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Abstract. We investigate regular tree languages exact learning from positive examples and membership
queries. Input data are trees of the language to infer. The learner computes from the inputs new trees and
ask to the oracle whether they belongs or not to the language. From the answers, the learner may ask
further membership until he finds the correct grammar that generates the target language.

Neither negative examples, equivalence queries nor counter examples are allowed in this paradigm. This
paradigm was introduced by Angluin in [1] for the case of regular word language. Recall that it is not infer
the regular tree (or even word) languages just from positive examples.

We describe an efficient algorithm which is polynomial in the size of the examples for learning the whole class
of regular tree languages. The convergence is insured when the set of examples contains a representative
sample of the language to guess. Any finite subset £ of a regular tree language L is representative for £ if
every transition of the minimal tree automaton for £ is used at least once for the derivation of an element
of £. A representative sample is really minimal for this setting.

Our main motivation is to seek for a mathematical model of natural language acquisition based on the
recent advances on this field. Here, the membership queries are seen as a minimal interaction between a
child and his environment.



1 Introduction

1.1 Some linguistic motivations

The most astonishing discovery of Chomsky is the universal grammar which is a model of how
the human language works. The universal grammar is an innate combinatorial systems from
which every language, french, english, Japanese, can be derived. What is the implication of
Chomsky’s universal grammar on grammatical inference? We think it gives a strong intuition
on the mathematical modelling of language learning. Before going further, let us focus on the
linguistic aspect of language acquisition process.

Several recent works of psycholinguists like Pinker [16] or Christophe [6] advocate that the
universal grammar plays the role of a learning device for children. A child is able to determine
whether or not a sentence is grammatically correct, even if we don’t know the meaning of
each word. Of course, semantics speed up the learning process, but it is not necessary. And,
it is fascinating to see that a child needs only few informations in order to learn a language
(poverty-of-stimulus hypothesis).

Moreover, the underlying reason seems to be our capacity to guess a tree structure of a
phrase. How a child is able to do that is beyond the scope of this paper. However the child
language acquisition process is not based on the construction of a huge finite automaton with
probabilistic transitions, because there is an infinity of valid sentences and we have the ability
to generate them.

To sum up this brief discussion, we take as hypothesis that a child computes a grammar
from tree structured sentences.

1.2 A mathematical model

Can we give a mathematical model of the language acquisition which corroborates this theory?
The grammatical inference paradigm of Gold [13] is a good candidate. Indeed, the inputs of the
learning process are just examples of the target language. And there is no interaction with the
environment. But this paradigm is too weak to be plausible. Indeed the class of regular languages
is not learnable just from positive examples. For this reason, we add to Gold paradigm an oracle
which answers to membership queries. Hence, the grammatical inference is based on positive
examples and membership questions of computed elements, as introduced by Angluin in [1].
This learning model agrees with the poverty-of-stimulus hypothesis. Indeed the interaction with
the environment is very weak. For example, a child asks something, but nobody understands.
From this lack of reaction from the environment, he may deduce that the sentence is wrong,
and so not in the language. We insist on the fact that membership queries are the minimal
information which can be inferred in a dialog.

On the other hand, negative examples are not necessary because a parent does not say
incorrect sentences to a child. One might think about other kind of queries like equivalence
queries as suggested by Angluin [2]. But there are not necessary as we shall see and there are
unrealistic in a linguistic context. In conclusion, our learning model seems quite adequate with
respect to our initial motivation.

Now, we have set the learning paradigm, we have to say what’s kind of language are targeted.
As we have said, we can assume that a child has a kind of parser which transforms a (linear)
sentence into a tree representation. So, we learn tree languages. Regular tree languages are the
bare bone of several linguistic formalisms like classical categorial grammars for which learnabilty
has been studied by Kanazawa in [15] or dependency languages [8].

1.3 The results

We establish that the whole set of regular tree languages is efficiently identifiable from member-
ship queries and positive examples. The runni121g time of the learning algorithm is polynomial



in the size of the input examples. The efficiency is a necessary property of our model. The
difficulty is to construct trees to ask mambership queries and which gives useful information to
proceed in the inference process. As far as we know, this result is new.

1.4 A web application

There are other applications of our result. For example, an XML document is a tree, if we
forget links. The style-sheet defines a regular tree grammar. Now, say that we try to determine
a style-sheet. For this, we can read correct XML documents from a server which forms a set
of positive examples. Then, we can build a XML document and make a membership query by
sending it to the server. If no error occurs then the the document is in the language, otherwise
it is not.

1.5 Related works

Learning from positive examples and membership queries. Angluin considers the same
learning paradigm in [1] for the class of regular word languages. The notion of observation table
which is defined in [2] is already unformally used in [1]. However, we can not extend in a straight
forward way the algorithm of [1] as it is explained by Sakakibara in [18]. In case of words, we can
try all possible transitions from a word w by checking wa for every letter a.. Indeed, in the case
of trees, this approach will lead us to consider an exponential number of cases, depending on
the arity of the function symbols. As a consequence, if Angluin’s algorithm may be adapted for
learning the class of regular tree language, this adaptation loses the property of polynomiality. In
order to preserve polynomiality, we introduce the original idea of considering contexts obtained
from trees given in input, instead of testing new contexts (suffixs for words are contexts for
trees) constructed from the alphabet (like in Angluin’s algorithm).

Other paradigms. Sakakibara studied grammatical inference of languages of unlabelled deriva-
tion trees of context free grammars. In [19], he extends the result of [2] by learning with member-
ship queries and equivalence queries. The possibility of asking the teacher whether a calculated
hypothesis corresponds to the target language seems not to be relevant for the aim of construct
a model of natural language process. In [18,17] Sakakibara uses positive and negative exam-
ples with membership query. At the end of the paper [17], it claims that the second algorithm
is polynomial time (without proofs), but the main one is exponential in the function symbol
arity. Compare with [17], we have showed that negative examples are not necessary and that
the running time of our learning algorithm is polynomial. It is worth noticing that the set of
all unlabelled context free derivation tree language is a strict subclass of the set of regular
tree languages. Therefore, we learn more and in a weaker setting since negative examples are
not necessary in our work. This is important when we are learning from structured examples.
Indeed, the language of structured examples may not come from a context free grammar but
still the word language is context free.

Inference of regular tree languages from positive examples only, has been studied in [12,
14], in [4] and [11] learnable subclasses have been defined and in [5], learning is studied from a
stochastic point of view.

Inference of regular tree languages with queries has been studied in [9]; the learning algorithm
is based on membership queries and equivalence queries and this result constitutes an extension
of Sakakibara’s works. In [10], a polynomial version of the former learning algorithm has been

developped. 3



2 Regular tree languages

A ranked alphabet V is a finite set of symbols with a function arity from V to N, which indicates
the arity of a symbol. The set T (V) of terms is inductively defined as follows. A symbol of arity
0isin 7(V), and if f is a symbol of arity n and ty,...,t, are in 7(V), then £(ty,...,t,) isin
T (V). Subterms of a term t are definied by : t is a subterm of t and if £(t1,...,t,) is a subterm
of t, then ti,...,t, are subterms of t. Throughout, labelled ordered trees are represented by
terms. For a set of terms £, S(E) represents the set of subterms of elements of £.

A contezt is a term c[¢] containing a special variable ¢ which has only one occurrence. The
variable ¢ marks an empty place in a term. In particular, ¢ is a context called the empty context.
The substitution of ¢ by a term s is noted cl[s|. In particular, for any set £, £[o] contains the
empty context ¢. £[o] is the set of contexts obtained by replacing in any element of £, exactly
one subterm by o.

A bottom up non-deterministic tree automaton (NFTA) is a quadruplet A = (V, Q, O, j)

where V is ranked alphabet, Q is a finite set of states, Qr C @ is the set of final states, and
Y is the set of transitions. A transition is a rewrite rule of the form £(q1, ..., ¢,) — 4 where ¢

and qi,...,q, are states of @, and f is a symbol of arity n. In particular, a transition may be
just of the form a ? g where a is a symbol of arity 0.

The single derivation relation 7 is defined so that t ? s if and only if there is a transition

(g, .-, Gn) -4 such that for a context u[o], t = u[f(q,..., ¢,)] and s = u[q|.
The derivation relation % is the reflexive and transitive closure of ?. The tree language
recognized by Ais Lo={teT(V): t i) qr and qr € Qp}.

A state ¢ is accessible if there is a term t such that t i) g. A NFTA is reduced if each state

is accessible. In the rest of this paper, we will consider only reduced NFTA , since any NFTA can
be transformed into an equivalent reduced NFTA .

A set of terms L is a reqular tree language if and only if £ = L4, for a DFTA A.

A finite tree automaton A = (V, Q, Op, ?) is deterministic (DFTA) if there are no two

different rules with the same left hand side. In this case, ? induces a transition function

da: T(V) = Q where d4(t) = ¢ iff t i) q. It has been showed that NFTA and DFTA are

equivalent notions (see [7] for a transformation algorithm of any NFTA in a equivalent DFTA and
a proof of this equivalence). Indeed, a set of terms L is a regular tree language if £ = L4, for
a DFTA A.

In [7] is proved that for any regular tree language there exists a unique minimal automata
in the number of states, that constitutes a tree language version of the Myhill-Nerode theorem.

Ezample 1. Consider the DFTA A = ({a,b,c}, {qr, q1, ¢, G5, q4},{qp},;>>, where e is the

following set of transitions:
_>

a(g2, g3) 7 IF
c

b — —
(@) 2 @ (a) = as
b — —
((11) n 42 C(Q:s) P qa
b— —
n q1 c a q3

The tree a(b(b), c(c(c))) belongs to Lr. Indeed we have:



- U@, c(c(w))) 3 alg, c(a)) 2 ale, 43) = gr

L 4 is the tree language {a(b*"*2, c*™*1) : n,m € N}.

Any function from Q to a set Q' can be extended to an automata homomorphism with

o(A) =V, 9(Q), d(QF), qﬁ(j)) and qﬁ(j) is the set of rules of the form f(4(q1), ..., d(¢,)) ?

#(q), for all rule £(qy, ..., ¢) -4 in - For any term t, if t i) gsot i) #(q), which implies
that L4 C L. If ¢ is bijective, it consists in a renaming of the states and L4 = L 4.

3 Learning regular tree languages

3.1 The learning paradigm

The goal is the identification of any unknown regular tree language £ with help of a teacher. The
teacher is an oracle and the learning process begins with the construction of a representative
sample who provides the learner with positive examples (a finite subset £ of £). The teacher
transmits £ to the learner Communication consisting in a sequence of membership queries
is possible. The learner submit a term t to the teacher whose reply 1 if t belongs to £ and 0
otherwise. From these data, the learner constructs a DFTA A and the process terminates as soon
as he convinces himself that this DFTA is correct (L4 = £). We say that an algorithm identifies
the class of regular tree languages if and only if, for any language, from any representative set
given by a teacher, the DFTA constructed when the process stop is correct.

3.2 Observation table

Following the idea of Angluin [3], information obtained from the queries is stored in a table. Let
L be a tree language, £ be a finite set of terms and F be a finite set of contexts. The observation
table T =T (E,F) is the table defined by:

— rows are labelled with terms of S(&),
— columns are labelled with contexts of F,
— cells T (t, c[¢]) are labelled with 1 or 0 in such a way that

Te (t, o)) = {1 if c[t] € £

0 otherwise
For any term t € £ and any observation table 7', we denote rowr(t) the binary word corre-
sponding to the reading from left to right of the row labelled by t in 7.

Example 2. Consider the tree Language £, defined in Example 1, £ the set of terms:

{a(b(b), c(c()))}

and F the set of contexts:

{0, a(o, c(c(c))), a(b(o), c(e(c))), a(b(b), ©), a(b(b), (<)), a(b(b), c(c(2))) }

The corresponding observation table T = T (&, F) is the following:

ola(e, ¢(c(c)))|a(b(0), cc(c)))|alb(b), 0) ja(b(b), c(2))|a(b(b), c(c(¢)))
a(b(b), c(c(c)))|1 0 0 0 0 0
bb) o] 1 0 0 0 0
b 0 0 1 0 0 0
c(c(c)) 0 0 0 1 0 1
c(c) of o 0 0 1 0
c 0 0 0 1 0 1




An observation table 7= T, (&, F) defines a NFTA
Ar = Vr, Qr, Qrr, ?)

where:

— Vr is the set of symbols occuring in &,
— Qr = {rowr(t),t € §(&)},
— Qpr = {rowr(t),t € L},

— the set ?) is the set of of transitions of the form:
f(rowr(ty),...,rowr(t,)) — rowr(£(ty, ..., t,)),

for all £(ty,...,t,) € S(E).

Ezample 3. The table T of example 2 defines the NFTA Ar as:

- Vr={a,b,c}
— Qr = {100000, 010000,001000,000101, 000010}
— Qpr = {100000}

-7 is the following set of transitions
a(010000,000101) A—T> 100000
b(010000) — 001000 ¢(000010) —— 000101
b(001000) — 010000 ¢(000101) —» 000010
b A—T) 001000 c A—T> 000101

We remark that Ar = ¢(A), where A is the DFTA introduced in example 1 and ¢ is the
automata homomorphism defined by:

d(qr) =100000
$(q1)=001000
$(g) =010000
$(gs)=000101
$(q@)=000010

Remark 1. In general case, the DFTA Az is not complete and has no particular reason to be
deterministic.

An observation table T = T (€, F) is said to be consistent if for any terms f(ti,...,t,) and
f(t),...,t,) in S(&) , if V1 < j < n we have :
rowr(t;) = rowT(t;-)
then
rowr(£(ty,--.,t,)) = rowp(£(t}, ..., t.)).
Lemma 1. The NFTA Ar is deterministic if and only if the table T is consistent.

Proof. This equivalence is straightforward from definitions of consistency of 7" and of the NFTA

A
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3.3 Representative sample

Let £ be a regular tree language and £ a finite subset of L. £ is a representative sample of L
if the minimal DFTA A of £ and any rule f(qi,..., ¢,) = 4 of A, there is a term f(ty,...,t,)

in §(&) such that V1 < i < n, d4(t;) = ¢;. Informally, a representative sample of a language £
is a finite subset &£ such that all the rules of A are used to produce it. Any finite set of terms
which contains a representative sample is a representative sample too.

Ezxample 4. This example illustrates the fact that a set can be a representative set for several
distinct languages. Let A be the DFTA defined in example 1 and A’ the DFTA defined by:

a(q, g2) ? qr
b — —
(@) s () o 2

T

where ¢ is the unique final state of A’. From this definition, we have
Ly ={a(",c™): n,me N}

and the singleton
{a(b(b), c(c(e)))}

is a representative sample for both £4 and L 4.

Remark 2. The question of the size of a minimal representative sample relatively to the size of
the minimal automaton A of a language L is interesting to be discussed. In the contrary of the
case of word language, there is no polynomial relation between the size (the total number of
nodes) of a minimal characteristic sample and the size (the number of states) of the minimal
DFTA. For instance, for two integers n and m, the singleton containing the following tree:

a(Qna"'aQn) — qFr

a’ ‘a a. ‘a CL(Qb---,(h)—)%

mn
where the arity of a is m and the arity of b is 0, is a regular tree language recognized by the

above minimal DFTA. The size of the representative sample (which is unique and corresponds
to the language itself) is m™™ — 1. This shows that the “compression” corresponding to the
representation of a tree language with an automaton is very efficent in the case of tree. Since,
for a learning problem, we deal with elements of the language, its more natural to consider
the complexity relatively to the size of the language. In our sense, the size of a representative
sample can be seen as a good definition of the size of a language.

Lemma 2. If £ is a representative sample for a reqular tree language L, F any finite set of

contexts and T the observation table Tz (E,F), then we have L C Ly,..
7



Proof. We exhibit an automata homomorphism ¢ such that Ar = ¢(A), where A is the minimal
automaton for £. ¢ is defined by the function from the set Q of states of A to the set Qr of
states of Ar by:
¢:Q— Qr
q — rowp(t) : t € S(E) and d4(t) =¢

If t and t' are two terms in S(E) such that d4(t) = d4(t'), we have rowr(t) = rowr(t'). The
function ¢ is so well defined. By the definition of a representative sample, we can easily check
that Qr = ¢(Q) and that for any transition f(qy,..., ¢,) — @ we have £(¢(q1), ... 0(qn)) pe

o(q).

Remark 3. The number of states of the automaton A7t is lower or equal to the number of states

of A.

Remark 4. If the autamata homomorphism ¢ defined in the proof of Lemma 2 is bijective, then
L = L4,. Consequently, if £ # L4, then there are two terms t and t’ in S(€) such that
rowy(t) = rowy(t’) and 6 4(t) # d.4(t') for 64 the transition function of the minimal automaton
A for L.

The next lemma is central for the construction of an algorithm that solves the learning problem.
First, it will underline that consistency of the table constructed from a representative sample £
implies that the corresponding automaton is a minimal automaton for the target language L,
that is £ is learnt. Moreover, since in the case where the table is not consistent, two subterms
t and t’ of £ for which the rows are equal in the table should be different, then a new context
c[o] can be constructed and added to F for separate these rows (c[t] € £ and c[t] ¢ £). Such a
context is called separating-context.

Lemma 3. Let T = T;(E,F) be an observation table where L is a regular tree language, € a
representative set for L, F a set of context containing E[0] and A the minimal automaton for

L.
If L a, # L, then there are two terms

f(tla s ati—latati—l—la s 7tn)

and
Fl, ottt t)

in S(€) such that:

— rowr(f(ti, .., tic, ttipr, ..o, b)) # rowr(F(E, .., t_, ., ..., t)),
- (SA(tj) = (5A(t;'), Vi<j#i<n,
— rowr(t) = rowr(t').

The proof of Lemma 3 is given in Appendix B.
The first consequence is that the learning problem is solved when the table is consistent.

Lemma 4. Let L be a regular tree language, £ a representative sample for L and F a set of
contexts including E[0]. If the table T = T, (E,F) is consistent, then L4, = L

Proof. Immediate from Lemma 3, since the terms £ (t, ..., t;_1,t, tipq, ..., t,) and £(t, ..., tj_, 't 1, ..., 1))
in §(&) are in contradiction with the definition of consistency of the table.
8



4 Identification of regular tree languages

The algorithm defined in figure 1 works as follows: ALT E X first recieves a finite subset £ of an
unknown language £. ALTEX constructs the first observation table T' = T, (€, £[¢]) with help
of queries and checks successively the consistency of the table. Each time ALTEX finds the
table non-consistent, new contexts constructed from the terms that contradict the consistency
are added in the table which is then completed with queries. The process stops when the table
is consistent and the automaton Az is output.

Input: a finite set of terms £

Initilization: F = &£[¢];

Construct the table T'= T, (&, F);

while exist two terms f(ty,...,t,) and £(t},...,t,) in S(&) such that

rowr(£(ty,...,t,)) # rowp(£(t),...,t,)) and V1 < i < n, rowr(t;) = rowr(t;) do
Find a context c[¢] in F such that c[£f(t1,...,t,)] € £ and c[£(t},...,t))] ¢ L;
F=FU{c[f(ty,...,ti_1,otir1,---,t,)], 1 <i<n};
Construct T' =T (€, F);

end while;

Return the automata Ar.

Fig. 1. The learning algorithm ALTEX

From definition of consistency, ALT EX can easily verify if the table T constructed with help
of membership queries is consistent or not. In the case where T is not consistent, the problem
is that the algorithm has to find by itself (no counter example is allowed) a new context that
will separate two equivalent rows. The key point is that the fact that the input set of terms £
is representative provides the possibility of calculating such a context.

Lemma 5. If the table T is not consistent, ALTEX calculates a separating-context.

Proof. ALTEX collects every couples of terms

£ty ..., t)
and

£(t], . th)
in §(&), such that exists a context c[¢] in F with

— V1 <i <n, rowr(t;) = rowp(t)),
— c[f(ty,...,t))] €L
B C[f(tlla - 7t;1,)] ¢ L.

From Lemma 3, among these couples, there is a particular one
f(tla e tion i, atn)

and
(..t tt g, t)

such that
Vi<j#:< n’géA(tj) = 5A(t;-)



where A is the minimal automaton for L.

c[f(ty, ...ttt g, )] ¢ L

is so equivalent to
C[f(tl, e ,ti_l,t, tz'_|_1, ey tn)] ¢ L
By definition of ALTE X, the context

C[f(tl, e 7ti—17 o, ti—l—l; . ,tn)]
is added to F, that makes the rows of t and t’ different in
Te(EFU{c[f(ts, .- tio1, 0 tipty - -+, ta)]})

Theorem 1. The algorithm ALT EX identifies the class of reqular tree languages in polynomial
time.

Proof. The algorithm ALTEX starts with the construction of 7 (£, £[¢]) and enters the loop. If
the program leaves this loop, the observation table is consistent and by Lemma 4, the automaton
given as output is correct. It remains to show that ALTEX terminates. From Lemma 5, each
time the loop is processed, a new separating-context is added to the table. Since two rows that
were different are still different in the new table, the number of states of the automaton Az
is strictly increased. From Lemma 3, this number is always lower or equal to the number of
states of the minimal automaton for £. This implies that the loop may be processed only a
finite number of times and by consequence, ALT FX terminates.

Example process of ALTEX are given in Appendix A.

We noticed that any finite set containing a representative sample is also a representative
sample. This implies that if we consider an incremental version of Altex (the table is completed
as the set of positive exemples increases during the process), the algorithm converges. Now, if the
input set doesn’t contain a representative sample yet, the algorithm calculates a sub-automaton
(the recognized language is strictly contained in the target language). The algorithm terminates
on any input and the success of learning is guaranted if a representative sample is presented as
input, that constitutes a weak hypothesis.

The time complexity of ALTEX depends on the size n of the representative sample £ gave
by the teacher (total number of nodes) and the size m of the minimal automaton (number of
states) for the language £ to identify. The first observation table has n? cells. Then, the number
of rows doesn’t change and the number of columns increases as the table is found not to be
consistent. Each time this happens, less than n new contexts are added to the table and this
may happen no more than m times. This gives at most a n x (m X n—+n) sized table to construct
with queries and so k£ X n X (m X n + n) steps of calculation, where k is the time needed for a
single query (the problem of membership of a term to a language is linear [7]). To this is added
the time of checking the consistency of the table which is polynomial in its size and finally gives
a polynomial in n and m algorithm.

Then, let compare ALTEX with Angluin works for learning the class of regular languages.
In [1], Angluin studies the paradigm of learning regular (word) languages from positive examples
and queries and in [3], the idea of observation table is introduced. It’s interseting to see whether
these results may be applied in the case of tree languages. Angluin’s algorithms try any possible
transition by considering the set of words wa, where w is a prefix and « an element of the
alphabet. To apply this technique in the case of trees, we have to construct, for any subterm
t of £, all terms of the form f(t;,...,t,...,t,), for each subterm t; is of £ and each element
f of arity n in the alphabet. This method hi%(l)lly increases the size of the constructed table



(an exponential in the maximimum arity of the alphabet appears) and, as a consequence,
the time complexity too. This justifies the original choice of considering representative sample
for input and the contexts £[¢] to construct the first table. The key point is that ALTEX
determines useful contexts very efficiently from the non-consistent table. For similar reason,
taking into account counter example for the construction of the table is not relevant in the case
of trees. Counter examples are terms gave be the teacher, terms that are in the language £ 4,
corresponding to the table, but not in £ (from Lemma 2, the language is not yet learned if and
only if such terms exist). There are no particular reason for a counter example to easily provide
a context able to separate two mistakely equals rows (in the case where several mystakes appear
in different branchs of the negative example, unlike in the case of words where considering all
suffixes of a counter example gives such a context). Finally, it’s worth noticing that ALTEX
terminates even if the positive examples given in input do not contain a representative sample
of the targert language. In this case, the language corresponding to the output automaton
contains at least the entries.

5 Conclusion

We have showed that the whole class of regular tree language is learnable from positive examples
and membership queries, that extends Angluin’s works. We gave a polynomial algorithm for
this learning model and proved its correctnes. It is worth noticing that, with the same proofs,
ALTFEX is able to learn from partial examples, that is subtrees of positive examples. Indeed,
in the definition of representative sample, we stipulate that a representative sample must be a
subset of the language; there is no need for this restriction and the property that any transition
of the minimal automaton is necessary is enough. This constitutes a new paradigm that can
be even more realistic for the problem of natural language acquisition modelling. A part of
a sentence can be used by a child, even if the sentence in which it appears is not totally
understood. Moreover, this may partially answer the problem of noise in the signal processing.
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Appendix A - Examples
In example 4, we saw that the tree a(b(b), ¢(c(c))) is a representative sample for the tree language
L4 = {a(t®2 ™ : n,m e N}

Now suppose that the singleton is given to ALTEX; the constructed table with help of mem-
bership queries is the table of example 2. Thiq table is consistent a then, ALTEX output the
automaton of example 3. This automaton is a renaming of 4 and the language is learnt. If we
suppose that, with the same input, the language to learn is

Ly ={a(",c™) : n,me N}

({a(b(b), c(c(c))} is representative for this language too), the table is now:

ola(o, c(c()))|a(ble), cc(c))) |a(b(b), ©)|a(b(b), c())|a(b(b), c(c(2)))
a(b(b), c(c(e)))|1 0 0 0 0 0
b(b) 0 1 1 0 0 0
b 0 1 1 0 0 0
c(c(e)) 0 0 0 1 1 1
c(c) of o 0 1 1 1
c 0 0 0 1 1 1

ALTEX checks again that this table is directly consistent and output the automaton ¢'(A’),
where ¢’ is the automata homomorphism defined by:

¢ (qr) =100000
¢(@)=011000
¢ () =000111

ALTEX is defined as an iterative algorithm; if during the process, the observation table
is found not to be consistent, the minimal automaton for the target language must have some
particular rules: rules which are identical except in a single state of its left hand side (from the
first lemma given in Appendix B). If the minimal automaton has no such rules, the first table
constructed by ALTEX is consistent and the language is learned immediatly. With the aim
of illustrating the iterative behaviour, we now propose an automaton specially constructed for
having this property. Let so be £ 4 the language defined by the following minimal automaton
AII:

a(q) - aF d(gs, gs) —he e(qr) —B 9 n
a(gs) —> qr d(qs, gs) —> ¢ e(gs) —> gs h s
b(q1) —> qr d(gs, gs) —> a1 f(go) —> gs 1 7 g

AA

—> d — —> | —
CA q1 ((14,(16)A q2 fQIO) A s J A q10

where ¢p is the unique final state. From this definition, we establish that £ 4~ is the finite
language corresponding to the following set of terms:

L ={a(c),b(c), ald(e(g), f(7))), ald(e(h), f(2))), ald(e(g), f(1)));
a(d(e(h), f(5))),b(d(e(g), f(2))), bd(e(h), £(2))), bld(e(g), f (1))}

Let suppose that a teacher constructs the representative sample:

&= {b(o), a(d(e(g),f(i))),a(d(e(h),fl(?)),a(d(e(g), F(3))), ald(e(h), £(7)))}-



Table 1. T ,,, (S(£), £[¢])

a(d(o, f(2)))

a(d(e(g),©))

a(o)

a(d(e(h), £(¢)))

a(d(e, £(5)))

[y

o

o

~lOo|o|o|o

o

o|o|r|Oo|lo

o

o|r|Oo|o|lo

o

o|o|o|r| o

o

o|o|o|o|o

o

o|lr|Oo|olo

o

o|o|o|r| o

o|o|—|O|lo

o

o|o|o|Oo|

[y

o|o|o|o|o

o

[y

o

o

o

o

o

[y

o
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The learner ALTEX starts with the construction of F = £[o] and T'=T¢,, (S(€), F) (table 1).
ALTFEX now notices the three problematics couples of terms

d(e(h), f (7)) and d(e(h), f (7)),
d(e(g9), £(i)) and d(e(h), f())

and
d(e(g), f(7)) and d(e(h), f(7))-
Indeed
rowr(e(g)) = rowr(e(h))
and
rowr(f(i)) = rowr(f (7))
but
b(d(e(g), f(1)) € L,
b(d(e(9), f(4))) € L,
b(d(e(h), () € £
and

ALTEX adds the contexts

and
b(d(o, £(4)))

to F and complete the table 7" with help of the teacher (table 2).
ALTEX now remarks that

b(d(e(h), f(i))) € L,
b(d(e(h), f(45))) ¢ £

but

rowr(i) = rowr(j)
and that

b(d(e(9), f(4))) € L,

bd(e(h), f(4))) & £
but

rowr(g) = rowr(h).

It takes the decision to consider the new contexts

b(d(e(0), £(4)))

and
b(d(e(h), f(2)))
in F and complete one last time the table 7" with help of the teacher (table 3). T is now

consistent and ALTEX output Ay which verify L4, = L.
15



Table 2. T ,, (S(£),€

[o] U {b(d(e(g), ©)),b(d(e(h), ), b(d(e, £(i)))}), b(d(o, f(4)))})
(o) |a(d(e(h), f(0)))|ald(e(h), ©))|ald(e(o), f(4))) |ald(o, f(4))) |b

a(d(e(g), f(©))) |ald(o, f(4))) |a(d(e(g), ) |a (0)
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1
h 0 1 0 0 0 0 0 0 1 0 0
a(d(e(g), f(H) |1 0 0 0 0 0 0 0 0 0 0
d(e(q), f()) |0 0 0 0 0 1 0 0 0 0 1
[ f@ Jof o 0o [ o | 1 Jo[ o [t [ 0o [ 0o [0]
g 0 0 1 0 0 0 1 0 0 0 0
a(d(e(h), FG)|1 0 0 0 0 0 0 0 0 0 0
d(e(h), f(5)) |0 0 0 0 0 1 0 0 0 0 0
b(c) 1 0 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 1 0 0 0 0 1
S() F b(d(e(g), 0))[b(d(e(h), ©))|b(d(o, f(4)))|b(d(o, £(4)))
a(d(e(g), £(1))) 0 0 0 0
d(e(g), f(3)) 0 0 0 0
g 0 0 0 0
i 0 0 0 0
a(d(e(h), £(4))) 0 0 0 0
d(e(h), f(3)) 0 0 0 0
[ e®w [ o T o [ =+ [ o |
h 0 0 0 0
a(d(e(9), f(4))) 0 0 0 0
d(e(g), f(5)) 0 0 0 0

S
=
@
o~
I~
PANS
|
—~
<
Z
Nt
o|o|o|o|o
o|o|o|o|o
o|o|o|o|o
o|o|o|o|o

16



17

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0 (((®)f “(y)2)p)o
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
() “(u)2)P)a|(((£)F “()2)P)a| (((£)f o)p)a| (((2)f *o)p)a|((e (u)2)P)q|((o ‘(6)2)P)q
1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 [ 0
0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 B 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 11 (((0)f (4)2)p)
0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
(@)a| () o)p)0 [ (((£) “(0)2)p)o|((o “(y)2)P)0 | (((0)f ‘(w)2)P)2|(0)0|((o (B)2)P)0 | (((2)f 0)P)2|((()f (6)2)P)2|(((2)f ‘(0)2)p)D|0
() ()2)P)a () “(2)2)P)a () *)P)a (o *(4)2)P)a ‘ ((o*(6)2)P)g} N [0]3°(3)S) "V 7L *€ °198L



Appendix B

In this section, we proove technical lemma used to establish the correctness of ALTEX.
Lemma. Let T = T (€, F) be an observation table where £ is a regular tree language, £ a

representative set for £, F a set of context containing £[¢] and .4 the minimal automaton for
L.
For any pair of terms t and t’ of £, if rows(t) = rowr(t'), then for any rule of the form

f(cha <o Gi—1, 5A(t)a qit15 - - Qn) j r
in A, there is also a rule of the form

!

f(Qla SRR QiflaéA(tl)a qit1y -+ - QVL) 7 r

in A.
Proof. Suppose rowr(t) = rowr(t') and let £(q1,..., ¢ 1,04(t), Gis1s- -, Gn) e be a rule of
A. Since F contains £[¢], there is a context of the form c[f(ty, ..., t;_1,9, tiz1, ..., t,)] in F, where

04(t;) = ¢, V1 < j # i < n. From the definition of T (£, F), we have T (t, c[f(t1, ..., ti 1,0, tit1, ..., t,)]) =
1. Now rowr(t) = rowr(t') implies that T, (t', c[£(t1, ..., ti 1,0, tiz1, ..., tn)]) = 1. Asc[f(t,. .., ti 1,
t' tiy1,...,t,)] is an element of £, there must be a rule f(¢,..., ¢ 1,04(t), Gix1s---, Gn) - r!

in A.

Lemma. Let T = T (€, F) be an observation table where £ is a regular tree language, £ a
representative set for £, F a set of context containing £[¢] and A the minimal automaton for

L.
If L4, # L, then exist two terms

f(tb o tion Gt 7tn)

and
£ty 7t;—1:tlvt;—|—17 N

in §(€) such that:
- T'O’UJT(f(tl, R PR T IS N ,tn)) 75 ’I”O’U)T(f(tll, ce ,t;_l, tl,t;_H, ce 7t;z))7

- 5A(tj) = 5_,4(’[;-), Vi<j#i<n,
— rowp(t) = rowr(t).

Proof. L4, # £ implies that the automata homomorphism ¢ is not an isomorphism; there are
so two terms t and t’ in £ such that:

rowr(t) = rowr(t’)

and
0.a(t) # da(t)
From Myhill-Nerode theorem [7], 6.4(t) # d.4(t") implies the existence of a context c[o] such that
c[t] € £ and c[t'] ¢ L.
Let now define the context c[¢] as:

— there are two terms s and s’ in §(€) such that
e rowy(s) = rowp(s')
e cls|e Landc[s'| ¢ L
18



— depth(c[¢]) = min{depth(c’[¢]), Tu,u’ € S(&), rowr(u) = rowr(u’),
L and c'[u] ¢ L}

Let first show that depth(c[¢]) > 0. If depth(c[¢]) = 0, we have c[¢] = ¢. Now ¢ is a context
of F,soif s € £ and ' ¢ L, then rowr(s) # rowp(s') which provides a contradiction. So c[¢]
can be written d[f(sy,...,Si-1,9,Si,...,S,)], With some terms si,...,S;—1,Sit1,.-.,S, and d[o]
a context such that depth(c[o]) = depth(d[o]) + 1. Since d[f(sq,---,Si—1,S,Sit+1,---,S,)] is in L,
there exist in A arule £(q1,..., ¢ 1,04(S); Gix1,---, Gn) s with ¢; = 04(s;), V1 < j#i<n.

From the former Lemma, there is also a rule £(qi, ..., ¢;—1,04(S"), Gix1,-- -, qn) y r' in A. If

r = 7', then we have

(SA(f(sla <+ +55i-1,5,Si41, - - .,Sn)) = 5A(f(517 o '7si—laslasi—|—17 cee asn))

and d[f(s1,...,Si-1,S,Sit1,---,Sn)] is in £ implies d[f(s1,...,S;_1,S,Si+1,---,5,)] is in £, that
contradicts the hypothesis. £ is a representative sample for £, so to the two rules

f(Qla <oy @i, 5./4(5)’ Git1y - - - Qn) 7 r
and

f(Qla ERI Qi—la(sA(sl)a Git1y - - - Qn) — T

correspond two terms
f(tla s tiont ti—l—la s ;tn)

and
£t .ttt g, t)

in §(&), with
da(t)) = da(ty) = 4,
V1<j#i<nand
da(f(ty, ..ttty t)) =1

and
Sa(E(ty, .ttt ..., 1)) =7
Let finally suppose that
T‘O’LUT(f(tl, ceey ti—l; t, ti_|_1, . ,tn)) = T‘O’(UT(f(t,l, ceey t;—la t,, t;—l—l’ ceey t;.b))
and show that the context d[¢] contradicts the minimality of c[o]. By construction :

- 7“0’U)T(f(t1, o tiogs t ti_|_1, P ,tn)) = TOwT(f(tll, PN ,t;_l, tlat;'—i—la ey t,ln))
= d[f(ty, .. tic, b, . ty)] € Land d[E(E, ..ttt . t)] € £
— depth(c[¢]) > depth(d[¢])

This contradiction implies that

T'O’(UT(f(tl, cen ,ti—l; t, ti+1, P ,tn)) 75 T‘O’LUT(f(tll, ceey t;_l, t,, t;-l—l’ ceey t:l))

and provides the conclusion.
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