
Resource analysis by sup-interpretation

Jean-Yves Marion and Romain Péchoux

Loria, Calligramme project, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France,
and École Nationale Supérieure des Mines de Nancy, INPL, France.

Jean-Yves.Marion@loria.fr Romain.Pechoux@loria.fr

Abstract. We propose a new method to control memory resources by
static analysis. For this, we introduce the notion of sup-interpretation
which bounds from above the size of function outputs. We establish a cri-
teria for which the stack frame size is polynomially bounded. The criteria
analyses terminating as well as non-terminating programs. This method
applies to first order functional programming with pattern matching.
This work is related to quasi-interpretations but we are now able to de-
termine resources of different algorithms and it is easier to perform an
analysis with this new tools.

1 Introduction

This paper deals with general investigation on program complexity analysis. It
introduces the notion of sup-interpretation, a new tool that provides an upper
bound on the size of every stack frame if the program is non-terminating, and
establishes an upper bound on the size of function outputs if the program is
terminating.

A sup-interpretation of a program is a partial assignment of function symbols,
which ranges over reals and which bounds the size of the computed values.

The practical issue is to provide program static analysis in order to guarantee
space resources that a program consumes during an execution. There is no need
to say that this is crucial for at least many critical applications, and have strong
impact in computer security. There are several approaches which are trying to
solve the same problem. The first protection mechanism is by monitoring com-
putations. However, if the monitor is compiled with the program, it could crash
unpredictably by memory leak. The second is the testing-based approach, which
is complementary to static analysis. Indeed, testing provides a lower bound on
the memory while static analysis gives an upper bound. The gap between both
bounds is of some value in practical applications (See [22] for an interesting dis-
cussion). Lastly, the third approach is type checking done by a bytecode verifier.
In an untrusted environment (like embedded systems), the type protection policy
(Java or .Net) does not allow dynamic allocation. Our approach is an attempt to
control resources, and provide a proof certificate, of a high-level language in such
a way that the compiled code is safe wrt memory overflow. Thus, we capture
and deal with memory allocation features. Similar approaches are the one by
Hofmann [15, 16] and the one by Aspinall and Compagnoni [5].



2

For that purpose we consider first order functional programming language
with pattern matching but we firmly believe that such a method could be applied
to other languages such as resource bytecode verifier by following the lines of [2],
language with synchronous cooperative threads as in [3] or first order functional
language including streams as in [14] .

The notion of sup-interpretation can be seen as a kind of annotation provided
in the code by the programmer. Sup-interpretations strongly inherit from the
notion of quasi-interpretation developed by Bonfante, Marion and Moyen in [10,
11, 21]. Consequently the notion of sup-interpretation comes from the notion of
polynomial interpretation used to prove termination of programs in [13, 18] and
more recently in [8, 20]. Quasi-interpretation, like sup-interpretation, provides a
bound over function outputs by static analysis for first order functional programs
and allows the programmer to find a bound on the size of every stack frame.
Quasi-interpretation was developed with the aim to pay more attention to the
algorithmic aspects of complexity than to the functional (or extensional) one
and then it is part of study of the implicit complexity of programs.

However the notions of sup-interpretation and quasi-interpretation differ for
two reasons. First, the sup-interpretations are partial assignments which do
not satisfy the subterm property, and this allows to capture a larger class of
algorithms. In fact, programs computing logarithm or division admits a sup-
interpretation but have no quasi-interpretation. Second, the sup-interpretation
is a partial assignment over the set of function symbols of a program, whereas
the quasi-interpretation is a total assignment on function symbols. On the other
hand, sup-interpretations come with a companion, which is a weight to measure
argument size of recursive calls involved in a program run. In order to obtain a
polynomial space bound, some constraints are developed over weights and sup-
interpretations using the underlying notion of dependency pairs by Arts and
Giesl [4]. The dependency pairs were initially introduced for proving termina-
tion of term rewriting systems automatically. Even if this paper no longer focuses
on termination, the notion of dependency pair is used for forcing the program to
compute in polynomial space. There is a very strong relation between termina-
tion and computational complexity. Indeed, in order to prove some complexity
bounds and termination, we need to control the arguments occurring in a func-
tion recursive call. Since we try to control together the arguments of a recursive
call, the sup-interpretation is closer to the dependency pairs method than to
the size-change principle method of [19] which consider the arguments of a re-
cursive call separately (See more rencently [17]). Section 2 introduces the first
order functional language and its semantics. Section 3 defines the main notions
of sup-interpretation and weight used to bound the size of a program outputs.
Section 4 presents the notion of fraternity used to control the size of values
added by recursive calls. In section 5, we define the notion of polynomial and
additive assignments for sup-interpretations and weights. Finally, section 6 in-
troduces the notion of friendly programs and the main theorems of this paper
providing a polynomial bound on the values computed by friendly programs. The
full paper with all proofs is available at http://www.loria.fr/∼pechoux. The



3

appendix of the full paper presents examples of friendly programs, an example
of non-friendly program and some examples over streams.

2 First order functional programming

2.1 Syntax of programs

We define a generic first order functional programming language. The vocabulary
Σ = 〈Cns,Op,Fct〉 is composed of three disjoint domains of symbols. The arity
of a symbol is the number n of arguments that it takes. The set of programs are
defined by the following grammar.

Programs 3p ::= def 1, · · · , def m

Definitions 3 def ::= f(x1, · · · , xn) = ef

Expression 3 e ::= x | c(e1, · · · , en) | op(e1, · · · , en) | f(e1, · · · , en)
| Case e1, · · · , en of p1 → e1 . . . p` → e`

Patterns 3 p ::= x | c(p1, · · · , pn)

where c ∈ Cns is a constructor, op ∈ Op is an operator, f ∈ Fct is a
function symbol, and pi is a sequence of n patterns. Throughout, we generalize
this notation to expressions and we write e to express a sequence of expressions,
that is e = e1, . . . , en, for some n clearly determined by the context.

The set of variables Var is disjoint from Σ and x ∈ Var. In a definition, ef

is called the body of f. A variable of ef is either a variable in the parameter
list x1, · · · , xn of the definition of f or a variable which occurs in a pattern
of a case definition. In a case expression, patterns are not overlapping. The
program’s main function symbol is the first function symbol in the program’s
list of definitions. We usually don’t make the distinction between this main
symbol and the program symbol p.

Lastly, it is convenient, because it avoids tedious details, to restrict case
definitions in such a way that an expression involved in a Case expression does
not contain nested Case (In other words, an expression ej does not contain
an expression Case ). This is not a severe restriction since a program involving
nested Case can be transformed in linear time in its size into an equivalent
program without the nested case construction.

2.2 Semantics

The set Values is the constructor algebra freely generated from Cns.

Values 3 v ::= c | c(v1, · · · , vn) c ∈ Cns

Put Values∗ = Values ∪{Err} where Err is the value associated to an error.
Each operator op of arity n is interpreted by a function JopK from Valuesn

to Values∗. Operators are essentially basic partial functions like destructors or
characteristic functions of predicates like =. The destructor tl illustrates the
purpose of Err when it satisfies Jtl(nil)K = Err.



4

The computational domain is Values# = Values ∪ {Err,⊥} where ⊥ means
that a program is non-terminating. The language has a closure-based call-by-
value semantics which is displayed in Figure 1. A few comments are necessary.
A substitution σ is a finite function from variables to Values. The application
of a substitution σ to an expression e is noted eσ.

t1 ↓ w1 . . . tn ↓ wn

c ∈ Cns and ∀i, wi 6= Err
c(t1, · · · , tn) ↓ c(w1, · · · , wn)

t1 ↓ w1 . . . tn ↓ wn

op ∈ Op and ∀i, wi 6= Err
op(t1, · · · , tn) ↓ JopK(w1, · · · , wn)

e ↓ u ∃σ, i : piσ = u eiσ ↓ w
Case and u 6= Err

Case e of p1 → e1 . . . p` → e` ↓ w

e1 ↓ w1 . . . en ↓ wn f(x1, · · · , xn) = e
f

e
f
σ ↓ w

where σ(xi) = wi

f(e1, · · · , en) ↓ w
6= Err and w 6= Err

Fig. 1. Call by value semantics of ground expressions wrt a program p

The meaning of e ↓ w is that e evaluates to the value w of Values∗. If no
rule is applicable, then an error occurs, and e ↓ Err. So, a program p computes
a partial function JpK : Valuesn → Values# defined as follows. For all vi ∈
Values , JpK(v1, · · · , vn) = w iff p(v1, · · · , vn) ↓ w. Otherwise JpK(v1, · · · , vn) =
⊥. Throughout, we shall say that JpK(v1, · · · , vn) is defined when JpK(v1, · · · , vn)
is a constructor term of Values.

3 Sup-interpretations

3.1 Partial assignment

A partial assignment θ is a partial mapping from a vocabulary Σ such that
for each symbol f of arity n, in the domain of θ, it yields a partial function
θ(f) : (R)n 7−→ R. The domain of a partial assignment θ is noted dom(θ).
Because it is convenient, we shall always assume that partial assignments that we
consider, are defined on constructors and operators. That is Cns∪Op ⊆ dom(θ).

An expression e is defined over dom(θ) if each symbol belongs to dom(θ) or is
a variable of Var. Take a denumerable sequence X1, . . . , Xn, . . .. Assume that an
expression e is defined over dom(θ) and has n variables. The partial assignment
of e wrt θ is the extension of the assignment θ to the expression e that we write
θ∗(e). It denotes a function from R

n to R and is defined as follows:



5

1. If xi is a variable of Var, let θ∗(xi) = Xi

2. If b is a 0-ary symbol of Σ, then θ∗(b) = θ(b).
3. If e is a sequence of n expressions, then θ∗(e) = max(θ∗(e1), . . . , θ

∗(en))

4. If e is a Case expression of the shape Case e of p1 → e1 . . . p` → e`,

θ∗(e) = max(θ∗(e), θ∗(e1), . . . , θ∗(e`))

5. If f is a symbol of arity n > 0 and e1, · · · , en are expressions, then

θ∗(f(e1, · · · , en)) = θ(f)(θ∗(e1), . . . , θ
∗(en))

3.2 Sup-interpretation

Definition 1 (Sup-interpretation). A sup-interpretation is a partial assign-
ment θ which verifies the three conditions below :

1. The assignment θ is weakly monotonic. That is, for each symbol f ∈ dom(θ),
the function θ(f) satisfies

∀i = 1, . . . , n Xi ≥ Yi ⇒ θ(f)(X1, · · · , Xn) ≥ θ(f)(Y1, · · · , Yn)

2. For each v ∈ Values,

θ∗(v) ≥ |v|

The size of an expression e is noted |e| and is defined by |c| = 0 where c is
a 0-ary symbol and |b(e1, . . . , en)| = 1 +

∑

i |ei| where b is a n-ary symbol.

3. For each symbol f ∈ dom(θ) of arity n and for each value v1, . . . , vn of
Values, if JfK(v1, . . . , vn) is defined, that is JfK(v1, . . . , vn) ∈ Values, then

θ∗(f(v1, . . . , vn)) ≥ θ∗(JfK(v1, . . . , vn))

Now an expression e admits a sup-interpretation θ if e is defined over dom(θ).
The sup-interpretation of e wrt θ is θ∗(e).

Intuitively, the sup-interpretation is a special program interpretation. Instead
of yielding the program denotation, a sup-interpretation provides an approxi-
mation from above of the size of the outputs of the function denoted by the
program. It is worth noticing that sup-interpretations are a complexity measure
in the sense of Blum [7].

Lemma 1. Let e be an expression with no variable and which admits a sup-
interpretation θ. Assume that JeK is defined. We then have

θ∗(JeK) ≤ θ∗(e)



6

Proof. The proof is done by structural induction on expression. The base case
is a consequence of Condition 2 of Definition 1.

Take an expression e = f(e1, · · · , en) that has a sup-interpretation θ. By
induction hypothesis (IH), we have θ∗(ei) ≥ θ∗(JeiK). Now,

θ∗(e) = θ(f)(θ∗(e1), ..., θ
∗(en)) by definition of θ∗

≥ θ(f)(θ∗(Je1K), ..., θ
∗(JenK)) by 1 of Dfn 1 and (IH)

= θ∗(f(Je1K, ..., JenK)) by definition of θ∗

≥ θ∗(JfK(Je1K, ..., JenK)) by 3 of Dfn 1

= θ∗(JeK)

ut

Given an expression e, we define ‖e‖ thus:

‖e‖ =

{

|JeK| if JeK is defined

0 otherwise

Corollary 1. Let e be an expression with no variable and which admits a sup-
interpretation θ. Assume that JeK is defined. We then have

‖e‖ ≤ θ∗(e)

Proof.

θ∗(e) ≥ θ∗(JeK) by Lemma 1

≥ ‖e‖ by Condition 2 of Dfn 1

ut

Example 1.

half(x) = Case x of 0 → 0

S(0) → 0

S(S(y)) → S(half(y))

In this example, the function half computes bn/2c on an entry of size n. So by
taking θ(S)(X) = X+1 and θ(half)(X) = X/2, we define a sup-interpretation of
the function symbol half. In fact, both functions are monotonic. For every unary
value v of size n, θ∗(v) = n ≥ n = |v| by definition of θ(S), so that condition 2
on sup-interpretation is satisfied. Finally, it remains to check that for every value
v, θ∗(half(v)) ≥ θ∗(Jhalf(v)K). For a value v of size n, we have by definition of
θ∗ that θ∗(half(v)) = θ∗(v)/2 = n/2 and θ∗(Jhalf(v)K) = ‖half(v)‖ = bn/2c.
Since n/2 ≥ bn/2c, condition 3 of sup-interpretation is satisfied. Notice that such
a sup-interpretation is not a quasi-interpretation (a fortiori not an interpretation
for proof termination) since it does not have the subterm property (see below
for a definition of this property).



7

3.3 Weight

The weight allows us to control the size of the arguments in recursive calls. A
weight is an assignment having the subterm property but no longer giving a
bound on the size of a value computed by a function. Intuitively, whereas the
sup-interpretation controls the size of the computed values, the weight can be
seen as a control point for the computation of recursive calls.

Definition 2 (Weight). A weight ω is a partial assignment which ranges over
Fct. To a given function symbol f of arity n it assigns a total function ωf from
R

n to R which satisfies:

1. ωf is weakly monotonic.

∀i = 1, . . . , n, Xi ≥ Yi ⇒ ωf(. . . , Xi, . . .) ≥ ωf(. . . , Yi, . . .)

2. ωf has the subterm property

∀i = 1, . . . , n, ωf(. . . , Xi, . . .) ≥ Xi

The weight of a function is often taken to be the maximum or the sum
functions.

The monotonicity property combined with the fact that a weight ranges over
function symbols ensures suitable properties on the number of occurrences of a
loop in a program when we consider the constraints given in section 6. Moreover,
the subterm property allows to control the size of each argument in a recursive
call, in opposition to the size-change principle as mentioned in the introduction.

4 Fraternities

In this section we define fraternities which are an important notion based on
dependency pairs, that Arts and Giesl [4] introduced to prove termination au-
tomatically. Fraternities allow to tame the size of arguments of recursive calls.

A context is an expression C[�1, · · · , �r] containing one occurrence of each �i.
Here, we suppose that the �i’s are new symbols which are not in Σ nor in Var.
The substitution of each �i by an expression di is noted C[d1, · · · , dr].

Definition 3. Assume that f(x1, · · · , xn) = ef is a definition of a program. An
expression d is activated by f(p1, · · · , pn) where the pi’s are patterns if there is
a context with one hole C[�] such that:

– If ef is a compositional expression (that is with no case definition inside it),
then ef = C[d]. In this case, p1 = x1 . . . pn = xn.

– Otherwise, ef = Case e1, · · · , en of q1 → e1 . . . q` → e`, then there is a
position j such that ej = C[d]. In this case, p1 = qj,1 . . . pn = qj,n where
qj = qj,1 . . . qj,n.



8

At first glance, this definition may look a bit tedious. However, it is convenient
in order to predict the computational data flow involved. Indeed, an expression
is activated by f(p1, · · · , pn) when f(v1, · · · , vn) is called and each vi matches
the corresponding pattern pi.

The notion of activated expression provides a precedence ≥Fct on function
symbols. Indeed, set f ≥Fct g if there are e and p such that g(e) is activated
by f(p). Then, take the reflexive and transitive closure of ≥Fct, that we also
note ≥Fct. It is not difficult to establish that ≥Fct is a preorder. Next, say that
f ≈Fct g if f ≥Fct g and inversely g ≥Fct f. Lastly, f >Fct g if f ≥Fct g and
g ≥Fct f does not hold.

Intuitively, f ≥Fct g means that f calls g in some executions. And f ≈Fct g

means that f and g call themselves recursively.
Say that an expression d activated by f(p1, · · · , pn) is maximal if there is

no context C[�], distinct from the empty context, such that C[d] is activated by
f(p1, · · · , pn).

Definition 4. In a program p, an expression d = C[g1(e1), . . . , gr(er)] activated
by f(p1, · · · , pn) is a fraternity if

1. d is maximal
2. For each i ∈ {1, r}, gi ≈Fct f.
3. For every function symbol h that appears in the context C[�1, · · · , �r], we

have f >Fct h.

All along, we suppose that there is no nested fraternities, which means that
a fraternity d does not contain any fraternity inside it. This restriction prevents
definitions of the shape f(S(x)) = f(f(x)). This restriction is not too strong
since such functions are not that natural in a programming perspective and ei-
ther they have to be really restricted or they rapidly generate complex functions
like the Ackermann one. The following examples illustrate typical fraternity con-
structions.

Example 2. Consider the program log computing log2(n) + 1 on an entry of
size n and using the program half of example 1.

log(x) = Case x of 0 → 0

S(y) → S(log(half(S(y))))

half(x) = Case x of 0 → 0

S(0) → 0

S(S(y)) → S(half(y))

This program admits two fraternities S(log[half(S(y))]) and S[half(y)] since
log >Fct half. Take S(log[half(S(y))]), this fraternity is decomposed into a
context S(log[�]) and an expression half(S(y)).



9

Example 3 (division). Consider the following definitions that encode the division
dn/me on two entries of sizes n and m > 0:

minus(x, y) = Case x, y of 0, z → 0

S(z),0 → S(z)

S(u),S(v) → minus(u, v)

q(x, y) = Case x, y of 0,S(z) → 0

S(z),S(u) → S(q(minus(z, u),S(u)))

This program admits two fraternities minus(u, v) and S[q(minus(z, u),S(u))]
since q >Fct minus.

Definition 5. A state is a tuple 〈f, u1, · · · , un〉 where f is a function symbol of
arity n and u1, . . . , un are values. Assume that η1 = 〈f, u1, · · · , un〉 and η2 =
〈g, v1, · · · , vk〉 are two states. Assume also that C[g(e1, · · · , ek)] is activated by

f(p1, · · · , pn). A transition is a triplet η1
C[�]
 η2 such that:

1. There is a substitution σ such that piσ = ui for i = 1, . . . , n,
2. and JejσK = vj for j = 1...k.

We call such a graph a call-tree of f over values u1, . . . , un if 〈f, u1, · · · , un〉 is
its root. A state may be seen as a stack frame. A call-tree of root 〈f, u1, · · · , un〉
represents all the stack frames which will be pushed on the stack when we compute
f(u1, . . . , un).

5 Polynomial assignments

Definition 6. A partial assignment θ is polynomial if for each symbol f of arity
n of dom(θ), θ(f) is bounded by a polynomial of R[X1, · · · , Xn]. A polynomial
sup-interpretation is a polynomial assignment. A polynomial weight ω of arity n
is a weight which is bounded by some polynomial of R[X1, · · · , Xn].

An assignment of c ∈ dom(θ) is additive if

θ(c)(X1, · · · , Xn) =
n

∑

i=1

Xi + αc αc ≥ 1

If the polynomial assignment of each constructor is additive then the assign-
ment is additive. Throughout the following paper we consider additive assign-
ments. As a consequence we have the following lemma:

Lemma 2. There is a constant α such that for each value v of Values, the
inequality is satisfied :

|v| ≤ θ∗(v) ≤ α|v|



10

6 Local criteria to control space resources

Definition 7 (Friendly). A program p is friendly iff there is a polynomial
sup-interpretation θ and a polynomial weight ω such that for each fraternity
expression d = C[g1(e1), . . . , gr(er)] activated by f(p1, · · · , pn) we have,

θ∗(C[�1, . . . , �r]) = max
i=1..r

(�i + Ri(Y1, . . . , Ym))

with Ri polynomials where each Yi corresponds to a variable occurring in C.
Moreover, for each i ∈ {1, r}, we have that for each substitution σ,

ωf(θ
∗(p1σ), . . . , θ∗(pnσ)) ≥ ωg

i
(θ∗(ei,1σ), . . . , θ∗(ei,mσ))

Moreover, if

∃σ ωf(θ
∗(p1σ), . . . , θ∗(pnσ)) = ωg

i
(θ∗(ei,1σ), . . . , θ∗(ei,mσ))

Then Ri(Y1, . . . , Ym) is the null polynomial.

Example 4. The program of example 2 is friendly. We take θ(S)(X) = X + 1
and θ(half)(X) = X/2. The contexts of the two fraternities involved in this
program are S[�], thus having a sup-interpretation θ∗(S[�]) = �+ 1. We have to
find ωlog and ωhalf such that for every σ:

ωlog(θ
∗(S(yσ))) > ωlog(θ

∗(half(S(yσ))))

ωhalf(θ
∗(S(S(yσ)))) > ωhalf(θ

∗(yσ))

Both inequalities are satisfied by taking ωlog(X) = ωhalf(X) = X . Thus the
program is friendly.

Example 5. The program of example 3 is friendly by taking θ(S)(X) = X + 1,
θ(minus)(X, Y ) = X , ωminus(X, Y ) = max(X, Y ) and ωq(X, Y ) = X + Y . An
example of an unfriendly program is given in the full paper.

Theorem 1. Assume that p is a friendly program. For each function symbol f
of p there is a polynomial P such that for every value v1, . . . , vn,

‖f(v1, . . . , vn)‖ ≤ P (max(|v1|, ..., |vn|))

Proof. The proof can be found in the full paper. It begins by assigning a poly-
nomial Pf to every function symbol f of a friendly program. This polynomial
is the sum of a bound on the size of values added by the contexts of recursive
calls and of a bound on the size of values added by the calls which are no longer
recursive. Then it checks both bounds thus showing that the values computed
by the program are polynomially bounded. ut



11

The programs presented in examples 2 and 3 are examples of friendly programs
and thus computing polynomially bounded values. More examples of friendly
programs can be found in the appendix of the full paper.

The next result strengthens Theorem above. Indeed it claims that even if
a program is not terminating then the intermediate values are polynomially
bounded. This is quite interesting because non-terminating process are common,
and moreover it is not difficult to introduce streams with a slight modification
of the above Theorem, which is essentially based on the semantics change.

Theorem 2. Assume that p is a friendly program. For each function symbol
f of p there is a polynomial R such that for every node 〈g, u1, · · · , um〉 of the
call-tree of root 〈f, v1, · · · , vn〉,

max
j=1..m

(|uj |) ≤ R(max(|v1|, ..., |vn|))

even if f(v1, . . . , vn) is not defined.

Proof. The proof is in the full paper and is a consequence of previous theorem
since in every state of the call-tree, the values are computed and thus bounded
polynomially. ut

Remark 1. As mentioned above, this theorem holds for non-terminating pro-
grams and particularly for a class of programs including streams. For that pur-
pose we have to give a new definition of substitutions over streams. In fact,
it would be meaningless to consider a substitution over stream variables. Thus
stream variables are never substituted and the sup-interpretation of a stream l
is taken to be a new variable L as in the definition of the sup-interpretations.

Example 6 (Streams). Let e::l be a stream with :: a stream constructor symbol,
e an expression (the head of the stream) and l a stream variable (the tail of the
stram) and suppose that we have already defined a semantics over streams in a
classical way.

addstream(x, y) = Case x, y of z :: l, u :: l′ → add(z, u) :: addstream(l, l′)

Then this (merging) program is friendly by taking θ∗(l) = L, θ(add)(X, Y ) =
X + Y , θ∗(x :: l) = θ∗(x) + L + 1 and ωaddstream(X, Y ) = X + Y . Thus a
variant of theorem 2 holds. The variation comes from the fact that it would be
non-sense to consider streams as inputs, since the size of a stream is unbounded.
Consequently, the inputs are chosen to be a restricted number of stream heads.
In the same way, every mapping program over streams of the shape:

f(x) = Case x of z :: l → g(z) :: f(l)

is friendly if g represents a friendly program. Thus the variant of theorem 2 also
applies. Moreover for all these programs we know that the values computed in the
output streams (i.e. in the heads of right-hand side definition) are polynomially
bounded in the size of some of the inputs (heads) since the computations involve



12

only friendly functions over non-stream datas (else some parts of the program
will never be evaluated). Finally an example of non-friendly program is:

f(x) = Case x of z :: l → f(z :: z :: l)

In fact, this program does not fit our requirements since it adds infinitely the
head of the stream to its argument, computing thus an unbounded value.

7 Conclusion and Perspectives

The notion of sup-interpretation allows to check that the size of the outputs of
a friendly program is bounded polynomially by the size of it inputs. It allows to
capture algorithms admitting no quasi-interpretations (division, logarithm, gcd
. . . ). So, our experiments show that is not too difficult to find sup-interpretations
for the following reasons. First, we have to guess sup-interpretations and weights
of only some, and not all, symbols. Second, a quasi-interpretations for those
symbol works pretty well in most of the cases. And so we can use tools to
synthesize quasi-interpretations [1, 9]. Our works is related to semi-automatic
procedure to analyse complexity, see for example Benzinger [6] for programs
extracted from Nuprl or Debray et al. for logic programs [12].

Sup-interpretation should be easier to synthesize than quasi-interpretations
since we have to find fewer assignments. Moreover it is not so hard to find a
sup-interpretation, since quasi-interpretation often defines a sup-interpretation,
except in the case of additive contexts. Indeed, consider the program f(c(x, y)) =
c(f(x), f(y)) defined over binary trees. It admits the identity function as quasi-
interpretation. However it does not admit a sup-interpretation since its context
should have an additive sup-interpretation. Which is clearly impossible in the
friendly criteria. Hopefully this drawback only relies on the friendly criteria and
not on the sup-interpretation itself. We are currently working on a more gen-
eral criteria which should be able to capture such programs and whose aim is
to capture entirely the class of programs admitting a quasi-interpretation. As a
consequence every quasi-interpretation satisfying the friendly criteria is a sup-
interpretation. A programmer is also interested in bounding the total number
of stack frames. This issue is partially tackled in the full paper by showing that
cycles of the call-tree corresponding to friendly programs with strict inequalities
in the friendly criteria have a number of occurrences bounded by a polynomial
in the size of the inputs. Since every occurence of a cycle is composed of a
bounded number of states (which depends directly on the size of the program)
and since every cycle occurs a polynomial number of times, we know that the
corresponding call-tree will have a number of states bounded polynomially in
the size of the inputs. Consequently, for such programs, both stack frame sizes
and the number of stack-frames are polynomially bounded by the size of the
inputs. The corresponding termination result strongly inherits in a natural way
from the dependency pairs method of Arts and Giesl [4]. However, it differs in



13

the sense that the monotonicity of the quasi-ordering and the inequalities over
definitions (rules) of a program are replaced by the notion of sup-interpretation
combined to weights. Consequently, it shares the same advantages and disad-
vantages than the dependency pairs method compared to termination methods
such as size-change principle by Jones et al. [19], failing on programs admitting
no polynomial orderings (Ackermann function, for example), and managing to
prove termination on programs where the size-change principle fails. For a more
detailed comparison between both termination criteria see [23]. Finally, an open
question concerns characterization of time complexity classes with the use of
such a tool, particularly, the characterization of polynomial time by determining
a restriction on sup-interpretations.

References

1. R. Amadio. Max-plus quasi-interpretations. In Martin Hofmann, editor, Typed
Lambda Calculi and Applications, 6th International Conference, TLCA 2003, Va-
lencia, Spain, June 10-12, 2003, Proceedings, volume 2701 of Lecture Notes in
Computer Science, pages 31–45. Springer, 2003.

2. R. Amadio, S. Coupet-Grimal, S. Dal-Zilio, and L. Jakubiec. A functional scenario
for bytecode verification of resource bounds. In Jerzy Marcinkowski and Andrzej
Tarlecki, editors, Computer Science Logic, 18th International Workshop, CSL 13th
Annual Conference of the EACSL, Karpacz, Poland, volume 3210 of Lecture Notes
in Computer Science, pages 265–279. Springer, 2004.

3. R. Amadio and S. Dal Zilio. Resource control for synchronous cooperative threads.
Research Report LIF.

4. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

5. D. Aspinall and A. Compagnoni. Heap bounded assembly language. Journal of
Automated Reasoning (Special Issue on Proof-Carrying Code), 31:261–302, 2003.

6. R. Benzinger. Automated higher-order complexity analysis. Theoretical Computer
Science, 318(1-2):79–103, 2004.

7. M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the Association for Computing Machinery, 14:322–336, 1967.

8. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial
interpretation termination proof. Journal of Functional Programming, 11(1):33–53,
2001.

9. G. Bonfante, J.-Y. Moyen J.-Y. Marion, and R. Péchoux. Synthesis of quasi-
interpretations. Workshop on Logic and Complexity in Computer Science,
LCC2005, Chicago, 2005. http://www.loria/∼pechoux.

10. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On lexicographic termination order-
ing with space bound certifications. In Dines Bjørner, Manfred Broy, and Alexan-
dre V. Zamulin, editors, Perspectives of System Informatics, 4th International An-
drei Ershov Memorial Conference, PSI 2001, Akademgorodok, Novosibirsk, Russia,
Ershov Memorial Conference, volume 2244 of Lecture Notes in Computer Science.
Springer, Jul 2001.

11. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretation a way to control
resources. Submitted to Theoretical Computer Science, 2005. http://www.loria.

fr/∼moyen/appsemTCS.ps.



14

12. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, 1993.

13. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, pages
69–115, 1987.

14. S.G. Frankau and A. Mycroft. Stream processing hardware from functional lan-
guage specifications. In Martin Hofmann, editor, 36th Hawai’i International Con-
ference on System Sciences (HICSS 36). IEEE, 2003.

15. M. Hofmann. Linear types and non-size-increasing polynomial time computation.
In Proceedings of the Fourteenth IEEE Symposium on Logic in Computer Science
(LICS’99), pages 464–473, 1999.

16. M. Hofmann. A type system for bounded space and functional in-place update. In
European Symposium on Programming, ESOP’00, volume 1782 of Lecture Notes
in Computer Science, pages 165–179, 2000.

17. A. Hugh and S.C. Khoo. Affined-based size-change termination. APLAS 2003,
Beijing, 2003.

18. D.S. Lankford. On proving term rewriting systems are noetherien. Technical
report, 1979.

19. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In Symposium on Principles of Programming Languages,
volume 28, pages 81–92. ACM press, january 2001.

20. S. Lucas. Polynomials over the reals in proofs of termination: from theory to
practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005.

21. J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program interpreter
with time bound certifications. In Michel Parigot and Andrei Voronkov, editors,
Logic for Programming and Automated Reasoning, 7th International Conference,
LPAR 2000, Reunion Island, France, volume 1955 of Lecture Notes in Computer
Science, pages 25–42. Springer, Nov 2000.

22. J. Regehr. Say no to stack overflow. 2004. http://www.embedded.com.
23. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In 14th

International Conference on Rewriting Techniques and Applications, Lecture Notes
in Computer Science, Valencia, Spain, 2003. Springer.


