Neergaard
[Nee04] who propose a nice characterization of LOGSPACE by means of a tiering
discipline. Another branch of Implicit Complexity use logic, see for instance
[Hof99,BM04] for recent work on the subject. We also mention the work of Niggl
which covers the crucial issue of imperative programming [Nig05].

In this paper, we try to shape the form of recursion that corresponds to
NCk. In other words, we are working towards an implicit characterization of

Research supported by the joint french-portuguese project Theorie et langages de
programmation pour les calculs à ressources bornées/Teorias e linguagens de pro-
gramação para computações com recursos limitados from EGIDE – GRICES.
The last author was also partially supported by the project POCI/MAT/61720/2004
of FCT.

1 http://www.embounded.org/

2 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

the complexity classes NCk, k ∈ N. We discuss the term systems T k such that
T k ⊆ NCk ⊆ T k+1, for k ≥ 2. NCk is the class of languages accepted by uniform
boolean circuit families of depth O(logk n) and polynomial size with bounded
gates; and NC =

⋃
k NCk.

To motivate the definition of our system we look to NCk from the point of
view of Alternating Turing Machines (ATMs). The relation is established by the
following theorem.

Theorem 1 (Ruzzo, [Ruz81]). Let k ≥ 1. For any language L ⊆ {0, 1}∗, L is
recognized by an ATM in O(logk n) time and O(log n) space iff it is in (uniform)
NCk.

The underlying intuition for our implicit approach is to use ramified recursion
to capture the time aspect and recursion with pointers to capture the space
aspect. We use linear recursion in the sense of [LM00] in order to stratify the
degree of the polylogarithmic time, and recursion with pointers as in [BO04]. We
define term systems T k allowing k ramified recursion of which the lowest one is
equipped with pointers.

We work in a sorted context, in the vein of Leivant [Lei95]. For T k we use
k + 1 tiers:

– tier 0 with no recursion;
– tier 1 for recursion with pointers to capture the space aspect;
– tiers 2 to k for ramified recursions which deal with the time aspect.

There are two implicit characterization of NC1, one by Leivant-Marion using
linear ramified recurrence with substitution [LM00], and one by Bloch [Blo94] in
a Bellantoni and Cook [BC92] recursion setting. Clote [Clo90], using bounded re-
cursion schemes, gives a machine-independent characterization of NCk. Leivant’s
approach to NCk [Lei98] is machine and resource independent, however, it is not
sharp. It consists of term systems RSRk for ramified schematic recurrence. RSRk

characterizes NCk only within three levels:

RSRk ⊆ NCk ⊆ RSRk+2, k ≥ 2.

Our term systems reduce the unsharpness of the characterization of NCk to
two levels:

T k ⊆ NCk ⊆ T k+1, k ≥ 2.

As related work we mention here [LM95] where alternating computations was
captured by mean of ramified recursion with parameter substitution. For NC
there exists also an implicit characterization by use of higher type functions in
[AJST01].

The structure of the paper is briefly as follows. In Section 2, we present the
term systems and state some preliminary results. In Section 3, we describe the
upper bounds, that is the way of compiling the term systems in terms of circuits.
Section 4 is devoted to the lower bound.

Towards an implicit characterization of NCk 3

2 The term systems T k

The term systems T k are formulated in a k + 1-sorted context, over the tree
algebra T. The algebra T is generated by 0, 1 and ∗ (of arities 0, 0 and 2, respec-
tively), and we use infix notation for ∗. As usual, we introduce three additional
constants: l for the left destructor, r for the right destructor and c for the con-
ditional. They are defined as follows: l(0) = 0, l(1) = 1, l(u ∗ v) = u, r(0) = 0,
r(1) = 1, r(u∗v) = v, and c(0, x, y, z) = x, c(1, x, y, z) = y, c(u∗v, x, y, z) = z.

Following notation introduced by Leivant in [Lei95], we consider k +1 copies
of T. Therefore, we formally have k + 1 copies of the constructors T, and k + 1
sorts of variables ranging over the different tiers. As usual, we separate different
tiers by semicolons.

As initial functions of T k one considers the constructors, destructors, condi-
tional and projection functions over the k+1 tiers. T k is closed under sorted com-
position over k + 1-tiers — f(xk; . . . ;x0) = h(gk(xk; . . . ;); . . . ; g0(xk; . . . ;x0))
— and k schemes of sorted recursion as described below.

We start by define the recursion schemes of T 2 and T 3 and describe only
then the general case of T k. In what follows one should notice that, whenever
f is defined by recursion with step function h, h itself cannot be defined by
recursion over the same tier as f is defined. Therefore, in T k we allow, at most, k
(step-)nested recursions. However, in the base cases the function g can be defined
by a further recursion over the same tier as f is defined, i.e., no restriction is
imposed on the number of recursions constructed on top of each other (base-
nested recursions).

2.1 The term system T 2

According to the underlying idea, the characterization of NC2 requires three
tiers:

– Tier 0: no recursion.
– Tier 1: recursion with pointers (space tier).
– Tier 2: recursion without pointers, modifying tier 1 (time tier).

Tier 1 recursion (with pointers)

f(; p, 0,x;w) = g(; p, 0,x;w),
f(; p, 1,x;w) = g(; p, 1,x;w),

f(; p, u ∗ v,x;w) = h(; ; w, f(; p ∗ 0, u,x;w), f(; p ∗ 1, v,x;w)).

Tier 2 recursion

f(0,y;x;w) = g(y;x;w),
f(1,y;x;w) = g(y;x;w),

f(u ∗ v,y;x;w) = h(;x;w, f(u, y;x;w)).

4 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

Since h can use the variables of lower tier, x, to recurse on, we can nest
recursions.

In the tier 2 recursion, the recursion input is only used as a counter. In
particular, the recursion only takes the height of the tree u ∗ v into account.
Therefore, it might be more natural to rewrite this scheme in form of a successor
recursion: If one uses in the following scheme the expression u + 1 as some
kind of schematic variable for u ∗ v, where v is arbitrary, and 0 as a schematic
expression for 1 or the actual 0 (note that f(1,y;x;w) is defined as the same as
f(0,y;x;w)), the scheme can be written as follows:

Tier 2 recursion (successor notation)

f(0,y;x;w) = g(y;x;w),
f(u + 1,y;x;w) = h(;x;w, f(u, y;x;w)).

Later on, in the course of a definition of a function using successor notation,
x + 1 can be read as an abbreviation of x ∗ 1, and the schematic notation is in
accordance with the actual definition in terms of trees.

2.2 The term system T 3

According to the underlying idea, T 3 has one more tier than T 2 for recursion
(without pointers). Note that the recursion for the tiers 1 and 2 differ from those
for T 2 only by the extra semicolon needed for the additional tier separation.

Tier 1 recursion (with pointers)

f(; ; p, 0,x;w) = g(; ; p, 0,x;w),
f(; ; p, 1,x;w) = g(; ; p, 1,x;w),

f(; ; p, u ∗ v,x;w) = h(; ; ;w, f(; ; p ∗ 0, u,x;w), f(; ; p ∗ 1, v,x;w)).

Tier 2 recursion

f(; 0,y;x;w) = g(;y;x;w),
f(; 1,y;x;w) = g(;y;x;w),

f(;u ∗ v,y;x;w) = h(; ; x;w, f(;u, y;x;w)).

Tier 3 recursion

f(0,z;y;x;w) = g(z;y;x;w),
f(1,z;y;x;w) = g(z;y;x;w),

f(u ∗ v,z;y;x;w) = h(;y;x;w, f(u, z;y;x;w)).

Again the recursion schemes for time can be rewritten in successor notation.

Towards an implicit characterization of NCk 5

Tier 2 recursion (successor notation)

f(; 0,y;x;w) = g(;y;x;w),
f(;u + 1,y;x;w) = h(; ; x;w, f(;u, y;x;w)).

Tier 3 recursion (successor notation)

f(0,z;y;x;w) = g(z;y;x;w),
f(u + 1,z;y;x;w) = h(;y;x;w, f(u, z;y;x;w)).

2.3 The term systems T k

The extension of the definition of T 2 and T 3 to arbitrary k, k ≥ 4 is straightfor-
ward. In each step from k − 1 to k we have to add another time tier, adapting
the notation of the existing recursion schemes to the new number of tiers and
adding one more nested recursion for the new tier k of the form:

Tier k recursion

f(0,xk;xk−1; . . . ;x1;w) = g(xk;xk−1; . . . ;x1;w)
f(1,xk;xk−1; . . . ;x1;w) = g(xk;xk−1; . . . ;x1;w)

f(u ∗ v,xk;xk−1; . . . ;x1;w) = h(;xk−1; . . . ;x1;w, f(u, xk;xk−1; . . . ;x1;w)

In successor notation this scheme reads as follows:

Tier k recursion (successor notation)

f(0,xk;xk−1; . . . ;x1;w) = g(xk;xk−1; . . . ;x1;w)
f(u + 1,xk;xk−1; . . . ;x1;w) = h(;xk−1; . . . ;x1;w, f(u, xk;xk−1; . . . ;x1;w)

2.4 The term system T 1

T 1 is just the restriction of T 2 to two tiers only, and the single recursion scheme:

Recursion of T 1

f(p, 0,x;w) = g(p, 0,x;w)
f(p, 1,x;w) = g(p, 1,x;w)

f(p, u ∗ v,x;w) = h(;w, f(p ∗ 0, u,x;w), f(p ∗ 1, v,x;w)).

Lemma 2. T 1 ⊆ NC1.

6 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

Proof. Let us give the key argument of the proof. Writing H(t), the height of a
term t, it is the case that arguments in tier 1 encountered along the computation
have all linear height in the height of the inputs. As a consequence, for a given
function, any branch of recursion for this symbol is done in logarithmic time in
the size of the inputs. We conclude by induction on the definition of functions: a
branch of the computation will involve only finitely many such function symbols,
and so, can be simulated in NC1.

By a straightforward induction on the definition of functions, one proves
the key fact, that is arguments have linear height in the height of the input.
In other words, when computing f(x1, . . . , xk;w), for all subcalls of the form
h(x′1, . . . , x

′
n;w′), then ∀x′i : H(x′) ≤ O(

∑
i≤k H(xi)).

Since a function of T k which has no arguments in tiers greater than 1 can be
defined also in T 1 we have the immediate corollary:

Lemma 3. A function in T k using only arguments in tier 1 and tier 0 is defin-
able in NC1.

As an ad hoc designation, in the following, we call NC1 function to a function
using only argument in tier 1 and tier 0.

For NC1 functions we have simultaneous recursion:

Lemma 4. If f1, . . . , fn are defined by simultaneous recursion over tier 1, then
they are definable in T 1.

The proof is a straightforward adaptation of the corresponding proposition
for the system STT, characterizing NC, in [Oit04, Proposition 5].

3 The upper bound of T k

For the upper bound we model the computations of T k by circuits. We start
with the exemplary case of T 2.

Theorem 5.
T 2 ⊆ NC2.

Proof. Let f(y;x;w) be a function of T 2. We will show that there is a circuit
in NC2 which computes f(y;x;w).

The proof is done by induction on the definition of the function. The base
cases and composition are straightforward. Recursion for tier 1 only leads to
NC1 functions (Lemma 3). Therefore, we have to consider only the case that a
function defined by recursion for tier 2.

We consider first the case where we have only one argument in tier 2. It will
serve as a paradigm for the more general case.

Base case: f has only one argument of tier 2, i.e. it is defined by the
following scheme:

f(0;x;w) = g(;x;w),
f(u + 1;x;w) = h(;x;w, f(u;x;w)).

Towards an implicit characterization of NCk 7

where g are h already defined. By Lemma 3 they are both in NC1. That means
there are (uniform) circuits G and H both of polynomial size and O(log(n))
height that compute g and h. The circuit which computes f on (y;x;w) is given
in figure 1 (with n = |y|) .

G

H

H

H

w

x

︸ ︷︷ ︸
log(n) calls of H

Fig. 1. The circuit F computing f

First of all, observe that the circuit is uniform. Now, the size of this circuit
is |G|+

∑
i<|n|=log(n) |H|. As the height of the tree is bounded by O(log(n)), the

number of H circuits is logarithmic. Since H and G circuits are of polynomial
size, it is also the case of F . We end by noting that the height of the circuit is
O(log(n))×O(log(n)) = O(log2(n)) since it is tree of height O(log(n)) of circuit
of height O(log(n)). As a consequence, the circuit is in NC2.

Higher arities: f has ` + 1 argument in tier 2, i.e. it is defined by the
following scheme:

f(0, y1, . . . , y`;x;w) = f ′(y1, . . . , y`;x;w),
f(u + 1, y1, . . . , y`;x;w) = h(;x;w, f(u, y1, . . . , y`;x;w)).

where f ′ and h are already defined. We already know that h is definable in NC1.
Suppose that the rule for f ′ is

f ′(u + 1, y2, . . . , y`;x;w) = h′(;x;w, f(u, y2, . . . , y`;x;w))

There is a circuit H ′ that computes h′ which is in NC1. As a base case, we have:

f ′(0, y2, . . . , y`;x;w) = f ′′(y2, . . . , y`;x;w)

and f ′′ will itself call h′′ and f ′′′, etc. After ` steps, we get f ` an NC1 function
as in the base case. Let us call it g as above.

The circuitry that computes f is analogous to that given in figure 1. But,
in that case, the circuit for F is made of a first layer of height O(log(n)) of H
circuit with one leaf (the base case) which is formed by a second layer of a tree

8 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

of height O(log(n)) of H ′ circuit, and so on. The circuit remains uniform and its
size is of the form

∑
i<|y0| |H|+

∑
i<|y1| |H

′|+ · · ·+
∑

i<|y`| |H
(`)|+ |G|.

What is the height of the circuit? The first layer has height O(log(n)) ×
O(log(n)) as in the base case. The second layer has also height O(log(n)) ×
O(log(n)) for the same reason. More generally, the height of the tree is ` ×
O(log(n)2) = O(log(n)2).

Concerning the size of the circuit. The first layer is formed of log(n) circuits
of size 2O(log(n)) , that is bounded by a polynomial. Actually, all layers have
polynomial size. Since there is only a finite number of such layers, there is a
polynomial number of circuit of polynomial size.

Following the scheme of this proof, the result can be extended to arbitrary
k ≥ 2 and together with Lemma 2 we have:

Theorem 6. For every k ≥ 1:

T k ⊆ NCk.

4 The (unsharp) lower bound

We adopt the description of NCk in terms of ATMs, cf. Theorem 1. Here ATMs
are assumed to have only one tape. Each machine has a finite number of inter-
nal states and each state is classified as either conjunctive, disjunctive, oracle,
accepting or rejecting. Oracle, accepting or rejecting states are halting states.
Conjunctive or disjunctive states are action states. Outputs are single bits —
no output device is required. A configuration is composed by the tape contents
together with the internal state of the machine.

As Leivant in [Lei98] we describe the operational semantics of an ATM M as
a two stage process: Firstly, generating an input-independent computation tree;
secondly, evaluating that computation tree for a given input. A binary tree T
of configurations is a computation tree (of M) if each non-leaf of T spawns its
children configurations. A computation tree of M is generated as follows: when
in a configuration with an action state, depending on the state and bit read, it
spawns a pair of successor configurations. These are obtained from the parent
by changing the read bit, or/and changing the internal state of the machine. We
will be interested in configuration trees which have the initial configuration of
M as a root. Each computation tree T maps binary representation of integers
(inputs) to a value in {0, 1,⊥}, where ⊥ denotes “undefined” — in our term
systems ⊥ will be represented by 0 ∗ 0. This map is defined accordingly points 1
and 2, below.

1. If T is a single configuration with state q then:
(a) if q is an accepting [rejecting] state, the returned value is 1 [respectively,

0];
(b) if q is an action state, the returned value is ⊥;

Towards an implicit characterization of NCk 9

(c) if q is an oracle state (i, j), where i is a symbol of the machine’s alphabet
— 0 or 1 — and j ranges over the number of oracles, the returned value
is 1 or 0 depending on whether the nth bit of the jth oracle is i or not,
where n is the integer binary represented by the portion of the tape to
the right of the current head position.

2. If T is not a single configuration, then the root configuration has a con-
junctive or a disjunctive state. We define the value returned by T to be
the conjunction, respectively the disjunction, of the values returned by the
immediate subtrees.

Conjunctive and disjunctive states may diverge, indicated by the “undeter-
mined value” ⊥; one understands 0 ∨ ⊥ = ⊥, 1 ∨ ⊥ = 1, 0 ∧ ⊥ = 0, 1 ∧ ⊥ = ⊥.

Theorem 7.
NC2 ⊆ T 3.

Proof. The proof runs along the lines of the proof of [BO04, Lemma 5.1].
Let M be a ATM working in O(log2 n) time and O(log n) space. Let us

say that, for any input X, M runs in time TM = t0pxq + t1 and space SM =
s0pxq+s1, where x is a minimal balanced tree corresponding to X, as in [BO04].

The proof is now based on the idea of configuration trees. A configuration tree
for M contains as paths all possible configuration codes of M .2 A configuration
tree for time t will code on the leafs the values at level t in the bottom-up
labeling of the computation tree.

Now, the proof can be split in several steps.

Coding Configurations. A configuration of M is given by a sequence of triples
which encode the content of the tape together with information about the posi-
tion of the head, and, in addition, a encoding of the current state. Padding the
tapes with blanks we can assume that we have fixed tape length l. To code the
three symbols 0, 1 and blank we will use two bits, (0, 1), (1, 1), and (0, 0) respec-
tively. Now a triple xi = (ai, bi, ci) in the sequence x0, . . . , xl codes the symbol
of cell l by al and bl, and cl is 1 only for the position of the head at the current
state and 0 for all other cells. Finally we add a code w for the current state
at the end of this sequence, such that a configuration is uniquely determine by
the bit string x0, . . . , xl, w which has a fixed length for all configurations. In the
sequent by configuration we mean the path containing the configuration code as
described above.

The label0 function. Given a configuration p and an input x, the function
label0(; ; p, x;) returns 1, 0 or 0∗0 depending on the configuration and the input
x: 1 if the configuration leads to the acceptance of x, 0 if it leads to rejection,
and 0 ∗ 0 if p is a non-halting configuration. label0(; ; p, x;) can be defined by
composition and simultaneous recursion over tier 1. Since simultaneous tier 1
recursion can be simulated in T 1 (lemma 4), label0 is a NC1 function.
2 In fact, such a tree will have a lot of branches which do not represent configurations;

but these branches will not disturb.

10 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

Configuration trees. The configuration tree of time 0 is a perfect balanced
tree of hight 3s0pxq + 3s1 + m, labeled by 0, 1, or 0 ∗ 0, according to label0,
where m is the length needed to represent w (the code of the state). Its branches
“contain” all possible configurations. A branch p is labeled by 1 if p accepts x,
by 0 if p rejects x, and by 0 ∗ 0 otherwise (i.e. if p has an action state or if it is
not a configuration).

We define ct0
3s0,3s1+m by meta-induction on the second index with a side-

induction on the first index in the base case. Note that this definition requires
space recursion, i.e., recursion in tier 1. It calls in the base case label0, which
also needs a space recursion. Since this is in the base case, we do not need
(step-)nested recursion here.

ct0
0,0(; ; p, u, x;) = label0(; ; p, x;), (1)

ct0
a+1,0(; ; p, 0, x;) = ct0

a,0(; ; p, x, x;), (2a)

ct0
a+1,0(; ; p, 1, x;) = ct0

a,0(; ; p, x, x;), (2b)

ct0
a+1,0(; ; p, u ∗ v, x;) = ct0

a+1,0(; ; p ∗ 0, u, x;) ∗ ct0
a+1,0(; ; p ∗ 1, v, x;), (2c)

ct0
a,b+1(; ; p, u, x;) = ct0

a,b(; ; p ∗ 0, u, x;) ∗ ct0
a,b(; ; p ∗ 1, u, x;). (3)

Case (1) and the cases of (2) define ct0
a,0 by meta-induction on a. Within this

definition, the cases (2a)–(2c) use tier 1 recursion. Finally, case (3) is the induc-
tion step for the definition of ct0

a,b by meta-induction on b.
Now, we define the initial configuration tree ct0 as follows.

ct0(; ; x;) = ct0
3s0,3s1+m(; ; 0, x, x;).

Notice, that ct0 is a NC1 function.
The idea is now to update this configuration tree along the time the machine

is running.

The label+1 function. One can define a function label+1 which for a configu-
ration p and a configuration tree z, returns 0, 1 or 0∗0 according as configuration
p is rejecting, accepting or undetermined, using the labels of the successor con-
figurations of p in z.

label+1 uses simultaneous tier 1 recursion.
Note, that label+1 is a NC1 function.

The update function. The aim of the function ct+1 is to update a configura-
tion tree for time t to the configuration tree at time t+1. Here, we need the space
recursion with step function ∗ and base function label+1, in order to build a
copy of the given configuration tree where the leaves are updated according to
label+1.

Towards an implicit characterization of NCk 11

We define ct+1
a,b in analogy to ct0

a,b by meta-induction on a and b.

ct+1
0,0(; ; p, u, x; z) = label+1(; ; p, x; z)

ct+1
a+1,0(; ; p, 0, x; z) = ct+1

a,0(; ; p, x, x; z),

ct+1
a+1,0(; ; p, 1, x; z) = ct+1

a,0(; ; p, x, x; z),

ct+1
a+1,0(; ; p, u ∗ v, x; z) = ct+1

a+1,0(; ; p ∗ 0, u, x; z) ∗ ct+1
a+1,0(; ; p ∗ 1, v, x; z),

ct+1
a,b+1(; ; p, u, x; z) = ct+1

a,b(; ; p ∗ 0, u, x; z) ∗ ct+1
a,b(; ; p ∗ 1, u, x; z).

The update of a configuration tree for time t is the configuration tree for
time t + 1. For a given configuration tree z, such an update can be performed
by the function ct+1:

ct+1(; ; x; z) = ct+1
3s0,3s1+m(; ; 0, x, x; z).

Note, that ct+1 is a NC1 function.

The iteration. The iteration function iterates the update function t0pxq2 + t1
times.

We define it by use of two auxiliary functions it1 and it2. it1 iterates the
update function apxq times; it2 iterate then it1 pxq times and add b more
iterations of the update function.

For a given natural number n, let ct+n(; ; x; z) be the ct+1 function com-
posed with itself n times. Thus, in an inductive definition of ct+n we have that
ct+(n+1)(; ; x; z) is defined as ct+1(; ; x;ct+n(; ; x; z)).

– it1 is defined by recursion in tier 2.

it1(; 0; x; z) = z,

it1(; y + 1;x; z) = ct+t0(; ; x; it1(; y;x; z)).

– it2 is defined by recursion in tier 3:

it2(0; y;x; z) = ct+t1(; ; x; z),
it2(u + 1; y;x; z) = it1(; y;x; it2(u; y;x; z)).

Note, that it1 and it2 are the only non NC1 functions needed in this proof.
Now, we just have to iterate the ct+1 function TM times, on the initial

configuration tree ct0, in order to obtain the configuration tree ctTM :

ctTM (x) = it2(x;x;x;ct0(; ; x;))

Finally, recursing on x we can follow in ctTM the path corresponding to the
initial configuration and we read its label: 0 or 1.

12 G. Bonfante, R. Kahle, J.-Y. Marion, I. Oitavem

5 Conclusion

Putting together the theorems 5 and 7 one gets:

Theorem 8.
T 2 ⊆ NC2 ⊆ T 3.

As stated in the proof of theorem 7, only the functions which are performing
the iteration are not NC1 functions. The higher tiers are used only for the
iteration. It is straightforward that one additional tier on top enables us to
define an iteration of the update function log(n) times the length of iteration
definable by use of the lower tiers. Together with the extension of the upper
bound to T k, stated in theorem 6, one gets:

Theorem 9. For k ≥ 2 we have:

T k ⊆ NCk ⊆ T k+1.

As a corollary we get another characterization of NC as the union of the the
term systems T k, k ∈ IN :

Corollary 10.
NC =

⋃
k∈IN

T k.

References

[AJST01] Klaus Aehlig, Jan Johannsen, Helmut Schwichtenberg, and Sebastiaan Ter-
wijn. Linear ramified higher type recursion and parallel complexity. In
R. Kahle, P. Schroeder-Heister, and R. Stärk, editors, Proof Theory in Com-
puter Science, volume 2183 of Lecture Notes in Computer Science, pages
1–21. Springer, 2001.

[BC92] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
poly-time functions. Computational Complexity, 2:97–110, 1992.

[Blo94] S. Bloch. Function-algebraic characterizations of log and polylog parallel
time. Computational Complexity, 4(2):175–205, 1994.

[BM04] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: A language for
polynomial time computation. In Igor Walukiewicz, editor, Foundations of
Software Science and Computation Structures, 7th International Conference,
FOSSACS 2004, volume 2987 of Lecture Notes in Computer Science, pages
27–41. Springer, 2004.

[BO04] S. Bellantoni and I. Oitavem. Separating NC along the δ axis. Theoretical
Computer Science, 318:57–78, 2004.

[Clo90] P. Clote. Sequential, machine independent characterizations of the parallel
complexity classes ALogTIME, ack, nck and nc. In S. Buss and P. Scott,
editors, Feasible Mathematics, pages 49–69. Birkhäuser, 1990.

[Hof99] Martin Hofmann. Linear types and non-size-increasing polynomial time com-
putation. In Symposium on Logic in Computer Science (LICS ’99), pages
464–473. IEEE, 1999.

Towards an implicit characterization of NCk 13

[Hof02] Martin Hofmann. The strength of non-size increasing computation. In POPL
’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 260–269. ACM Press, New York, NY,
USA, 2002.

[Lei95] Daniel Leivant. Ramifed recurrence and computational complexity I: Word
recurrence and poly-time. In P. Clote and J. B. Remmel, editors, Feasible
Mathematics II, pages 320–343. Birkhäuser, 1995.

[Lei98] Daniel Leivant. A characterization of NC by tree recursion. In FOCS 1998,
pages 716–724. IEEE Computer Society, 1998.

[LM93] Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of
poly-time. Fundamenta Informaticae, 19(1/2):167–184, 1993.

[LM95] Daniel Leivant and Jean-Yves Marion. Ramified recurrence and compu-
tational complexity II: substitution and poly-space. In L. Pacholski and
J. Tiuryn, editors, Proceedings of CSL 94, pages 486–500. LNCS 933, Springer
Verlag, 1995.

[LM00] Daniel Leivant and Jean-Yves Marion. A characterization of alternating log
time by ramified recurrence. Theoretical Computer Science, 236(1–2):192–
208, 2000.

[Nee04] Peter Møller Neergaard. A functional language for logarithmic space. In
Prog. Lang. and Systems: 2nd Asian Symp. (APLAS 2004), volume 3302 of
LNCS, pages 311–326. Springer-Verlag, 2004.

[Nig05] Karl-Heinz Niggl. Control structures in programs and computational com-
plexity. Annals of Pure and Applied Logic, 133(1-3):247–273, 2005. Festschrift
on the occasion of Helmut Schwichtenberg’s 60th birthday.

[Oit04] Isabel Oitavem. Characterizing NC with tier 0 pointers. Mathematical Logic
Quarterly, 50:9–17, 2004.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. J. Comp. System Sci., 22:365–
383, 1981.

[Sim88] H. Simmons. The realm of primitive recursion. Archive for Mathematical
Logic, 27:177–188, 1988.

