
Quasi-interpretations

G. Bonfante a J.-Y. Marion a J.-Y. Moyen b

aLoria, Calligramme project, B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex,
France, and École Nationale Supérieure des Mines de Nancy, INPL, France.
bLoria, Calligramme project, B.P. 239, 54506 Vandœuvre-lès-Nancy Cédex,

France, and Université Henri Poincaré Nancy I, France.

Abstract

This paper presents in a reasoned way our works on resource analysis by quasi-
interpretations. The controlled resources are typically the runtime, the runspace or
the size of a result in a program execution.

Quasi-interpretations assign to each program symbol a numerical function which
is compatible with the computationnal semantics. The quasi-interpretation method
offers several advantages. It allows to predict system complexity, may provide hints
in order to optimize the execution, it gives resource certificates, and finally, can
be automated. We propose a method to determine if a program admits or not a
quasi-interpretation in a broad class which is relevant for feasible computations.
By combining the quasi-interpretation method with termination tools (here term
orderings), we have obtained several characterizations of complexity classes starting
from Ptime and Pspace.

1 Introduction

This paper is part of a general investigation on program complexity analysis.
We present the quasi-interpretation method which applies to any formalism
that can be reduced to transition systems. A quasi-interpretation gives a kind
of measures by assigning to each symbol of a system a monotonic numerical
function over R

+. A quasi-interpretation possesses two main properties. First,
the quasi-interpretation of a ground term is a real which bounds its size.
Second, a quasi-interpretation weakly decreases when a term is reduced.

Email addresses: bonfante@loria.fr (G. Bonfante), marionjy@loria.fr
(J.-Y. Marion), moyen@loria.fr (J.-Y. Moyen).

Preprint submitted to Theoretical Computer Science 27 October 2004

From a practical point of view, the bottom line is this. The quasi-interpretation
method is a tool to perform complexity analysis in a static way. Quasi-inter-
pretations allow to establish an upper bound on the size of intermediate values
which occur in a computation. This was used for a resource byte-code verifier
in [2]. Moreover in the context of mobile-code or of secured application, a
resource certificate can be sent.

We restrict our study to quasi-interpretations over R
+ which are bounded

by some polynomials. A consequence of Tarski’s Theorem [37] is that it is
decidable whether or not a program admits a quasi-interpretation. This leads
to an automatic synthesis procedure.

From a theoretical point of view, we combine quasi-interpretations with termi-
nation tools. We focus on simplification orderings and we consider in particular
Recursive Path Orderings introduced by Dershowitz [16]. It turns out that we
characterize the class Ptime of functions computable in polynomial time and
the class Pspace of functions computable in polynomial space.

This work is related to Cobham [11], Bellantoni and Cook [4], Leivant [26]
and Marion [27] ideas to delineate complexity classes. Note that most of the
machine-independent characterizations of complexity classes have an exten-
sional point of view. They study functions and do not pay too much attention
to the algorithmic aspects. In this paper, we try an alternative way of look-
ing at complexity classes by focusing on algorithms, that is the way things
are computed rather than what is computed. In this long-term research pro-
gram, the completeness problematic has moved and the nature of the problem
has changed. Indeed, the class of algorithms (with respect to some encod-
ing), say which run in polynomial time, is not recursively enumerable. So we
cannot expect to characterize all Ptime algorithms. But we think that this
question could shed light on the nature of computations and contribute to
intentional computability theory. Similar interrogations have been brought up
by Caseiro [8], Hofmann [20] and Jones [22].

The paper organization is the following. The next Section introduces the first
order functional programming language. The quasi-interpretations are defined
next in Section 3. We suggest a classification of quasi-interpretations which
induces a natural complexity hierarchy. Then, we study quasi-interpretation
properties. Section 4 establishes that it is decidable if a program admits a
quasi-interpretation wrt a broad class of polynomially bounded assignments.
Section 5 defines recursive path orderings used to prove termination of pro-
grams and some properties that we shall use later on. After these three sec-
tions, we state the main results at the beginning of Sections 6 and 7. Roughly
speaking, the first result says that programs which terminate by product or
lexicographic orderings are computable in polynomial-space. The second re-
sult means that programs that terminate by product ordering or that are tail

2

recursive are computable in polynomial time. It is worth noticing that we have
to compute the program by call by value semantics with a cache to have an
exponential speed-up. The last Section 8 is devoted to simulations.

2 First order functional programming

Throughout the following discussion, we consider three disjoint sets X ,F , C
of variables, function symbols and constructors.

2.1 Syntax of programs

Definition 1 The sets of terms and the rules are defined in the following way:

(Constructor terms) T (C) 3 u ::=c | c(u1, · · · , un)

(terms) T (C,F ,X) 3 t ::=c | x | c(t1, · · · , tn) | f(t1, · · · , tn)

(patterns) P 3 p ::=c | x | c(p1, · · · , pn)

(rules) D 3 d ::=f(p1, · · · , pn)→ t

where x ∈ X , f ∈ F , and c ∈ C. We shall use a type writer font for function
symbols and a bold face font for constructors.

Definition 2 A program is a quadruplet f = 〈X , C,F , E〉 such that E is a
set of D-rules. Each variable in the right-hand side of a rule also appears in
the left hand side of the same rule. We distinguish among F a main function
symbol whose name is given by the program name f.

Throughout, we consider orthogonal programs which is a sufficient condition
in order to be confluent. Following Huet [21], the program rules satisfy both
conditions: (i) Each rule f(p1, · · · , pn) → t is left-linear, that is a variable
appears only once in f(p1, · · · , pn), and (ii) there are no two left hand-sides
which are overlapping.

The size |t| of a term t is defined by |b| = 0 and |b(t1, . . . , tn)| = 1 +
∑

i |ti|
where b ∈ C ∪ F .

2.2 Semantics

The domain of the computed functions is the constructor algebra T (C). A
substitution σ is a mapping from variables to terms. We say that it is a

3

c ∈ C ti ↓ vi
(Constructor)

c(t1, · · · , tn) ↓ c(v1, · · · , vn)

ti ↓ vi f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = vi rσ ↓ v
(Function)

f(t1, · · · , tn) ↓ v

Fig. 1. Call by value semantics with respect to a program 〈X , C,F , E〉

constructor substitution when the range of σ is T (C). We note S the set
of these constructor substitutions.

We consider a call by value semantics which is displayed in Figure 1. The
meaning of t ↓ v is that t evaluates to the constructor term v. The program
f computes a partial function JfK : T (C)n → T (C) defined as follows. For all
ui ∈ T (C), JfK(u1, · · · , un) = v iff f(u1, · · · , un) ↓ v. Otherwise JfK(u1, · · · , un)
is undefined.

3 Quasi-interpretations

To approach the resource control problem, we suggest the concept of quasi-
interpretation which plays the main role in this study. Quasi-interpretations
have been introduced by Bonfante [5], Marion [30,31] and Marion-Moyen [32].

The set of non-negative real numbers is noted R
+.

Definition 3 (Assignment) An assignment of a symbol b ∈ F
⋃
C whose

arity is n is a function LbM : (R+)n → R
+ such that:

(Subterm) LbM(X1, · · · , Xn) ≥ Xi for all 1 ≤ i ≤ n.
(Weak Monotonicity) LbM is increasing (not necessarily strictly) with re-

spect to each variable.

We extend assignments L−M to terms canonically. Given a term t with n vari-
ables, the assignment LtM is a function (R+)n → R

+ defined by the rules:

Lb(t1, · · · , tn)M = LbM(Lt1M, · · · , LtnM)

LxM = X

Given two functions f : (R+)n → R
+ and g : (R+)m → R

+ such that n ≥ m,
we say that f ≥ g iff ∀X1, . . . , Xn : f(X1, . . . , Xn) ≥ g(X1, . . . , Xm).

4

There are some well-known and useful consequences of such definitions. We
have LsM ≥ LtM if t is a subterm of s. Then, for every substitution σ, LsM ≥ LtM
implies that LsσM ≥ LtσM.

Definition 4 (Quasi-interpretation) A program assignment L−M is an as-
signment of each program symbol. An assignment L−M of a program is a quasi-
interpretation if for each rule l → r,

LlM ≥ LrM

It is worth noticing that the above inequality is not strict which differs from
the notion of interpretation used to prove termination that we briefly present
in Section 3.6.

Example 5

Given a list l of tally natural numbers, sort(l) sorts the elements of l by
insertion. The constructor set is C = {tt,ff , 0,S,nil, cons}.

if tt then x else y → x

if ff then x else y → y

0 < S(y)→ tt

x < 0→ ff

S(x) < S(y)→ x < y

insert(a,nil)→ cons(a,nil)

insert(a, cons(b, l))→ if a < b then cons(a, cons(b, l))

else cons(b, insert(a, l))

sort(nil)→ nil

sort(cons(a, l))→ insert(a, sort(l))

It admits the following quasi-interpretation.

• LttM = LffM = L0M = LnilM = 0
• Lif then else M(X, Y, Z) = max(X, Y, Z)
• L<M(X, Y) = max(X, Y)
• LSM(X) = X + 1
• LconsM(X, Y) = LinsertM(X, Y) = X + Y + 1
• LsortM(X) = X

This example illustrates two important facts. Quasi-interpretations can be
max-functions like in the case of <. The quasi-interpretations of both sides of
a rule can be the same. For example take the last rule. We see that

Lsort(cons(a, l))M = A + L + 1 = Linsert(a, sort(l))M

5

Example 6

Given two binary words u and v over the constructor set {a,b, ε}, lcs(u, v)
returns the the length of the longest common subsequence of u and v. The
expression lcs(ababa,baaba) evaluates to S4(0) because the length longest
common subsequence is 4 (take baba).

lcs(ε, y)→ 0

lcs(x, ε)→ 0

lcs(i(x), i(y))→ S(lcs(x, y)) i, j ∈ {a,b}

lcs(i(x), j(y))→ max(lcs(x, j(y)), lcs(i(x), y)) i 6= j

max(n, 0)→ n

max(0, m)→ m

max(S(n),S(m))→ S(max(n, m))

It admits the following quasi-interpretation:

• LεM = L0M = 1
• LaM(X) = LbM(X) = LSM(X) = X + 1
• LlcsM(X, Y) = LmaxM(X, Y) = max(X, Y)

3.1 Taxonomy of Quasi-interpretations

We shall henceforth consider quasi-interpretations which are bounded by poly-
nomials. Other classes of assignments could be introduced such as elementary
or primitive recursive assignments, but we will not discuss about them in
this paper. This type of extensions is related to Lescanne’s paper [29] about
interpretation for termination proofs.

Definition 7 An assignment L−M is polynomial if for each symbol b ∈ F
⋃
C,

LbM is a function bounded by a polynomial. A quasi-interpretation L−M is poly-
nomial if the assignment L−M is polynomial.

Next, we classify polynomial quasi-interpretations according to the rate of
growth of constructor assignments.

Definition 8 Let c be a constructor of arity n > 0.

• An assignment of c is additive (or of kind 0) if

LcM(X1, · · · , Xn) =
n∑

i=1

Xi + α α ≥ 1

6

• An assignment of c is affine (or of kind 1) if

LcM(X1, · · · , Xn) = P (X1, · · · , Xn) + α α ≥ 1

where P is a polynomial whose degree is at most 1 in each variable.
• An assignment c is multiplicative (or of kind 2) if

LcM(X1, · · · , Xn) = Q(X1, · · · , Xn) + α α ≥ 1

where Q is any polynomial.

We classify polynomial quasi-interpretations by the kind of assignment given
to constructors.

• If each constructor assignment is additive then the quasi-interpretation is
additive.
• If each constructor assignment is affine then the quasi-interpretation affine.
• If each constructor assignment is multiplicative then the quasi-interpretation

multiplicative.

This program classification is concerned with the kind of quasi-interpretation
given to constructors and not to function symbols. In example 5, the program
admits an additive quasi-interpretation because each constructor (that is the
symbol in {tt,ff , 0,S,nil, cons}) admits an additive assignment. On the other
hand, the assignment of the function symbol < is not additive but it is does not
matter because it is not a constructor. For the same reason, the lcs example
admits also an additive quasi-interpretation.

All along, it is convenient to just write “additive (resp.affine, multiplicative)
program” instead of a “program which admits an additive (resp.affine, multi-
plicative) quasi-interpretation”.

3.2 Elementary properties of Quasi-interpretations

Proposition 9 Suppose that t is a constructor term in T (C).

• For an additive program, we have LtM ≤ O(|t|)
• For an affine program, we have LtM ≤ 2O(|t|)

• For a multiplicative program, we have LtM ≤ 22O(|t|)

PROOF. The proof goes by induction on the size of t. It is written in [7].
2

7

It is worth noticing that the above Proposition illustrates a general phe-
nomenon that we shall see all along this paper. Roughly speaking, the com-
plexity increases by an exponential when we jump from additive to affine
quasi-interpretations, or from affine to multiplicative ones.

Proposition 10 Suppose that t is a constructor term in T (C).
We have |s| ≤ LsM.

PROOF. The proof goes by induction on the size of t. 2

3.3 Call-trees

We present now call-trees which are a tool that we shall use all along. Let
f = 〈X , C,F , E〉 be a program. A call-tree gives a static view of an execution
and captures all function calls. Hence, we can study dependencies between
function calls without taking care of the extra details provided by the under-
lying rewriting relation.

Definition 11 A state is a tuple 〈h, u1, · · · , up〉 where h is a function symbol
of arity p and u1, . . . , up are constructor terms. Assume that η1 = 〈h, u1, · · · , up〉
and η2 = 〈g, s1, · · · , sm〉 are two states. A transition is a triplet η1

e
; η2 such

that:

(i) e is a rule h(q1, · · · , qp)→ t of E ,
(ii) there is a substitution σ such that qiσ = ui for all 1 ≤ i ≤ p,
(iii) there is a subterm g(v1, · · · , vm) of t such that viσ ↓ si for all 1 ≤ i ≤ m.

Transition(f) is the set of all transitions between states.
∗
; is the reflexive

transitive closure of ∪e∈E
e
;.

Definition 12 The 〈f, t1, · · · , tn〉-call tree is a tree defined as follows: (i)
nodes are states, (ii) the root is the state 〈f, t1, · · · , tn〉, (iii) for each state
η1, the children of η1 are the states {η2 | η1

e
; η2 ∈ Transition(f)}.

Example 13 Take the lcs program whose rules are written in Example 6.
The 〈lcs,ababa, baaba〉-call tree is displayed on Figure 2.

Proposition 14 Assume that η1 = 〈h, u1, · · · , up〉
∗
; η2 = 〈g, s1, · · · , sm〉.

Then we have Lg(s1, · · · , sm)M ≤ Lh(u1, · · · , up)M and thus LsiM ≤ Lh(u1, · · · , up)M
for all 1 ≤ i ≤ m.

PROOF. By virtue of the quasi-interpretation definition. Both the subterm
property and the weak monotonicity property are necessary. 2

8

〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ε,ba〉 〈lcs,a,a〉 〈lcs,a,a〉 〈lcs,ba, ε〉

〈lcs, ε, ε〉 〈lcs, ε, ε〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Fig. 2. The 〈lcs,ababa,baaba〉-call tree.

The size of a state 〈g, s1, · · · , sm〉 is
∑m

i=1 |si|.

Lemma 15 The size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded by
d× Lf(t1, · · · , tn)M where d is the maximal arity of a function symbol.

PROOF. Suppose that 〈g, s1, · · · , sm〉 is a state of the 〈f, t1, · · · , tn〉-call tree.
It follows from Proposition 14 that LsiM ≤ Lf(t1, · · · , tn)M. As si is a constructor
term, Proposition 10 entails that |si| ≤ LsiM. Therefore

|〈g, s1, · · · , sm〉| ≤
∑

i

|si| ≤ d× Lf(t1, · · · , tn)M

2

3.4 Upper bound on the complexity

It turns out that we can now state a quite important practical point. Indeed,
consider an additive program. By combining Lemma 15 and Proposition 9,
we deduce that the size of each state of the 〈f, t1, · · · , tn〉-call tree is bounded
by a polynomial in the size of the inputs. So, the size of each intermediate
value pushed on a stack is polynomially bounded. This allows to control the
output size of functions, even if the computation does not terminate. This is
now formalized in the following Theorem.

Theorem 16

• For an additive program, the size of each state of the 〈f, t1, · · · , tn〉-call tree
is bounded by P (m) where m is the size of the inputs and P some polynomial.

• For an affine program, the size of each state of the 〈f, t1, · · · , tn〉-call tree is
bounded by 2O(m) where m is the size of the inputs.

9

• For an additive program, the size of each state of the 〈f, t1, · · · , tn〉-call tree

is bounded by 22O(m)
where n is the size of the inputs.

PROOF. It is a consequence of Lemma 15 and Proposition 9. 2

From this result, we can see that the halting problem on a given input is
decidable, thus leading to a potential runtime detection of non-termination.

Theorem 17 Let f be an additive program and t1, · · · , tn be construc-
tors terms, there is an evaluation procedure which computes the value v if
f(termone1, · · · , termonen) ↓ v and otherwise returns ⊥ in exponential time,
i.e. in 2P (maxn

i=1 |ti|), where P is a polynomial which depends on the quasi-
interpretation L−M.

PROOF. The proof is based on Cook’s simulation [14] of push-down au-
tomata with bounded memory. There are similar proofs by Jones [22], Marion-
Moyen [32] and by Amadio [1].

We give a sketch of it. Take a program f and inputs t1, · · · , tn. In order to
evaluate f(t1, · · · , tn), we have to compute and memorize the value of each
distinct state of the 〈f, t1, · · · , tn〉-call tree. The procedure transforms the
〈f, t1, · · · , tn〉-call tree into a directed acyclic graph which is the essence of
memoization techniques used in mentioned works above. Following Lemma 15,
the size of states is bounded by O(Lf(t1, · · · , tn)M). And so there are at most

2O(Lf(t1 ,··· ,tn)M) different states. Now, suppose that f is additive. It follows that
the number of states is bounded by 2P (maxn

i=1 |ti|). So, the computation is ex-
ponential. 2

Corollary 18 Assume that f is an affine (resp. multiplicative) program.
Given the inputs t1, · · · , tn, there is an evaluation procedure which computes
the value v if t ↓ v and otherwise returns ⊥ in double exponential time, i.e.

in 22P (maxn

i=1
|ti|)

(resp. in triple exponential time, i.e. in 222
P (maxn

i=1
|ti|)

), where
P is a polynomial which depends on the quasi-interpretation L−M.

3.5 Uniform Termination is undecidable

Quasi-interpretations do not ensure termination. Indeed, the rule f(x)→ f(x)
admits the quasi-interpretation LfM(X) = X but does not terminate. More-
over, quasi-interpretations do not give enough information to decide uniform
termination as stated in the following theorem.

10

Theorem 19 It is undecidable to know whether a program which admits a
polynomial quasi-interpretation, terminates or not on all inputs.

PROOF. Senizergues proved in [36] that the uniform termination of non-
increasing semi-Thue systems is undecidable. These semi-Thue systems are a
particular case of rewriting systems with a quasi-interpretation (simply take
the identity polynomial for the unary symbols and 1 for the unique constant
ε) . The theorem follows immediately. 2

3.6 Interpretations

Before proceeding further, there is a certain interest in discussing about ter-
mination interpretation proofs and in seeing how they differ from quasi-inter-
pretations.

Definition 20 A polynomial interpretation is an assignment such that for
each b ∈ F

⋃
C

(i) LbM is a polynomial,
(ii) LbM(X1, · · · , Xn) > Xi, for each variable Xi (this condition guarantees

strict monotonicity and ensures that the interpretation induces a simpli-
fication ordering),

(iii) for each rule l → r and for each substitution σ, LlσM > LrσM.

Programs admitting an interpretation terminate. This sort of termination
proof was introduced by Lankford [25] and turns out to be a useful tool (see
[10,17,13] among others).

Remark 21 An interpretation is also a quasi-interpretation but the converse
is not true.

Example 22

f(0, y)→ S′(y)

f(S(x), y)→ f(x, f(x, y))

11

The above program computes the function defined by JfK(n, m) = 2n + m. It
admits the following interpretation which is affine

L0M = 1

LSM(X) = 2X + 1

LS′M(X) = X + 1

LfM(X, Y) = X + Y + 1

The kind of an interpretation is determined according to the interpretation of
constructors, in the same way as for quasi-interpretations.

Theorem 23 (Bonfante, Cichon, Marion and Touzet [6])

(1) The set of functions computed by programs admitting additive interpre-
tations is exactly the set of functions computable in polynomial time.

(2) The set of functions computed by programs admitting affine interpre-
tations is exactly the set of functions computable in linear exponential
time, that is in time bounded by 2O(n).

(3) The set of functions computed by programs admitting multiplicative inter-
pretations is exactly the set of functions computable in linear doubly ex-
ponential time, that is in time bounded by 22O(n)

.

4 Synthesis of Quasi-interpretations

One virtue of assignments over reals is that it affords a procedure to de-
termine a program quasi-interpretation. Of course, such procedure cannot
be achieved over natural numbers (or rational numbers) because Matiase-
vitch’s [33] demonstrated that Hilbert’s tenth problem is undecidable.

In this section, we shall see that the finding quasi-interpretations over reals
is solvable because it is a consequence of Tarski’s Theorem [37]. For this, we
shall consider two distinct problems. The first one, the verification problem, is
as follows.

inputs: A program f and an assignment L−M.
problem: Is L−M a quasi-interpretation for f ?

The second one, the synthesis problem, is as follows

inputs: A program f.
problem: Does there exists an assignment L−M which is a quasi-interpretation

for f ?

12

Both problems are solvable when we restrict the class of assignment to the
class of Max-Poly functions.

Definition 24 The class of Max-Poly functions contains constant functions
ranging over non negative rational numbers and is closed by projections, max,
addition, multiplication and composition.

Before proceeding to the main discussion, it is convenient to have a normal
representation of function in Max-Poly.

Proposition 25 (Normalization) A Max-Poly function Q is defined thus

Q(X1, . . . , Xn) = max(P1(X1, . . . , Xn), . . . , Pk(X1, . . . , Xn))

where Pi is a polynomial.

PROOF. This is due to the fact that max is distributive with + and × over
the non-negative reals. 2

We say that the max-degree of Q is k and the degree of Q is the maximum
degree of the polynomials P1, . . . , Pk.

The quasi interpretations of all examples belong to the class Max-Poly. Ac-
tually, it appears that the class of Max-Poly quasi-interpretations is sufficient
for daily programs.

Now consider a Max-Poly assignment L−M of a program f. Take a rule l → r

and define

Sl→r = ∀X1, . . .Xp ≥ 0 :
∨

i=1..n

∧

j=1..k

Pi(X1, . . . , Xp) ≥ Qj(X1, . . . , Xp)

where LlM = max(P1, . . . , Pn), LrM = max(Q1, . . . , Qk) and X1, . . . , Xp are all
the variables of LlM. (Recall that the variables of LrM are also variables of LlM.)

We see that the first order formula Sl→r is true iff LlM ≥ LrM.

Theorem 26 The verification problem for Max-Poly assignments is decid-
able in double exponential time with respect to the maximum arity of a symbol.

PROOF. Tarski showed that the first-order theory for reals containing the
addition +, the multiplication ×, the equality =, the order > with variables
over reals and rational constant is decidable [37]. In order to solve the veri-
fication problem, we have to decide whether or not the following first order

13

formula is true.

SE =
∧

l→r∈E

Sl→r

This is performed by Tarski’s decision procedure. Collins [12] established that
such procedure is at most doubly exponential in the number of quantifiers. In
our case, it corresponds to the maximum arity of symbols. 2

Theorem 27 The synthesis problem for Max-Poly assignment of bounded
degree and bounded max-degree is decidable in double exponential time in the
size of the program.

PROOF. Without loss of generality, we restrict ourselves to unary functions.
Functions with many variables are handled in the same way but with more
coefficients and indexes. By Theorem hypothesis, we assume that the degree
is d and the max-degree is k.

Suppose that there are n symbols, constructors or functions, b1, . . . , bn. The
assignment of bi is

LbiM(X) = max(P bi

1 (X), . . . , P bi

k (X)) where P bi

m =
d∑

j=0

abi,m,jX
j

Now, we have to guess polynomial coefficients by proving the validity of the
formula:

∃ab1,1,0 . . . ab1,k,d, . . . , abn,1,0, . . . , abn,k,d : SE

Lastly, we need to verify that the subterm and the weak monotonicity prop-
erties and the fact that the coefficient of degree 0 for constructors is ≥ 1.

The total number of quantifiers is k × (d + 1)× n. So, the decision procedure
is doubly exponential in the size of the program. 2

Remark 28 In practice, each program appears to admit a Max-Poly quasi-
interpretation with low degrees, usually no more than 2 for both the degree of
polynomials and the arity of max.

Although a solution of the decision of Max-Poly synthesis problem is pre-
sented above, yet the procedure for carrying out the decision is complex. There
is need of specific methods for finding quasi-interpretations which are in a
smaller class but which are relevant. For this reason, Amadio [1] considered

14

the max-plus algebra over rational numbers. A program which admits a quasi-
interpretation over the max-plus algebra are related to non-size increasing ac-
cording to Hofmann [19]. Amadio established that the synthesis of max-plus
quasi-interpretation is in NPtime-hard and NPtime-complete in the case of
multi-linear assignments.

5 Termination

We now focus on termination which plays the role of a mold capturing certain
algorithm patterns. We obtain a finer control resource by the combination of
termination tools and quasi-interpretation. Here, we consider Recursive Path
Orderings which are simplification orderings and so well-founded. Among the
pioneers of this subject, there are Plaisted [34], Dershowitz [16], Kamin and
Lévy [23]. Finally, Krishnamoorthy and Narendran in [24] have proved that
deciding wheater a program terminates by Recursive Path Orderings is a NP-
complete problem.

5.1 Extension of an ordering to sequences

Suppose that � is a partial ordering and ≺ its strict part. We describe two
extensions of ≺ to sequences of the same length.

Definition 29 The product extension 1 of ≺ over sequences, noted ≺p, is
defined as follows.
We have (m1, · · · , mk) ≺

p (n1, · · · , nk) if and only if (i) ∀i ≤ p, mi � ni and
(ii) ∃j ≤ k such that mj ≺ nj.

Definition 30 The lexicographic extension of ≺, noted ≺l, is defined as fol-
lows.
We have (m1, · · · , mk) ≺

l (n1, · · · , nk) if and only if there exists an index j

such that (i) ∀i < j, mi � ni and (ii) mj ≺ nj.

The product extension is a restriction of the usual multi-set extension. No-
tice also that two sequences ordered by the product extension are ordered
lexicographically.

1 Unlike [32], we have decided to present the product extension instead of the
permutation extension. This simplifies the presentation without loss of generality.
Actually, there is a tedious procedure to transform the rules in order to prove
termination by product ordering.

15

(s1, · · · , sn) ≺
p
rpo (t1, · · · , tn)

c ∈ C
c(s1, · · · , sn) ≺rpo c(t1, · · · , tn)

s = ti or s ≺rpo ti
f ∈ F

⋃
C

s ≺rpo f(. . . , ti, . . .)

∀i si ≺rpo f(t1, · · · , tn)
f ∈ F , c ∈ C

c(s1, · · · , sm) ≺rpo f(t1, · · · , tn)

∀i si ≺rpo f(t1, · · · , tn) g ≺F f
f, g ∈ F

g(s1, · · · , sm) ≺rpo f(t1, · · · , tn)

(s1, · · · , sn) ≺st(f)
rpo (t1, · · · , tn) f ≈F g ∀i si ≺rpo f(t1, · · · , tn)

f, g ∈ F
g(s1, · · · , sn) ≺rpo f(t1, · · · , tn)

Fig. 3. Definition of ≺rpo

5.2 Recursive path ordering with status

Let ≺F be an ordering on F and ≈F be a compatible equivalence relation
such that if f ≈F g then f and g have the same arity. The quasi-ordering
�F=≺F ∪ ≈F is a precedence over F .

Definition 31 A status st is a mapping which associates to each function
symbol f of F a status st(f) in {p, l}. A status is compatible with a precedence
�F if it satisfies the fact that if f ≈F g then st(f) = st(g).

Throughout, we assume that status are compatible with precedences.

Definition 32 Given a precedence �F and a status st, the recursive path
ordering ≺rpo is defined in Figure 3.

When st(f) = p, the status of f is said to be product. In that case, the
arguments are compared with the product extension of ≺rpo. Otherwise, the
status is said to be lexicographic.

A rule l → r is decreasing if we have r ≺rpo l. A program is ordered by ≺rpo if
there is a precedence on F and a status st such that each rule is decreasing.

Theorem 33 (Dershowitz [16]) Each program which is ordered by ≺rpo ter-
minates on all inputs.

Remark 34 The definition of ≺rpo takes into account the difference between
function symbols and constructors. Actually, a precedence �F could be ex-
tended canonically over C ∪F by saying that (i) constructors are smaller than

16

function symbols, (ii) two constructors are incomparable, (iii) constructors
have a product status.

Example 35

(1) The shuffle program rearranges two words. It terminates with a product
status.

shuffle(ε, y)→ y

shuffle(x, ε)→ x

shuffle(i(x), j(y))→ i(j(shuffle(x, y))) i, j ∈ {0, 1}

(2) The following program reverses a word by tail-recursion. It terminates
with a lexicographic status.

reverse(ε, y)→ y

reverse(i(x), y)→ reverse(x, i(y)) i ∈ {0, 1}

(3) The program sort of Example 5 terminates by setting if then else ≺
insert ≺ sort. Each function symbol has a product status.

(4) The lcs program describes of Example 6 is ordered by taking max ≺ lcs,
and both symbols have a product status.

5.3 Extensional Characterization

The orderings considered are special cases of the more general ones and in par-
ticular of Multiset Path Ordering and Lexicographic Path Ordering. Neverthe-
less, they characterize the same set of functions. Say that a RPOPro-program
is a program in which each function symbol has a product status. Following
the result of Hofbauer [18], we have

Theorem 36 The set of functions computed by RPOPro-programs is exactly
the set of primitive recursive functions.

Now, say that a RPOLex-program is a program in which each function symbol
has a lexicographic status. Weiermann [38] has established that

Theorem 37 The set of functions computed by RPOLex-programs is exactly
the set of multiply-recursive functions.

5.4 Consequences of termination proofs

We write s E t to say that s is a subterm of t.

17

Proposition 38

(1) For each constructor term t and s, s ≺rpo t iff s E t.
(2) For each constructor term s1, · · · , sn and t1, · · · , tn,

(s1, · · · , sn) ≺x
rpo (t1, · · · , tn) implies (s1, · · · , sn) Ex (t1, · · · , tn), where

x is a status p or l and Ex is the corresponding extension based on the
subterm relation.

(3) For each constructor term s1, · · · , sn and t1, · · · , tn,
(s1, · · · , sn) ≺x

rpo (t1, · · · , tn) implies (|s1|, · · · , |sn|) <x (|t1|, · · · , |tn|),
where x is a status p or l and <x is the corresponding extension of the
ordering over natural numbers.

PROOF. The proofs go by induction on the size of terms. 2

Lemma 39 Let f be a program which is ordered by ≺rpo, α be the number of
function symbols and d be the maximal arity of function symbols. Assume that
the size of each state of the 〈f, t1, · · · , tn〉-call tree is strictly bounded by A.
Then the following facts hold:

(1) If 〈f, t1, · · · , tn〉
∗
; 〈g, s1, · · · , sm〉 then (a) g ≺F f or (b) g ≈F f and

(s1, · · · , sm) ≺
st(f)
rpo (t1, · · · , tn).

(2) If 〈f, t1, · · · , tn〉
∗
; 〈g, s1, · · · , sm〉 and g ≈F f then the number of states

between 〈f, t1, · · · , tn〉 and 〈g, s1, · · · , sm〉 is bounded by Ad.
(3) The length of each branch of the call-tree is bounded by α× Ad.

PROOF.

(1) Because the rules of the program decrease by ≺rpo and
−
; is compatible

with the rewriting relation.
(2) Let 〈h, u1, · · · , up〉 be state which, in the call-tree, is between 〈f, t1, · · · , tn〉

and 〈g, s1, · · · , sm〉. Due to the first point of this lemma, we have h ≈F f

and (u1, · · · , up) ≺
stf
rpo (t1, · · · , tn). So, by proposition 38(3), we have

(|u1|, (|u1|, · · · , |up|) <st(f) (|t1|, · · · , |tn|). Since the size of each compo-
nent is bounded by A and n ≤ d, the length of the decreasing chain is
bounded by Ad.

(3) In each branch, the previous point of the Lemma claims that there are
at most Ad states whose function symbols have the same precedence.
Next, there are Ad states whose function symbol have the precedence
immediately below, and so on. As there are only α function symbols, the
length of the branch is bounded by α× Ad.

2

18

6 Characterizing space bounded computation

6.1 Polynomial space computation

Definition 40 A RPOQI-program is a program that (i) admits a quasi-inter-
pretation and (ii) which terminates by ≺rpo.

Theorem 41 The set of functions computed by additive RPOQI-programs is
exactly the set of functions computable in polynomial space.

The upper-bound on space-usage is established by Theorem 44. The complete-
ness of this characterization is established by Theorem 65.

Example 42

The Quantified Boolean Formula (QBF) problem is Pspace complete. It con-
sists in determining the validity of a boolean formula with quantifiers over
propositional variables. Without loss of generality, we restrict formulae to
¬,∨, ∃. QBF problem is solved by the following program.

not(tt)→ ff not(ff)→ tt or(tt, x)→ tt or(ff , x)→ x

0 = 0→ tt S(x) = 0→ ff 0 = S(y)→ ff S(x) = S(y)→ x = y

in(x,nil)→ ff in(x, cons(a, l))→ or(x = a, in(x, l))

ver(Var(x), t)→ in(x, t)

ver(Not(φ), t)→ not(ver(φ, t))

ver(Or(φ1, φ2), t)→ or(ver(φ1, t), ver(φ2, t))

ver(Exists(n, φ), t)→ or(ver(φ, cons(n, t)), ver(φ, t))

qbf(φ)→ ver(φ,nil)

Booleans are encoded by {tt,ff}, variables are encoded by unary integers
which are generated by {0,S}. Formulae are built from {Var,Not,Or,Exists}.
All these symbols are constructors. The main function symbol is qbf.

Rules are ordered by ≺rpo by putting

{not, or, = } ≺F in ≺F ver ≺F qbf

and each function symbol has a product status except ver which has a lexi-
cographic status.

19

They admit the following additive quasi-interpretations :

• LcM(X1, · · · , Xn) = 1 +
∑n

i=1 Xi, for each n-ary constructor c,
• LverM(Φ, T) = Φ + T , LqbfM(Φ) = Φ + 1,
• LgM(X1, · · · , Xn) = maxn

i=1 Xi, for the other function symbols.

6.2 RPOQI-programs are Pspace computable

We are now establishing that a RPOQI-program f is computable in polynomial
space.

Lemma 43 Let f be a RPOQI-program. For each constructor term t1, · · · , tn,
the space used by a call by value (innermost) interpreter to compute f(t1, · · · , tn)
is bounded by a polynomial in Lf(t1, · · · , tn)M.

PROOF. Take an innermost call by value interpreter, like the one of Fig-
ure 1. It builds recursively in a depth first manner the 〈f, t1, · · · , tn〉-call tree,
evaluates nodes and backtracks. Put A = Lf(t1, · · · , tn)M. The interpreter only
needs to store states along a branch of the call-tree. Each state as well as the
intermediate results are bounded by O(A). The maximal length of a branch
is bounded by α × Ad by Lemma 39(3). The number of states and results to
memorize for the depth first search is bounded by α × Ad+1 × β where β is
the maximal size of a rule. In other words, β is an upper bound on the width
of the call-tree. Therefore, the space used by the interpreter is bounded by
O(Ad+1). 2

Theorem 44 Let f be an additive RPOQI-program. For each constructor term
t1, · · · , tn, the space used by a call by value interpreter to compute f(t1, · · · , tn)
is bounded by a polynomial in maxn

i=1 |ti|.

PROOF. By Proposition 9, we have LtiM ≤ O(|ti|). Because quasi-interpre-
tations are polynomially bounded, we have Lf(t1, · · · , tn)M ≤ P (maxn

i=1 |ti|), for
some polynomial P . So the space is bounded by O(P (maxn

i=1 |ti|)
d+1) following

Lemma 43. 2

6.3 Beyond polynomial space

The kind of quasi-interpretations of constructors gives an upper bound on the
space required to evaluate a program.

20

Theorem 45

• The set of functions computed by affine RPOQI-programs is exactly the set
of functions computable in linear exponential space, that is in space bounded
by 2O(n) where n is the size of the inputs.

• The set of functions computed by multiplicative RPOQI-programs is exactly
the set of functions computable in linear double exponential space, that is
in space bounded by 22O(n)

where n is the size of the inputs..

Proofs are very similar to the one of Theorem 44. The kind of quasi-interpre-
tation gives the different upper-bounds on the space-usage as established in
Proposition 9.

Completeness of the characterisations is still a consequence of Theorem 65.

7 Characterizing time bounded computation

7.1 Polynomial time computation

Definition 46 A function symbol f is linear in a program terminating by ≺rpo

if for each rule f(p1, · · · , pn) → r, then there is at most one occurrence in r

of a function symbol g with the same precedence than f, that is f ≈F g.

Definition 47

(1) A RPOQI
Pro-program is a program that (i) admits a quasi-interpretation,

(ii) which terminates by ≺rpo and (iii) each function symbol has a product
status.

(2) A RPOQI
Lin-program is a program that (i) admits a quasi-interpretation,

(ii) which terminates by ≺rpo, and (iii) each function symbol is linear and
has a lexicographic status.

(3) A RPOQI
Pro+Lin-program is a program that (i) admits a quasi-interpretation,

(ii) which terminates by ≺rpo and (iii) each function symbol which has a
lexicographic status is linear.

Tail recursive programs are RPOQI
Lin-programs as it is illustrated by the reverse

program in Example 35. On the other hand, the program that solves QBF in
Example 42, is not a RPOQI

Lin-program, because of the definition of ver (in
the case of Exists(n, φ)) which leads to two recursive calls with substitu-
tion of parameters. Note that lexicographic ordering captures the template of
recursion with parameter substitutions which was the key ingredient of the
characterization of polynomial space functions by [28] by tiering discipline.

21

Theorem 48 The set of functions computed by additive RPOQI
Lin-programs

(resp. RPOQI
Pro-programs and RPOQI

Pro+Lin-programs) is exactly the set of func-
tions computable in polynomial time.

The upper-bound on time-usage is established by Theorem 53 below. The
completeness of this characterization is established by Theorem 64.

Example 49 The lcs example 6 is quite interesting and is an illustration of
an important observation. Indeed, if one applies the rules of the program fol-
lowing a call by value strategy, one gets an exponentially long derivation chain.
But the theorem states that the lcs function is computable in polynomial time.
Actually, one should be careful not to confuse the algorithm and the function
it computes. This function (length of the longest common subsequence) is a
classical textbook example of so called “dynamic programming” (see chapter
16 of [15]) and can in this way be computed in polynomial time.

So, the theorem does not characterize the complexity of the algorithm, which we
should call its explicit complexity but the complexity of the function computed
by this algorithm, which we should dub its implicit complexity.

7.2 RPOQI
Pro+Lin-programs are Ptime computable

In order to avoid an exponential explosion like, for instance, in the lcs case, we
switch from the call-by-value semantics previously defined to a call-by-value
semantics with cache, see Figure 4. Hence, we simulate dynamic programming
techniques, which consist in storing each result of a function call in a table
and avoiding to recompute the same function call if it is already in the ta-
ble. This technique is inspired from Ben-Amran and Jones’ rereading ([3]) of
Cook simulation technique over 2 way push-down automata ([14]) and is called
memoization.

The expression 〈C, t〉 ⇓ 〈C ′, v〉 means that the computation of t is v given a
program f and an initial cache C. The final cache C ′ contains C and each call
which has been necessary to complete the computation.

More precisely, say that a configuration is a list such as (g, v1, · · · , vm, v) where
〈g, v1, · · · , vm〉 is a state, and JgK(v1, · · · , vm) = v. When a term g(v1, · · · , vm)
is considered, we search for a configuration (g, v1, · · · , vm, v) in the current
cache C. If such configuration exists, we use it to short-cut the computation
and so we return v. Otherwise, we apply a program equation, say l → r, by
matching g(v1, · · · , vm) with l. Then, we update C by adding the configuration
(g, v1, · · · , vm, v) to the current cache C.

Figure 5 shows what happens to the 〈lcs, ababa,baaba〉-call tree when mem-

22

c ∈ C 〈Ci−1, ti〉 ⇓ 〈Ci, vi〉
(Constructor)

〈C0, c(t1, · · · , tn)〉 ⇓ 〈Cn, c(v1, · · · , vn)〉

〈Ci−1, ti〉 ⇓ 〈Ci, vi〉 (f, v1, · · · , vn, v) ∈ Cn
(Read)

〈C0, f(t1, · · · , tn)〉 ⇓ 〈Cn, v〉

〈Ci−1, ti〉 ⇓ 〈Ci, vi〉 f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = vi 〈Cn, rσ〉 ⇓ 〈C, v〉

〈C0, f(t1, · · · , tn)〉 ⇓ 〈C ∪ (f, v1, · · · , vn, v), v〉

(Update)

Fig. 4. Call-by-value interpreter with Cache of 〈X , C,F , E〉.

〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ε,ba〉 〈lcs,a,a〉 〈lcs,ba, ε〉

〈lcs, ε, ε〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Fig. 5. The 〈lcs,ababa,baaba〉-call tree with memoization.

oization is applied. Notice that identical subtrees are merged and the call-tree
becomes a directed acyclic graph.

The key point for additive programs, is to establish that the size of a cache C

is polynomially bounded in the size of the input arguments.

Lemma 50 Suppose that 〈C0, f(t1, · · · , tn)〉 ⇓ 〈C, v〉. The size of the final
cache C is bounded by a polynomial in Lf(t1, · · · , tn)M.

PROOF. Define Cg as the set of m-uplets of T (C)-terms which are the ar-
guments of states of g. That is, (u1, · · · , um) ∈ Cg iff (g, u1, · · · , um, v) ∈ C.
We have

#C =
∑

g∈F
#Cg (1)

where we write #S for the cardinal of a set S.

23

To give an upper-bound on the cardinality of Cg, we define two sets C∨
g and

C∧
g. The idea is to separate the calls which come from functions of strictly

higher precedence and the ones which come from functions of the same prece-
dence. Consider the 〈f, v1, · · · , vn〉-call tree. Say that the covering graph of g
is the subgraph of the 〈f, v1, · · · , vn〉-call tree obtained by removing all states
which are not labeled by functions h ≈F g. Define two sets C∨

g and C∧
g as

follows. C∨
g contains all the roots of the covering graph of g labeled by g, and

C∧
g contains all the other nodes of the covering graph labeled by g.

• We consider the C∨
g’s. We have #C∨

f = 1. Suppose that f ≈F g, but f 6= g.
By definition, we have #C∨

g = 0.

Suppose that g ≺F f. Then, (u1, · · · , um) ∈ C∨
g. It follows that the cardi-

nality of C∨
g is bounded by

#C∨
g ≤

∑

g≺Fh

#Cf (2)

• We consider C∧
g.

(1) The status of g is product. Proposition 38 states that sub-calls of the same
rank starting from f(v1, · · · , vn) have arguments which are subterms of the
vi’s. Therefore there are at most

∏
i≤n(|vi| + 1) such sub-calls. It follows

from Lemma 15 that the number of sub-calls is bounded

∏

i≤n

(|vi|+ 1) ≤ (d× Lf(t1, · · · , tn)M)d (3)

where d is the maximal arity of a function symbol.
(2) The status of g is lexicographic. But by definition of RPOQI

Lin-programs,
there is at most one recursive call starting from g for each rule ap-
plication. Lemma 39(3) entails that the maximal length of a branch is
Lf(t1, · · · , tn)Md which is also a bound on the number of successive calls
initiated by f.

From both previous points, we obtain that

#C∧
g ≤ (#C∨

g + 1)× dd × Lf(t1, · · · , tn)Md (4)

Finally, we have
#Cg ≤ #C∨

g + #C∧
g (5)

By combining (1), (2), (4), and (5), we see that the cardinality of C is poly-
nomially bounded in Lf(t1, · · · , tn)M. 2

Example 51 Figures 6 and 7 show the lcs- and max-covering graphs in the
〈lcs,ababa, baaba〉-call tree. Nodes in C∨

g have been squared while nodes of

C∧
g have been circled (g ∈ {lcs, max}).

24

〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ε,ba〉 〈lcs,a,a〉 〈lcs,a,a〉 〈lcs,ba, ε〉

〈lcs, ε, ε〉 〈lcs, ε, ε〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

Fig. 6. The lcs-covering graphs of the call-tree.

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Fig. 7. The max-covering graphs of the call-tree.

Lemma 52 Let f be a RPOQI
Pro+Lin-program. For each constructor term t1, · · · , tn,

the runtime of the call by value interpreter with cache to compute f(t1, · · · , tn)
is bounded by a polynomial in Lf(t1, · · · , tn)M.

PROOF. Since an evaluation procedure memorizes all necessary configura-
tions, the runtime is at most quadratic in the size of the cache. Note that the
exact runtime depends on the implementation strategy and in particular on
the cache management. 2

Theorem 53 Let f be an additive RPOQI
Pro+Lin-program (resp. RPOQI

Pro-program

and RPOQI
Lin-program). For each constructor term t1, · · · , tn, the runtime to

compute f(t1, · · · , tn) is bounded by a polynomial in maxn
i=1 |ti|.

PROOF. By Proposition 9, we have LtiM ≤ O(|ti|). So, for some polynomial
P we have Lf(t1, · · · , tn)M ≤ P (maxn

i=1 |ti|) , because quasi-interpretations are
polynomially bounded. Lemma 52 implies that the time is bounded by a poly-
nomial in maxn

i=1 |ti|. 2

25

In the general case, memoization is not used because one cannot decide which
results will be reused and the cache may become too big to be really useful.
In our particular case, the termination ordering gives enough information on
the structure of the program to minimize the cache [30].

We see that if a function symbol is linear, see Definition 46, then no result
needs to be recorded. More generally, consider the 〈f, t1, · · · , tn〉-call tree.
When evaluating 〈f, t1, · · · , tn〉, the call by value semantics with cache store
all values. Say that a separation set N is a set of states such that each chain
starting from the root state 〈f, t1, · · · , tn〉 meets a state of N . If we know the
value of each state of N , then values of the states below N -states are useless
in order to determine 〈f, t1, · · · , tn〉. And, we can forget them. Therefore, it
is sufficient to store in a cache a separation set N for each function symbol.
Now say that a separation set N is minimal if for each state s ∈ N , N \ {s}
is not a separation net. We can require an implementation to keep a minimal
separation set. To perform dynamically, we have to compare configurations
in the cache. Take two configurations (f, t1, · · · , tn, t) and (g, s1, · · · , sm, s). If
f(t1, · · · , tn) ≺rpo g(s1, · · · , sm) then we do not need anymore the configura-
tion (f, t1, · · · , tn, t) and we can erase it from the cache.

7.3 Beyond polynomial time

Theorem 54

• The set of functions computed by affine RPOQI
Pro+Lin-programs (resp. RPOQI

Pro-

program and RPOQI
Lin-program) is exactly the set of functions computable in

linear exponential time, that is in time bounded by 2O(n).
• The set of functions computed by multiplicative RPOQI

Pro+Lin-programs (resp.

RPOQI
Pro-program and RPOQI

Lin-program) is exactly the set of functions com-

putable in linear double exponential time, that is in time bounded by 22O(n)
.

Proofs are very similar to the one of Theorem 53. The kind of quasi-interpretation
gives the different upper-bounds on the time-usage as established in Proposi-
tion 9.

Completeness of the characterizations is still a consequence of Theorem 64.

26

8 Simulation of Parallel Register Machines

8.1 Parallel Register Machines

Following [28], we introduce Parallel Register Machines (PRM) which model
the essential features of both traditional sequential computing like Turing
Machines and alternating computations.

A PRM works over the word algebra W generated by the constructors {0, 1, ε}.
In order to have a choice mechanism to simulate alternation by the fork oper-
ation, we define an ordering J on W : ε J y, 0(x) J 1(y), i(x) J i(y) if and
only if x J y. We define the operations minJ and maxJ wrt J.

Definition 55 A PRM over the word algebra W consists in:

(1) a finite set S = {s0, s1, . . . , sk} of states, including a distinct state begin.
(2) a finite list Π = {π1, . . . , πm} of registers; we write output for πm;

Registers will only store values in W;
(3) a function com mapping states to commands which are

[Succ(π = i(π), s′)], [Pred(π = p(π), s′)], [Branch(π, s′, s′′)],
[Forkmin(s

′, s′′)], [Forkmax(s
′, s′′)], [End].

A configuration of a PRM M is given by a pair (s, F) where s ∈ S and F is
a function Π → W which stores register value. We note {π ← π ′}F to mean
that the value of the register π is π′, the other registers stay unchanged.

Definition 56 Given M as above we define a semantic partial-function eval :
N × S ×W

m 7→ W, that maps the result of the machine in a “time bound”
given by the first argument.

• eval(0, s, F) is undefined.
• If com(s) is Succ(π = i(π), s′) then eval(t + 1, s, F) = eval(t, s′, {π ←

i(π)}F). Note that on the right of the left arrow, π denotes the content of
the register;

• If com(s) is Pred(π = p(π), s′)], then eval(t + 1, s, F) = eval(t, s′, {π ←
p(π)}F) where p is the predecessor function on W;

• If com(s) is Branch(π, s′, s′′) then eval(t + 1, s, F) = eval(t, r, F), where
r = s′ if π = 0(w) and r = s′′ if π = 1(w);

• If com(s) is Forkmin(s
′, s′′) then

eval(t + 1, s, F) = minJ(eval(t, s′, F), eval(t, s′′, F));
• If com(s) is Forkmax(s

′, s′′) then
eval(t + 1, s, F) = maxJ(eval(t, s′, F), eval(t, s′′, F));

• If com(s) is End then eval(t + 1, s, F) = F (output).

27

Definition 57 Let T : N → N be a function. A function φ : W
k → W is

PRM-computable in time T if there is a PRM M such that for each (w1, · · · , wk) ∈
W

k, we have

eval(T (
k

max
i=1
|wi|),begin, F0) = φ(w1, · · · , wk)

where F0(πi) = wi for i = 1..k and otherwise F0(πj) = ε.

8.2 Space and Time bounded computation

There are pleasingly well-known tight connection between space used by a
Turing machine and time used by PRM. The essence of the translation comes
from the works [35,9].

Theorem 58 A function φ is computable in polynomial (resp. exponential,
doubly exponential) space iff φ is PRM-computable in polynomial time (resp.
exponential, doubly exponential).

A Register machines (RM) is a PRM without fork commands. A Turing ma-
chine can be simulated linearly in time by a RM.

Proposition 59 A function φ is computable in polynomial (respectively ex-
ponential, doubly exponential) time iff φ is RM-computable in polynomial time
(resp. exponential, doubly exponential).

8.3 Time bounded simulation

Without loss of generality, we consider only unary function in the following.
It would be laborious to specify this simulation in full details otherwise.

Lemma 60 (Lexicographic Plug and play lemma) Assume that φ : W→
W is a PRM-computable function in time bounded by T . Define f by

f : N×W → W

(n, w) 7→ φ(w) if n > T (|w|)

(n, w) 7→ ⊥ otherwise

Then,

(1) the function f is computed by an additive RPOQI-program,
(2) and, if f is computed by a RM, then f is computable by an additive

RPOQI
Lin-program.

28

PROOF. The simulation of the PRM is done by following the rules of eval
given above. For this, the set of constructors is C = {0, 1, s, �, ε} ∪ S where S

is the set of states.

We show below programs to compute minJ and maxJ.

min(ε, w) → ε max(ε, w) → w

min(w, ε) → ε max(w, ε) → w

min(0(w), 1(w′)) → 0(w) max(0(w), 1(w′)) → 1(w′)

min(1(w), 0(w′)) → 0(w′) max(1(w), 0(w′)) → 1(w)

min(i(w), i(w′)) → i(min(w, w′)) max(i(w), i(w′)) → i(max(w, w′))

with i ∈ {0, 1}.

Next, we write a program to compute eval.

(a) Eval(s(t), s, π1, · · · , πm)→ Eval(t, s′, π1 · · · , i(πj), · · · , πm)

if com(s) = Succ(πj = i(πj), s
′),

(b) Eval(s(t), s, π1, · · · , i(πj), · · · , πm)→ Eval(t, s′, π1, · · · , πj, · · · , πm)

if com(s) = Pred(πj = p(πj), s
′),

(c) Eval(s(t), s, π1, · · · , 0(πj), · · · , πm)→ Eval(t, s′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′),

(d) Eval(s(t), s, π1, · · · , 1(πj), · · · , πm)→ Eval(t, s′′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′),

(e) Eval(s(t), s, π1, · · · , πm)→ min(Eval(t, s′, π1, · · · , πm), Eval(t, s′′, π1, · · · , πm))

if com(s) = Forkmin(s
′, s′′),

(f) Eval(s(t), s, π1, · · · , πm)→ max(Eval(t, s′, π1, · · · , πm), Eval(t, s′′, π1, · · · , πm))

if com(s) = Forkmax(s
′, s′′),

(g) Eval(s(t), s, π1, . . . , πm)→ πm, if com(s) = End,
(h) Eval(�, s, π1, · · · , πm)→ ⊥.

Finally, put f(t, w) → Eval(t,begin, w, ε, . . . , ε). It is routine to check that
f = JfK. This program admits the following quasi-interpretations:

LεM = 1 L�M = 0 ∀q ∈ S, LqM = 1

L0M(X) = X + 1 L1M(X) = X + 1 LsM(X) = X + 1

29

LminM(W, W ′) = max(W, W ′)

LmaxM(W, W ′) = max(W, W ′)

LEvalM(T, S, Π1, · · · , Πm) = T + S +
m∑

i=1

Πi

LfM(T, X) = T + X + m

The status of each function symbol is lexicographic. The precedence satis-
fies {min, max} ≺F Eval ≺F f. We see that each rule is decreasing by ≺rpo.
Therefore, f is a RPOQI-program. Now, observe that Eval has always one
occurrence in the right hand side of the rules except in the fork cases. So, f is
a RPOQI

Lin-program if f is computed by a RM. 2

In [32], the simulation of RM is performed by a RPOQI
Pro-program in a differ-

ent manner because the status of function symbols is product and not lexico-
graphic as in the above result. For this reason, we give details of the simulation
of a time bounded function in the case where symbols have a product status.

Lemma 61 (Product Plug and play lemma) Assume that φ : W → W

is a RM-computable function in time bounded by T . Define f by

f : N×W → W

(n, w) 7→ φ(w) if n > T (|w|)

(n, w) 7→ ⊥ otherwise

Then, f is computable by an additive RPOQI
Pro-program.

PROOF. Compared with the previous proof, the simulation is performed in
bottom-up way. For this, we use an extra constructor c to encode tuples. And
we define Step which gives the next configuration.

(a)
Step(c(s, π1, · · · , πm))→ c(s′, π1 · · · , i(πj), · · · , πm)

if com(s) = Succ(πj = i(πj), s
′)

(b)
Step(c(s, π1, · · · , i(πj), · · · , πm))→ c(s′, π1, · · · , πj, · · · , πm)

ifcom(s) = Pred(πj = p(πj), s
′)

(c)
Step(c(s, π1, · · · , 0(πj), · · · , πm)→ c(s′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′)

30

(d)
Step(c(s, π1, · · · , 1(πj), · · · , πm)→ c(s′′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′)

(e)
Step(c(s, π1, . . . , πm)→ πm

if com(s) = End

(f) Step(i(x))→ i(x), i ∈ {0, 1}

The simulation is made by

Eval(ε, x)→ x Eval(s(t), x)→ Step(c(Eval(t, x)))

The rules are ordered by putting Step ≺F Eval where each symbol has now
a product status. It has a quasi-interpretation:

LcM(S, Π1, · · · , Πm) = S +
∑

i

Πi + 1

LStepM(X) = X + 1

LEvalM(T, X) = T + X

2

Unlike the previous proof, this simulation can not be extended in order to
capture parallel computation.

8.4 Plugging time

It remains to compute the clock. This is done by the following rules,

Proposition 62 Polynomial (respectively exponential and double exponen-
tial) functions are computed by additive (resp. affine, multiplicative) RPOQI

Lin-
programs.

PROOF.

add(�, y)→ y add(s(x), y)→ s(add(x, y)) (6)

mult(�, y)→ � mult(s(x), y)→ add(y, mult(x, y)) (7)

exp(�)→ s(�) exp(s′(x))→ add(exp(x), exp(x)) (8)

dexp(�)→ s(s(�)) dexp(s′(x))→ mult(dexp(x), dexp(x)) (9)

31

These rules form a RPOQI
Lin-program by putting add ≺F mult ≺F {exp, dexp}

and with the quasi-interpretations for function symbols

LaddM(X, Y) X + Y

LmultM(X, Y) = (X + 1)× (Y + 1)

LexpM(X) = X + 1

LdexpM(X) = X + 2

and for constructors

additive affine multiplicative

L�M 0 0 0

LsM(X) X + 1 X + 1 X + 1

Ls′M(X) 2X + 1 (X + 3)2

Rules interpreted 6− 7 6− 7− 8 6− 7− 8− 9

2

Remark 63 Notice that, given the quasi-interpretations for s and s′, it is
not possible to write a program admitting a polynomial quasi-interpretation
(whatever the kind) which transforms a tally integer written with s into one
written with s′. The reason lies on the fact that both class of function Ptime

and Etime are distinct.

8.5 Sum-up of the simulations

Theorem 64

(1) A polynomial time function is computed by an additive RPOQI
Lin-program

(resp. RPOQI
Pro-program or RPOQI

Pro+Lin-program).

(2) A exponential time function is computed by an affine RPOQI
Lin-program

(resp. RPOQI
Pro-program or RPOQI

Pro+Lin-program).

(3) A doubly exponential time function is computed by a multiplicative RPOQI
Lin-

program (resp. RPOQI
Pro-program or RPOQI

Pro+Lin-program).

Theorem 65

(1) A polynomial space function is computed by an additive RPOQI-program.
(2) A exponential space function is computed by an affine RPOQI-program.

32

(3) A doubly exponential space function is computed by a multiplicative RPOQI-
program.

References

[1] R. Amadio. Max-plus quasi-interpretations. In Martin Hofmann, editor, Typed
Lambda Calculi and Applications, 6th International Conference, TLCA 2003,
Valencia, Spain, June 10-12, 2003, Proceedings, volume 2701 of Lecture Notes
in Computer Science, pages 31–45. Springer, 2003.

[2] R.M. Amadio, S. Coupet-Grimal, S. Dal Zilio, and L. Jakubiec. A functional
scenario for bytecode verification of resource bounds. In CSL, 2004. to appear.

[3] N. Andersen and N.D. Jones. Generalizing Cook’s transformation to imperative
stack programs. In J. Karhumäki, H. Maurer, and G. Rozenberg, editors,
Results and trends in theoretical computer science, volume 812 of Lecture Notes
in Computer Science, pages 1–18, 1994.

[4] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
poly-time functions. Computational Complexity, 2:97–110, 1992.

[5] G. Bonfante. Constructions d’ordres, analyse de la complexité. Thèse, Institut
National Polytechnique de Lorraine, 2000.

[6] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Complexity classes
and rewrite systems with polynomial interpretation. In Computer Science
Logic, 12th International Workshop, CSL’98, volume 1584 of Lecture Notes in
Computer Science, pages 372–384, 1999.

[7] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms
with polynomial interpretation termination proof. Journal of Functional
Programming, 11, 2000.

[8] V.-H. Caseiro. Equations for defining Poly-Time. PhD thesis, University of
Oslo, 1997.

[9] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28:114–133, 1981.

[10] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by
polynomial interpretations and its implementation. Science of computer
Programming, pages 131–159, 1987.

[11] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel,
editor, Proceedings of the International Conference on Logic, Methodology, and
Philosophy of Science, pages 24–30. North-Holland, Amsterdam, 1962.

[12] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In 2nd GI Conference on Automata Theory and
Formal Languages, volume 33 of Lecture Notes in Computer Science, 1975.

33

[13] E. Contejean, C. Marché, B. Monate, and X. Urbain. Proving termination of
rewriting with cime. In wst’03, pages 71–73, 2003. wst’03, http://cime.lri.
fr.

[14] S. Cook. Characterizations of pushdown machines in terms of time-bounded
computers. Journal of the ACM, 18(1):4–18, January 1971.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[16] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer
Science, 17(3):279–301, 1982.

[17] J. Giesl. Generating polynomial orderings for termination proofs. In RTA,
number 914 in Lecture Notes in Computer Science, pages 427–431, 1995.

[18] D. Hofbauer. Termination proofs with multiset path orderings imply primitive
recursive derivation lengths. Theoretical Computer Science, 105(1):129–140,
1992.

[19] M. Hofmann. Linear types and non-size-increasing polynomial time
computation. In Proceedings of the Fourteenth IEEE Symposium on Logic in
Computer Science (LICS’99), pages 464–473, 1999.

[20] M. Hofmann. A type system for bounded space and functional in-place update.
In European Symposium on Programming, ESOP’00, volume 1782 of Lecture
Notes in Computer Science, pages 165–179, 2000.

[21] G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797–821, 1980.

[22] N. D. Jones. LOGSPACE and PTIME characterized by programming
languages. Theoretical Computer Science, 228:151–174, 1999.

[23] S. Kamin and J-J Lévy. Attempts for generalising the recursive path orderings.
Technical report, Univerity of Illinois, Urbana, 1980. Unpublished note.
Accessible on http://perso.ens-lyon.fr/pierre.lescanne/not accessible.html.

[24] M. S. Krishnamoorthy and P. Narendran. On recursive path ordering.
Theoretical Computer Science, 40(2-3):323–328, 1985.

[25] D.S. Lankford. On
proving term rewriting systems are noetherien. Technical Report Accessible
on http://perso.ens-lyon.fr/pierre.lescanne/not accessible.html, 1979.

[26] D. Leivant. Predicative recurrence and computational complexity I: Word
recurrence and poly-time. In Peter Clote and Jeffery Remmel, editors, Feasible
Mathematics II, pages 320–343. Birkhäuser, 1994.

[27] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time.
Fundamenta Informaticae, 19(1,2):167,184, September 1993.

34

[28] D. Leivant and J.-Y. Marion. Ramified recurrence and computational
complexity II: substitution and poly-space. In L. Pacholski and J. Tiuryn,
editors, Computer Science Logic, 8th Workshop, CSL ’94, volume 933 of Lecture
Notes in Computer Science, pages 486–500, Kazimierz,Poland, 1995. Springer.

[29] P. Lescanne. Termination of rewrite systems by elementary interpretations. In
H. Kirchner and G. Levi, editors, 3rd International Conference on Algebraic and
Logic Programming, volume 632 of Lecture Notes in Computer Science, pages
21–36. Springer, 1992.

[30] J.-Y. Marion. Complexité implicite des calculs, de la théorie la pratique.
Habilitation à diriger les recherches, Université Nancy 2, 2000.

[31] J.-Y. Marion. Analysing the implicit complexity of programs. Information and
Computation, 183:2–18, 2003.

[32] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program
interpreter with time bound certifications. In Michel Parigot and Andrei
Voronkov, editors, Logic for Programming and Automated Reasoning, 7th
International Conference, LPAR 2000, Reunion Island, France, volume 1955
of Lecture Notes in Computer Science, pages 25–42. Springer, Nov 2000.

[33] Y. V. Matiyasevich. Hilbert’s 10th Problem. Foundations of Computing Series.
The MIT Press, 1993. MAT y 93:1 1.Ex.

[34] D. Plaisted. A recursively defined ordering for proving termination
of term rewriting systems. Technical Report R-78-943, Department of
Computer Science, University of Illinois, 1978. Accessible on http://perso.ens-
lyon.fr/pierre.lescanne/not accessible.html.

[35] W. J. Savitch. Relationship between nondeterministic and deterministic tape
classes. JCSS, 4:177–192, 1970.

[36] G. Senizergues. Some undecidable termination problems for semi-thue systems.
Theoretical Computer Science, 142:257–276, 1995.

[37] A. Tarski. A Decision Method for Elementary Algebra and Geometry, 2nd ed.
University of California Press, 1951.

[38] A. Weiermann. Termination proofs by lexicographic path orderings yield
multiply recursive derivation lengths. Theoretical Computer Science, 139:335–
362, 1995.

35

