
Architecture of a Morphological Malware Detector

Guillaume Bonfante, Matthieu Kaczmarek and Jean-Yves Marion
Nancy-Université - Loria - INPL - Ecole Nationale Supérieure des Mines de Nancy

B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex, France

Abstract

Most of malware detectors are based on syn-
tactic signatures that identify known malicious
programs. Up to now this architecture has
been sufficiently efficient to overcome most of
malware attacks. Nevertheless, the complex-
ity of malicious codes still increase. As a re-
sult the time required to reverse engineer ma-
licious programs and to forge new signatures is
increasingly longer.

This study proposes an efficient construction
of a morphological malware detector, that is a
detector which associates syntactic and seman-
tic analysis. It aims at facilitating the task of
malware analyst providing some abstraction on
the signature representation which is based on
control flow graphs (CFG).

We build an efficient signature matching
engine built over tree automata techniques.
Moreover we describe a generic graph rewriting
engine in order to deal with classic mutations
techniques. Finally, we provide a preliminary
evaluation of the strategy detection carrying
out experiments on a malware collection.

Introduction

The identification of malicious behavior is a
difficult task. Until now, no technologies
have been able to automatically prevent the
spread of malware. Several approach have been
considered but neither syntactic analysis nor
behavioral consideration were really effective.

Presently, human analysis of malware seems
to be the best strategy, next malware detec-
tors based of signature remains the most reli-
able solution. From this point of view, we have
tried to easier the task which consist in finding
a good signature within a malicious programs.
Our technique has been inspired from the ar-
ticle [6] where control flow graphs are used to
detect the different instances of the computer
virus MetaPHOR.

Generally speaking, detection strategies
base on string signatures uses a database of
regular expressions and a string matching en-
gine to scan files and detect infected ones.
Each regular expression of the database is de-
signed to identify a known malicious program.
There are at least three difficulties tied to this
approach. First, the identification of a mal-
ware signature requires a human expert and
the time to forge a reliable signature is long
compared to the time related to a malware at-
tack. Second, string signature approach can
be easily bypassed by obfuscation methods.
Among recent work treating this subject, we
propose to see for example [4, 7, 14]. Third, as
the quantity of malware increase, the ratio of
false positive augments become a crucial issue.
And removing old malware signatures would
open doors for outbreaks of re-engineered mal-
ware.

Thus, a current trend in the community pro-
poses to design next generation of malware de-
tectors based on semantic aspects. [11, 9, 20].
However, most of semantics properties are dif-

1

ficult to decide and even heuristics can be very
complex as it is illustrated in the field of com-
puter safety. For those reasons, we try to pro-
pose [5] and to construct a morphological anal-
ysis in order to detect malware. The idea
is to recognize the shape of a malicious pro-
gram. That is, unlike string signature detec-
tion, we are not only considering a program as
a flat text, but rather as a semantics object, so
adding in some sense a dimension to the anal-
ysis. Our approach tries to combine several
features: (a) to associate syntactic and seman-
tic analysis, (b) to be efficient and (c) to be as
automatic as possible.

Our morphological detector uses a set of
CFG which plays the role of a malware sig-
nature database. Next, the detection consists
in scanning files in order to recognize the shape
of a malware. As we see, the design is closed
to a string signature based detector and so we
think that both approaches may be combined
in a near future. Moreover, it is important to
notice that this framework make the signature
extraction easier. Indeed, either the extrac-
tion is fully automatic when the malware CFG
is relevant or the task of signature makers is
facilitated since they can work on an abstract
representation of malware.

This detection strategy is close to [9, 6] but
we put our strengths to optimize the efficiency
of algorithms. For that sake, we use tree au-
tomata, a generalization to trees of finite state
automata over strings [10]. Here, we transform
CFG into trees with, intuitively, pointers in or-
der to represent back edges and cross edges.
Then, the collection of malware signatures is
a finite set of trees and so a regular tree lan-
guage. Thanks to Myhill-Nerode construction,
the minimal automaton gives us a compact and
efficient database. Notice that the construc-
tion of the database is iterative and it is easy
to add the CFG of a newly discovered mali-
cious program.

Another issue of malware detections is the

soundness with respect to classic mutation
techniques. Here, we detect isomorphic CFG
and so we take into account several classi-
cal obfuscation methods. Moreover, we add a
rewriting engine which normalizes CFG in or-
der to have a robust representation of the con-
trol flow with respect to mutations. Related
works are [6, 8, 20] where program data flow is
also considered.

The design of this complete chain of process
is summarized by Figure 1.

Figure 1: Design of the control flow detector

We also provide large scale experiments,
with a collection of 10156 malicious pro-
grams and 2653 sane programs. Those results
are promising, with a completely automatic
method for the signature extraction we have
obtained a false positive ratio of 0.1%.

This study is organized as follows. First we
expose the principles of CFG extraction and
normalization. Then, we present a matching
engine for CFG that is based on tree automata.
Finally we carry out some experiments to val-
idate our method.

2

1 CFG in x86 languages

Road-map. Since we focus on practical as-
pects we choose to work on a concrete assem-
bly language. This language is close to x86
assembly language. We detail how to extract
CFG from programs, we underline the difficul-
ties that can be encountered and we outline
how they can be overcome with classic tech-
niques. Finally, we study the problem of CFG
mutations, we propose normalize the extracted
CFG according to rewriting rules in order to
remove common mutations.

An x86 assembly language. We present
the grammar of the studied programming lan-
guage. The computation domain is the inte-
gers and we use a subset of the commands of
the x86 assembly language. The important fea-
ture is that we consider the flow instructions as
in x86, as a result the method that we develop
can be directly applied to concrete programs.

Addresses N
Offsets Z

Registers R
Expressions E ::= Z | N | R | [N] | [R]

Flow
instructions

If ::= jmp E | call E | ret | jcc Z

Sequential
instructions

Id ::= mov E E | comp E E | ...

Programs P ::= Id | If | P ; P

Next, a program is a sequence of instructions
p = i0 ; ... ; in−1. The address of the instruc-
tion ik is k. In order to ease the reading and
without loss of generality, we suppose that i0 is
the first instruction to be executed, the address
0 is the so called entry point of the program.

We observe that the control flow of programs
is driven by only four kinds of flow instruc-
tions. Given an instruction ik ∈ If , the possi-
ble transfers of control flow are the following.

• If ik is an unconditional jump jmp e. The
control is transferred to the address given
by the value of e.

• If ik is a conditional jump jcc x. If its
associated condition is true, the control is
transferred to k + x. Otherwise, the con-
trol is transferred to the address k + 1 of
the next instruction.

• If ik is a function call call e. The address
k+1 is pushed on the stack and the control
is transferred to the the value of e.

• If ik is a function return ret. An address
is popped from the stack and the control
is transferred to this address.

Prerequisites. The extraction of the CFG
from a program is tied to several difficulties.
First, we need access to the instructions of the
program. As a result packing and encryption
techniques can thwart the extraction. This
problem is part of the folklore, indeed classi-
cal string signature detectors also have to face
those techniques. Many solutions such as sand-
boxes and generic unpackers have been devel-
oped to overcome this difficulty. The presen-
tation of those solutions exceeds the scope of
the current study then we refer to the text-
books [13, 12, 18].

Second, we are confronted to obscure se-
quence of instructions such as push a; ret

which have the behavior of the instruction
jmp a. This is also part of of the folklore of
the domain and we will suppose that such se-
quence of instructions are normalized during
the disassembly phase of the extraction.

Third, the target addresses of jumps and
function calls have to be dynamically com-
puted. For example, when we encounter the
instruction jmp eax we need the value of the
register eax in order to follow the control flow
transfer. In such cases we rely on an heuristic
(|e|) which provide the value of the expression
e if it can be statically computed. If the value
cannot be computed then (|e|) = ⊥. Such an
heuristic can be based on partial evaluation,

3

emulation or any other static analysis tech-
nique.

The extraction procedure. The control
flow consists in the different paths that might
be traversed through the program during its
execution. It is frequently represented by a
graph named a control flow graph (CFG). The
vertices stand for addresses of instructions and
the edges represent the possible paths that the
control flow can follow.

We suppose that we have access to the code
of programs and that we have an heuristic (| |)
to evaluate expressions. Table 1 presents a pro-
cedure to abstract CFG from programs. We
observe that this procedure closely follows the
semantics of flow instructions. Indeed, the ver-
tices of the CFG are labeled accordingly to
the instruction at the night address and the
nodes are linked according to the possible con-
trol transfers.

• The symbol inst of arity 1 labels ad-
dresses of sequential instructions. There
is one successor: the address of the next
instruction.

• The symbol jmp of arity 1 labels addresses
of unconditional jumps. There is one suc-
cessor: the address to jump to.

• The symbol jcc of arity 2 labels addresses
of conditional jumps. There is two suc-
cessors: the address to jump to when the
condition is true and the address of the
next instruction.

• The symbol call of arity 2 labels ad-
dresses of function calls. There is two suc-
cessors: the address of the function to call
and the return address, that is the address
of the next instruction.

• The symbol end of arity 0 labels addresses
of function returns and undefined instruc-
tions. There is no successor.

The entry point of the program correspond to
the root of the CFG.

Instruction Graph

in ∈ Id

in = jmp e
(|e|) = k

in = call e
(|e|) = k

in = jcc x

Otherwise

Table 1: Control flow graph extraction

Normalize mutations. Our CFG represen-
tation is a rough abstraction of programs.
Indeed we do not make any distinction be-
tween the different kinds of sequential instruc-
tion, there are all represented by nodes labeled
with inst. This first abstraction level makes
the CFG sound wrt mutations which substi-
tutes instructions with the same behavior. For
example the replacement of the instruction
mov eax 0 by the instruction xor eax eax does
not impact our CFG representation.

However, the soundness with respect to clas-
sic mutations techniques remains an important
issue. Indeed, some well know mutation tech-
niques can alter the CFG of malicious pro-
grams. In order to recover a sound representa-
tion of the control flow we apply reductions on
CFG. A reduction is defined by a graph rewrit-
ing rule. As a case study, we consider three
reductions associated to classic mutation tech-
niques. Of course several other reductions can
be defined in order to handle more mutations
techniques. We use the following reductions

• Concatenate consecutive instructions into
blocks of instructions.

4

• Realign code removing superfluous uncon-
ditional jumps.

• Merge consecutive conditional jumps.

Those abstractions can be defined through the
graph rewriting rules of Table 2. From now
on CFG(p) denotes the flow graph which cor-
respond to the reduced CFG of the program p.
Figure 2 presents an assembly program and its
reduced CFG.

0: cmp eax 0
1: jne +7
2: mov ecx eax
3: dec ecx
4: mul eax ecx
5: cmp ecx 1
6: jne −3
7: jmp +2
8: inc ecx
9: ret

Figure 2: A program and its CFG

We remark that each rewriting rule impose
a diminution of the size of the rewritten graph
then the reduction clearly terminates. More-
over, since there is no critical pair we have
no problem of confluence. Nevertheless, nor-
malizing mutation through rewriting rules is a
generic principle that could be applied on so-
phisticated cases. Then, the issues of termi-
nation and confluence will be carefully consid-
ered.

Table 3 presents mutations of the program
of Figure 2. All of them have the same reduced
CFG as the original program.

2 Efficient database

Road-map. Morphological detection is
based on a set of malware CFG which plays
the role of malware signatures. This collection
of CFG is compiled into a tree automaton

thanks to a term representation. Since tree
automata fulfill a minimization property,
we obtain an efficient representation of the
database. Next, we apply this framework for
the sub-CFG isomorphism problem in order
to detect malware infection.

From graphs to terms. A path is words
over {1, 2}∗, we write ε the empty path. We
define the path order for any path ρ, τ ∈ {1, 2}∗
and any integer i ∈ {1, 2}

ρ1 < ρ2 ρ < ρi ρ < τ ⇒ ρρ′ < ττ ′

A tree domain is a set d ⊂ {1, 2}∗ such that
for any path ρ ∈ {1, 2}∗ and any integer i ∈
{1, 2}

ρi ∈ d⇒ ρ ∈ d

A tree over a set of symbol F is a pair t =
(d(t), t̂) where d(t) is a tree domain and t̂ is a
function from d(t) to F.

We consider the set of symbols F =
{inst, jmp, call, jcc, ret} ∪ {1, 2}∗ and the
trees overs this set. In such trees, a nodes la-
beled by path ρ = {1, 2}∗ is thought as pointers
to the corresponding node of the tree. Then, a
tree have two kind of nodes: the inner nodes la-
beled by symbols of {inst, jmp, call, jcc, ret}
and the pointer nodes labeled by path in
{1, 2}ρ. In the following we write d̊(t) the set
of inner nodes of the tree t, that is

d̊(t) =
{
ρ

∣∣∣∣ ρ ∈ d(t)
t̂(ρ) ∈ {inst, jmp, call, jcc, ret}

}
Next a tree t is well formed if for any paths

ρ, τ ∈ d(t)(
t̂(ρ) = τ

)
⇒
(
τ ∈ d̊(t) and ρ ≤ τ

)
We observe that any CFG can be repre-

sented by a unique well formed tree tree

5

Concatenate
instructions

Realign code Merge jcc

→ → →

Table 2: Control flow graph reductions

Instruction
substitution

Block
substitution

Block
permutation

jcc

obfuscation
All in one

0: cmp eax 0
1: jne +7
2: mov ecx eax
3: sub ecx 1
4: mul eax ecx
5: cmp ecx 1
6: jne −3
7: jmp +2
8: mov eax 1
9: ret

0: cmp eax 0
1: jne +8
2: push eax
3: pop ecx
4: dec ecx
5: mul eax ecx
6: cmp ecx 1
7: jne −3
8: jmp +2
9: inc ecx

10: ret

0: cmp eax 0
1: jne +7
2: mov ecx eax
3: dec ecx
4: mul eax ecx
5: cmp ecx 1
6: jne −3
9: ret
8: inc ecx
9: jmp −2

0: cmp eax 0
1: jne +9
2: mov ecx eax
3: dec ecx
4: mul eax ecx
5: cmp ecx 2
6: ja −3
7: cmp ecx 1
8: jne −5
9: jmp +2

10: inc ecx
11: ret

0: cmp eax 0
1: je +2
2: jmp +10
2: push eax
3: pop ecx
4: sub ecx 1
5: mul eax ecx
6: cmp ecx 2
7: ja −3
8: cmp ecx 1
9: jne −5

10: ret
11: mov ecx 1
12: jmp −2

Table 3: Control flow graph mutations

Tree automata. A finite tree automaton is
a tuple A = (Q,F,Qf ,∆), where Q is a finite
set of states, F is a set of symbols, Qf ⊂ Q
is a set of final states and ∆ is a finite set of
transition rules of the type a(q1 ... qi)→ q with
a ∈ C has arity i and q, q1, ... , qi ∈ Q.

A run of an automaton on a tree t starts
at the leaves and moves upward, associating
a state with each sub-tree. Any symbol a of
arity 0 is labeled by q if a→ q ∈ ∆. Next,
if the direct sub-trees t1, ... , tn of a tree t =
a(t1, ... , tn) are respectively labeled by states
q1, ... , qn then the tree t is labeled by the state
q if a(q1, ... , qn)→ q ∈ ∆. A tree t is accepted
by the automaton if the run labels t with a
final state. We observe that a run on a tree t
can be computed in linear time, that is O(|t|).

For any automaton A, we write L(A) the set
of trees accepted by A. A language of trees L
is recognizable if there is a tree automaton A
such that L = L(A). We define the size |A| of
an automaton A as the number of its rules.

Tree automata have interesting properties.
First, it is easy to build an automaton which
recognize a given finite set of trees. This oper-
ation can be done in linear time, that is O(n)
where n is the sum of the sizes of the trees in
the language. Second, we can add new trees to
the language recognized by an automaton com-
puting a union of automata, see [10]. Given an
automaton A, the union of A with an automa-
ton A ′ can be computed in linear time, that is
O(|A ′|).

Finally, for a given recognizable tree lan-

6

guage, there exists a unique minimal automa-
ton in the number of states which recognizes
this language. This property ensures that the
minimal automaton is the best representation
of the tree language in trees of tree automata.

Theorem 1 (From [10]). For any tree automa-
ton A which recognize a tree language L we
can compute in quadratic time (O(|A|2)) a tree
automaton Â which is the minimum tree au-
tomaton recognizing L up to a renaming of the
states.

Building the database. We explain how
this framework can be used to detect mal-
ware infections. Suppose that we have a set
{t1, ... , tn} of malware CFG represented by
trees. Since this set is finite, there is a tree
automaton A which recognizes it.

Next, consider the tree representation t of a
given program . Computing a run of A on t,
we can decide in linear time if this tree is one
of the the trees obtained from malware CFG.
This means that that we can efficiently decide
if a program have the same CFG as a known
malware.

Finally, we can speed up the detection com-
puting the minimal automaton which recog-
nize the language {t1, ... , tn}. From a practical
point of view this is the most efficient represen-
tation of the malware CFG database.

Detecting infections. Actually, when a
malicious programs infects an other program,
it includes its own code within the program of
its host. Then, we can reasonably suppose that
the CFG of the malicious program appears as
a subgraph of the global CFG of the infected
program. As a result, we can detect such an in-
fection by deciding the subgraph isomorphism
problem within the context of CFG.

First we have to observe that we are not
confronted with the general sub-graph isomor-
phism since CFG are graphs with strong con-

straints. In particular the edge labeling prop-
erty implies that a CFG composed of n nodes
accepts at most n subgraphs. As a result,
the sub-CFG isomorphism problem is not NP-
complete. Then to detect sub-CFG it is suffi-
cient to run the automaton on the tree repre-
sentations of any sub-CFG.

3 Experiments

Road-map. We consider the win32 binaries
of VX Heavens [2] malware collection. This
collection is composed of 10156 malicious pro-
grams. Then, we have collected 2653 win32
binaries from a fresh installation of Windows
VistaTM. This second collection is considered
as sane programs.

Using those samples we experiments with
our implementation of the morphological de-
tector. We focus our attention on false posi-
tive ratios in order to validate the our method.
Indeed, we have to know if it is possible to dis-
criminate sane programs from malicious ones
only considering their CFG. The following ex-
perimental results agree with this hypothesis.

CFG extraction in practice. To overcome
the difficulties of CFG extraction we have cho-
sen the following solutions

• We use the unpacking capabilities of
ClamAVTM [3].

• We have implemented a dynamic disas-
sembler based on the disassembler library
Udis86 [1]. Our module is able to follow
the control flow and it keep track of the
stack in order to remove push a; ret se-
quences.

• The evaluation heuristic (|e|) proceed as
follows. When we encounter a dynamic
flow instruction, we emulate the preceding
block of sequential instructions in order

7

to recover the value of e. Our emulation
technology is also build over Udis86. It
is limited to a subset of x86 assembly in-
struction, interruptions and system calls
are not taken into account.

• We reduce the obtained CFG according to
the rules of Table 2.

Figure 3 presents the result of the CFG ex-
traction from the malware database. About
5% of the database are programs with a non
valid PE header, they produce an empty graph.
Then we are able to extract a CFG of more that
5 nodes from about 80% of the program of the
database. The remaining 15% produce a CFG
which have between 1 and 5. We think that
those graph are too small to be relevant.

Figure 3 gives the sizes of the reduced CFG
extracted from the programs of those collec-
tions. On the X axis we have the upper bound
on the size of CFG and on the Y axis we have
the percentage of CFG whose size is lower than
the bound.

Building the database. The size of mal-
ware control flow graphs clearly impact the ac-
curacy of the control flow detector. We have
observed that the graphs extracted from some
malware were too small to be relevant and the
resulting detector made many false alerts be-
cause of a few such graphs. As a result, we
impose a lower bound on the size of the graphs
that we include in the database. Next, we have
done several tests using different lower bounds.

Let N ∈ N be the lower bound on the size of
CFG. We build the minimized automaton AN

M
which recognizes the set of tree representations
of malware CFG. We define the morphological
detector DN

M as a predicate such that for any
program p ∈ P we have DN

M(p) = 1 if a mal-
ware CFG appears as a subgraph of CFG(p)
and DN

M(p) = 0 otherwise. We have seen in
the previous sections that DN

M can be decided
using AN

M .

This design has several advantages. First,
when a new malicious program is discovered,
one can easily add the canonical tree of its
CFG to the database using the union of tree
automata and a new compilation to obtain a
minimal tree automaton.

The computation of the ‘not minimal’ au-
tomata takes about 25 minutes. The mini-
mization takes several hours but this delay is
not so important. Indeed, within the context
of an update of the malware database, during
the minimization we can release the ‘not min-
imal’ automaton. Indeed, even if this is not
the best automaton it still recognize the mal-
ware database and it could be used until the
minimization is terminated.

Evaluation. As said above we dispose of a
collection of 10156 malicious programs and
2653 sane programs. Figure 3 gives the sizes of
the reduced CFG extracted form the programs
of those collections. On the X axis we have the
upper bound on the size of CFG and on the Y
axis we have the percentage of CFG whose size
is lower than the bound.

Figure 3: Sizes of control flow graphs

We are interested by false positives, that is
sane programs detected as malicious. For that,
we have collected 2653 programs from a fresh
installation of Windows VistaTM. Let us note S
this set of programs. Let N ∈ N be a lower
bound on the size of malware CFG, we con-
sider the following approximation of the false

8

positives of the detector DN
M

False positives {p | DN
M(p) = 1 and p ∈ S}

We do not evaluate false negatives, that is
undetected malicious programs. Indeed, by
construction all malicious programs of our mal-
ware collection are detected by the morphologi-
cal detector. Nevertheless, this methods seems
promising for this aspect. Indeed, the study [6]
has shown that a CFG based detection allows
to detect the high-obfuscating computer virus
MetaPHOR with no false negative.

Experimental results. We have built tree
automata from the malware samples. Ac-
cording to the previous section we obtain the
morphological detectors DN

M. We have tested
those detectors on the collection of saneware
in order to evaluate the false positives. It
takes about 5 h 30 min to analyze the collec-
tion of saneware, this represents the analysis
of 2′319′294 sub-CFG. Table 4 presents the
results. The first column indicates the con-
sidered detector according to the lower bound
N . The second column indicates the num-
ber of false negatives, those are malicious pro-
grams whose CFG have sizes lower than the
bound. The ratio is computed with respect
to the whole database of 10156 malicious pro-
grams. The last column indicates the number
of false positives and the ratio with respect to
the collection of 2653 sane programs.

3.1 Analysis.

As expected, we observe that the false neg-
atives and the false positives respectively in-
crease and decrease with the lower bound on
the size of CFG. Over 15 nodes, the CFG seems
to be a relevant criterium to discriminate mal-
ware.

Concerning the remaining false pos-
itives. The libraries ir41 qc.dll and

Lower Bound False positives Undetected
1 100.00% 4.80%
2 83.78% 5.43%
3 76.82% 16.43%
4 76.77% 16.66%
5 57.98% 20.01%
6 34.84% 21.50%
7 20.57% 23.34%
9 12.06% 24.43%
10 2.17% 26.47%
11 2.04% 27.78%
12 1.60% 29.35%
13 0.71% 30.74%
15 0.09% 36.52%

Table 4: Results of the experiments

ir41 qcx.dll, and the malicious program
Trojan.Win32.Sechole have the same CFG
composed of more that one thousand nodes.
We have tested those programs with com-
mercial antivirus software and the libraries
ir41 qc.dll and ir41 qcx.dll are not detected
whereas the program Trojan.Win32.Sechole

is detected as a malware. The malicious
programs seems to be based on the dynamic
library and the extraction algorithm was
not able to extract the CFG related to the
malicious program.

Concerning the ration of undetected mal-
ware, The only way to improve the detector
is to implement a better heuristic for control
flow graph extraction. In its current version

9

our prototype only use a few heuristics. We
are currently working on this problem.

For comparison, statistical methods used
in [16] induce false negatives ratios between
36 % and 48 % and false positive ratios be-
tween 0.5 % and 34 %. A detector based on ar-
tificial neural networks developed at IBM [19]
presents false negatives ratios between 15 %
and 20 % and false positive ratios lower than
1 %. The data mining methods surveyed in [17]
present false negatives ratios between 2.3 %
and 64.4 % and false positive ratios between
2.2 % and 47.5 %. Heuristics methods from
antivirus industry tested in [15] present false
negatives ratios between 20.0 % and 48.6 %
and false positive ratios lower than 0.2 %.

References

[1] http://udis86.sourceforge.net.

[2] http://vx.netlux.org.

[3] http://www.clamav.net.

[4] Ph Beaucamps and E Filiol. On the possi-
bility of practically obfuscating programs
towards a unified perspective of code pro-
tection. Journal in Computer Virology,
3(1):3–21, April 2007.

[5] G. Bonfante, M. Kaczmarek, and J.Y.
Marion. Control Flow Graphs as Malware
Signatures. WTCV, May, 2007.

[6] D. Bruschi, Martignoni, L., and
M. Monga. Detecting self-mutating
malware using control-flow graph match-
ing. Technical report, Università degli
Studi di Milano, September 2006.

[7] M. Christodorescu and S. Jha. Test-
ing malware detectors. ACM SIGSOFT
Software Engineering Notes, 29(4):34–44,
2004.

[8] M. Christodorescu, S. Jha, J. Kinder,
S. Katzenbeisser, and H. Veith. Software
transformations to improve malware de-
tection. Journal in Computer Virology,
3(4):253–265, 2007.

[9] M. Christodorescu, S. Jha, S.A. Seshia,
D. Song, and R.E. Bryant. Semantics-
aware malware detection. IEEE Sympo-
sium on Security and Privacy, 2005.

[10] H. Comon, M. Dauchet, R. Gilleron,
F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata tech-
niques and applications. Available on:
http://www. grappa. univ-lille3. fr/tata,
10, 1997.

[11] M. Dalla Preda, M. Christodorescu,
S. Jha, and S. Debray. A Semantics-
Based Approach to Malware Detection. In
POPL’07, 2007.

[12] E. Filiol. Computer Viruses: from Theory
to Applications. Springer-Verlag, 2005.

[13] E. Filiol. Advanced viral techniques:
mathematical and algorithmic aspects.
Berlin Heidelberg New York: Springer,
2006.

[14] E. Filiol. Malware pattern scanning
schemes secure against black-box analysis.
In 15th EICAR, 2006.

[15] D. Gryaznov. Scanners of the Year 2000:
Heuristics. Proceedings of the 5th Inter-
national Virus Bulletin, 1999.

[16] J.O. Kephart and W.C. Arnold. Auto-
matic Extraction of Computer Virus Sig-
natures. 4th Virus Bulletin International
Conference, pages 178–184, 1994.

[17] M.G. Schultz, E. Eskin, E. Zadok, and
S.J. Stolfo. Data Mining Methods for
Detection of New Malicious Executables.

10

Proceedings of the IEEE Symposium on
Security and Privacy, page 38, 2001.

[18] P. Ször. The Art of Computer Virus Re-
search and Defense. Addison-Wesley Pro-
fessional, 2005.

[19] GJ Tesauro, JO Kephart, and GB Sorkin.
Neural networks for computer virus recog-
nition. Expert, IEEE [see also IEEE In-
telligent Systems and Their Applications],
11(4):5–6, 1996.

[20] Andrew Walenstein, Rachit Mathur, Mo-
hamed R. Chouchane, and Arun Lakho-
tia. Normalizing metamorphic malware
using term rewriting. scam, 0:75–84, 2006.

11

