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Abstract. We define the class of reversible classical categorial grammars, similar
in the spirit to the notion of reversible class of languages introduced by Angluin
and Sakkakibara. We show that the class of reversible classical categorial grammars
is identifiable from positive structured examples. For this, we provide an original
algorithm, which runs in quadratic time in the size of the examples. This work
extends the previous results of Kanazawa. Indeed, in our work, several types can
be associated to a word and the class is still identifiable in polynomial time. We
illustrate the relevance of the class of reversible classical categorial grammars with
linguistic examples.

1 Introduction

Gold’s identification from positive examples [5] is a fascinating model of
learning. Its importance stems from the fact that linguists like Chomsky
or Pinker [7] show that natural language acquisition is based on the analysis
of the structures of correct phrases. Our objective is to contribute to the
design and the understanding of the formal process of language acquisition.
Classical categorial grammars are widely used in linguistics. In [6], Kanazawa
established that the class of k-valued categorial grammars is learnable from
structured examples, but, for & > 1, Costa Floréncio [4] showed that identifi-
cation of k-valued categorial grammars is NP-hard. This result constitutes a
strong limitation in the interest of these class for the formalization of natural
language acquisition. In other hand, rigid grammars (k = 1), which are learn-
able in polynomial time, allow to associate only a single type to any given
word of the vocabulary. This is an other strong limitation for considering
realistic linguistic phenomena. In this article, we define a new class of clas-
sical categorial grammars, the reversible categorial grammars, which strictly
contains rigid grammars and is learnable in quadratic time. This class is com-
pletely independent to the hierarchy of k-valued grammars since an arbitrary
number of types may correspond to a same word. Since a pre-defined limit



k seems not to be realistic for the formalisation of natural language acqui-
sition, the motivation of our work is to define a learnable class of categorial
grammars independently to such a limit.

We construct an algorithm which identifies this class of reversible cat-
egorial grammars in quadratic time, we give a proof of its correctness and
illustrate it on three short examples. The first one is taken from [6] for a
comparison with Kanazawa’s algorithm. The second and third show how we
learn non-rigid grammars for which non-rigidity expresses two kinds of com-
mon linguistic ambiguities: homonymity and transitivity and non-transitivity
of the same verb.

2 Reversible categorial grammars

Bar-Hillel [9] defined classical categorial grammars which are based on a non-
commutative logic (assumptions are totally ordered).
A classical grammar G is a relation between two sets X and T'p where:

e Y is a finite vocabulary
e T'pis a set of types defined from a finite set of primitive types Var as
the smallest set verifying:
— T'p contains a special type s which is not an element of Var (we note
Pr the set Pr = Var U {s} of primitive types),
if a € Pr then a € Tp,
— if A€ Pr and B € Pr, then A\B € Pr,
— if A€ Pr and B € Pr, then A/B € Pr

We note a —¢ A if (o, A) € G and when there is no ambiguity, we simply
note a — A. A grammar G is said to be k-valued if for any word a € X,
there are at most k distinct types Aj,..., Ag such that V1 < i <k, a— A;.
A grammar 1 — valued is also called rigid. If a is an element of X, the finite
set Catg(a) is {A € Tp, G:a— A}.

A subtype a of a type C is said to be a primitive-subtype if a is a subtype
of C' and a is a primitive type.

A subtype A of a type C is said to be an argument-subtype if there is a
type B such that either A\B or B/A is a subtype of C. A subtype A of a
type C is said to be an functor-subtype if there is a type B such that either
A/B or B\A is a subtype of C.

A type-context A[ff] is a type for which one primitive-subtype is replaced
by the symbol §. If B is any type, we note A[B] the type obtained by the
substitution of § in A[f] by B.

Given a categorial grammar G, a partial parse tree for G is any ordered
binary tree of one of the following form.

A(a)
for any a € X and any A € Tpsuch that G:a— A
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for any partial parse tree t; (called functor subtree) and t» (called argument
subtree) where root node of t; and root node ty are respectively labeled by
A\B and A for the first tree and B/A and A for the second .

A parse tree is a partial parse tree which root node is labelled by s. The
set of parse trees of a grammar G is noted PL(G). The language produced
by a grammar G is the set L(G) C X+ of strings oy ..., corresponding to
the ordered leaf nodes of a parse tree. A type A of a set T'p is useless for
a grammar G is there is no parse tree with a node labelled by A. We only
consider grammars with no useless type.

A FA-structure is a tree Structure(t) obtained from a partial parse tree ¢
replacing the label of each node by / if the argument node is the right son, by
\ if the argument node is its left son and by the leaf label if the son is a leaf
(by definition a leaf son is unique). For a grammar G, the set of FA-structures
obtained from the parse-trees is noted FL(G).

Remark 1. If f is a FA-structure and if for any argument subtree of f, a type
Ay is given, there exists a unique partial parse tree ¢ such that Structure(t) =
f and for any argument subtree f, the label of the root node of f corresponds
to Af.

If f is a FA-structure, we note Catg(f) the set of types A such that there
exists a partial parse tree ¢t with Structure(t) = f and the root node of ¢ is
labelled by A.

Ezample 1. From [6], let consider the categorial grammar G defined by:

aw— x/y
man y
swims x\s
Jast o> (@\s)\(2\s)

The two following trees belong repsectively to PL(G) and FL(QG)
s(z(z/y(a),y(man)), 2\s(z\s(z\s(swims), (z\s)\(z\s)(fast)), (z\s)\(z\s)(fast)))
\(/(a,man),\(\(swims, fast), fast))

and
L(G@) = {a man swims fast... fast}
—_—

n>0



A context t[f] is a tree for which exactly one subtree is replaced by the
symbol §. For any tree t', we note t[t'] the result of the substitution of § by
t' in t. A parse-context is a context of partial parse tree and a FA-context is
a context of a FA-structure.

A substitution o is a function from Var to T'p. A substitution is naturally
extended to a function from T'p to Tp by:

o(A\B) = o(A)\o(B)
and
o(B/A) = o(B)/a(A)
and defines a grammar G' = 0(G):
G:amnAeIAeVar, A'=0(A)and G:a— A
Lemma 1 (Buszkowski and Penn [3]). If G is a grammar and o a sub-
stitution for G, then FL(G) C FL(c(G)).

A projection is a substitution from Var to Var and a remaming is a
bijective projection.
A type C of one of the following forms is said to be compact:

e C = a, where a is a primitive type,
e C = B/a, where a is a primitive type and B is compact
e C =da\B, where a is a primitive type and B is compact

A grammar G is compact if any element of Cat(G) = {Catg(a) : a € X}
is compact.

Lemma 2. For any categorial grammar G, there exists a compact categorial
grammar G', noted Compact(G), such that FL(G) = FL(G").

Proof (sketch). If G is a categorial grammar and G' the result of the transfor-
mation of G by the algorithm 1, then G' is compact and FL(G) = FL(G").

Example 2. The grammar G given in example 1 is not compact since the
type (z\s) is an argument subtype of (x\s)\(z\s). The compact grammar
corresponding is the grammar G’ defined by:

a— z/y
;. manw— Yy
Tswims -z, x\s

fast — z\(z\s), z\z
where z is the new primitive type introduced by the algorithm.

A set of type I' C T'p is said to be reversible if no two types of I' differ in
only one primitive subtype. More formally, a set of types I" C T'p is reversible
if for any type-context A[f], there exists at most one primitive type a such
that Afa] is in I'. A grammar G is reversible if G is compact and if for any
a € X, the set Catg(a) is reversible.



Algorithm 1 Transformation of a grammar into an equivalent compact
grammar
Input: a grammar G
Output: a compact categorial grammar G’ such that FL(G) = FL(G')
while exists a type C € Cat(G) and an argument-subtype A of C' with A €
TpNVar do
Choose a new primitive type a ¢ Var,
For any B in Cat(G), if A is an argument subtype of B then replace A with a
in B
For any B in Cat(G), if A is a functor subtype of B then for all @ — B in
G, add a — B' to G with B' the type obtained by replacing A with a in B
(@ — B is kept)
end while

3 Properties of reversible grammars

In this section, we first show that the class of reversible categorial grammars
strictly contains the class of rigid grammars. Then, we establish some classi-
cal results in grammatical inference; these results are constituting the basic
toolkit for proving the learnability of a class of languages.

Theorem 1. For any rigid grammar G, there is a reversible grammar G’
such that FL(G) = FL(G").

Proof (sketch). Let G be any rigid grammar. Then the compact grammar
G' = Compact(G) obtained by processing the algorithm defined in the proof
of lemma 2 is reversible and FL(G) = FL(G").

Theorem 2. Let G be a reversible grammar and f o FA-structure in FL(G).
There exist an unique parse treet in PL(G) for G such that f = structure(t).

We prove this theorem with help of the following Lemma.

Lemma 3. Let G be a reversible grammar, f a FA-Structure in FL(G) and
A[f] a type-context. There exists at most one primitive type a such that Ala]
is in Catg(f).

Proof (sketch). The proof goes by induction in the depth of the tree f.

Proof of theorem 2. By the previous lemma, if G is a reversible grammar,
Catg is a function from the set of argument subtrees of FL(G) to the set
of primitive types Tp. Indeed, given an argument subtree g of FL(G) and
the empty type-context f, there is an unique primitive type a in Catg(g)-
By remark 1, this function induces a bijection between FL(G) and PL(G)
(corresponding to the inverse Structure™! of the function Structure). O

Theorem 3. Let G be a reversible grammar and f[f] a FA-context for G.
There exists an unique type A such that for o FA-structure g, f[g] is in
FL(G) (flg] is a structure for a parse-tree of G) and Catg(g) = A.



Proof. The existence of a type A is a direct consequence of the definition of
a FA-context. We now have to prove that A is unique. The proof goes by
induction on the depth d of the node § in the tree f[].

e d=0. f =fandif flg] = g is in FL(G), the we have Catg(g) = s.
e d > 0. Let consider two cases.
— First case. f[ff] is of one of the two following forms:

\ /

g s s g
If g is such that f[g] is in FL(G), g is an argument subtree of F'L(Q)
and then Catg(g) = a is a primitive type which is uniquely defined.
By induction hypothesis, the type B corresponding to the context
h[t] is unique, which implies that the type A is respectively defined
by A = a\B for the left hand figure and by A = B/a for the right
hand one.

— Second case. f[f] is of one of the two following forms:

8y X

By induction hypothesis, the type B corresponding to the context
h[t] is unique. By construction, the type corresponding to the functor
subtree ¢’ is respectively defined by A = a\B for the left hand figure
and by A = B/a for the right hand one. By lemma 3, a is unique (B
is defined and a\B or B/a is in Catg(g')).

We note Cate/(f[f]) the type A as defined in the theorem 3. We may also
see Catg as a function from the set of FA-contexts to T'p.

Let G be a reversible grammar. Following the classical works [1,8,6], we
now define the notion of characteristic sample for a reversible grammar G.
For this, we associate to each primitive type a of G a FA-context Leafg(a)
such that Catg(Leafg(a)) = a and a FA-structure Rootg(a) such that a €
Catg(Rootg(a)). For the special case of s, we choose Leafg(s) = §. For
each non-primitive type A, we associate a FA-structure Rootg(A) such that
A € Catg(Rootg(A)). If Aisin Cat(G) (o — A for aword a € X), we choose
Rootg(A) = a. Now for each type A, we recursively define the FA-context
Leafg(A) by:

o if A= B/a, Leafa(4) = Leafa(B)[/(¢, Rootc(a))]



o if A=a\B, Leafa(A) = Leafa(B)[\(Rootg(a),)]

A finite set of structures is said to be a characteristic sample for a re-
versible grammar G if it contains, for all types A, the following structure:
Leafg(A)[Rootg(A)]. Such a set is noted CS(G) and we may easily check
that CS(G) C FL(G).

Lemma 4. Let G and G' be two reversible grammars such that CS(G) C
FL(G"), then FL(G) C FL(G").

Proof. To prove this inclusion, let exhibit a projection o such that o(G) C
G'. Lemma 1 will provide the conclusion. From the definition of a char-
acteristic sample, for any primitive type a of G there is a FA-structure
Leafg(a)[Rootg(a)] in CS(G). Since CS(G) C FL(G'), the FA-context
Leafg(a)[t] is also a FA-context for G'. Futhermore, rootg(a) is an argument
subtree of Leafg(a)[f] and G is reversible, that implies that Catg (Leafg(a)[t])
is a primitive type a' of G'. We define o(a) = a' and o is extended to non-
primitives types by o(A\b) = 0(A)\o(b) and o(b/A) = o(b)/c(A). We show
by induction in the size of A that for any type A, Cate (Leafc(A)) = o(A).

Let consider a —¢ A. We have Rootg(A) = a and Catg (Leafa(A)) =
o(A) that implies that a —¢ o(A4) and finally o(G) C G’

4 The learning algorithm

Following [5], we define the identification in the limit from positive examples.
A positive presentation of a language L is a sequence st which enumerates
each element of £. Let {2 be a given class of grammars. An inference algorithm
I takes as input a finite segment ty, .. ., t,, of a positive presentation of £ and
guesses a grammar I(ty,...,t,;). The inference algorithm I converges to £
if there is a stage N such that for all n > N, the language provided by
I(ty,...,t,) is exactly £. A class of languages L is identifiable if and only if
there is an inference algorithm I such that for each positive presentation of
a language £ in L, I converges to L.

A class of categorial grammars IT is said to be learnable from structures
if the set FL(II) = {FL(G) : G € II'} is identifiable.

Theorem 4. The class of reversible categorial grammars is learnable from
structures.

Proof. Based on Angluin [1], the characteristic samples are telltale sets for the
the structures languages of reversible categorial grammars. Angluin proved
that a class such that any language has a telltale set is learnable in the Gold’s
identification in the limit model. identifiable from structures.



Algorithm 2 Learning algorithm
Input: a finite state of FA-structures {f1,..., fp}
Output: a reversible categorial grammar
Construct Go by introducing a new primitive type the root node of each argument
subtree of the structures {fi,..., fp} and completing the trees to obtain parse
trees.
while exists a word a € X such that @ — Afa1] and a — Alaz] with a type-
context A and a; and a2 two distinct primitive types do
Gn = 0n(Gn-1) with o the projection defined with o,(a2) = a1 and forall
a # a2, on(a) =a
end while
Output G,

The algorithm 2 defines an efficient algorithm for this identification.

Theorem 5. The algorithm described above identifies the class of reversible
grammars from structures.

Proof. Let fi, fa,... be a positive presentation of grammar G. For any in-
teger p, on input {f1,..., fp}, the algorithm calculates a serie of grammars
Gy, G4, . ... BEach G, is obtained from G, 1 by merging variables. The num-
ber of different variables of G is finite and so the algorithm stop on a
grammar G, which is trivially reversible. We have FL(Go) = {f1,..., o}
and so {fi,...,fp} C FL(G,). There exists a stage P such that CS(G) C
{fi,---, fp} it p > P; from Lemma 4, we have FL(G) C FL(G,). By con-
struction, Gy associates a different primitive type to each argument subtype
in {f1,.-., fp}, there so exists a projection ¢ such that o(Go) C G. Each
time the algorithm enters the main loop, a projection o, is applied. G is
reversible that implies V1 < i < n, o4(a) = gi(a’) = o(a) = o(a’). We so
have 0 =0 o0, 0...01, for a mapping § and oo, 0...01(Go) =0(G,) CG
that implies FL(G,) C FL(G) and finally FL(G,) = FL(G).

The time complexity of the algorithm is quadratic in the size of the set
{fi,---, fp} given in input. We now illustrate it on three examples.

5 Examples

Example 3. The first example shows how our algorithm identifies the example
grammar of [6]. Let consider the four following trees as input.

\(\(a,man), \(swims, fast)), \(/(a, fish), swims), \(/(a, man), swims)
and \(/(a,man),\(\(swims, fast), fast))

First, we label the root node of each argument subtree with a new variable.

s(z1(a, z2(man)), \(z3(swims), fast)); s(z4(a, z5(fish)), swims),
s(xzg(a, z7(man)), swims),
s(zs(a, zg(man)), \(z10(z11 (swims), fast), fast))



According to these labels, trees are completed.

s(x1(z1/22(a), x2(man)), z1\s(z3(swims), z3\(z1\s)(fast))),
s(za(za/z5(a),z5(fish)), x4\s(swims)),
(w6 (w6 /27(a), T7(man)), v \s(swims)), s(vs(zs/
z9(a), v9(man)), zs\s(z10(211(swims), 11 \z10(fast), 10\ (zs\s)(fast))))

This gives the first grammar Gy which products exactly the structures given
in the input . This grammar is compact by construction but not reversible.
We so successively merge primitive types which are in contradiction with the
property of reversiblility.

a = 371/372, $4/$5; $6/3777 378/559

man — X2, X7, Xg Tog = X7 = X9
Gy : fZSh — xs, = T3 = T11
swims — X3, x4\s, xg\8, X11 T4 = Tg

fast = x23\(z1\$), £11\Z10, T10\(zs\5)
av  X1/T2, T4/Xs, Xa/X2, Xg/Ia,

man — T o —
. 9 =
Gi: fishw— Ts = 5
. r1 =24 = T8
swims — T3, z4\$

fast — z3\(21\s), 3\ @10, T10\(25\5)
avr  x1/xs

man — Ty
Gz : fZSh = o = T3 = Tqig
sSwims — 3, z1\s

fast = x3\(21\s), z3\%10, X10\(21\8)
av T/

man — Ty
G3 : fZSh d T
sSwims — Z3, z1\s

fast = x3\(z1\s), z3\z3

The grammar G3 is reversible and the process stops. We remark that G
is a renaming of the grammar G’ given in example 2.

The two following examples illustrate how we manage we some non-rigid
grammars.

Ezample 4. We consider the trees \(they, /(hate, fear)) and \ (they, /(fear, hate)).
The algorithm outputs the grammar:

they — T
G : hate — (z\s)/y, y
fear — (z\s)/y, y

! This first step is equivalent to the first step of the RG algorithm described in [6]
for the inference of rigid grammars from structures.
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Words hate and fear are correctly associated to a verb type ((z\s)/y) and a
noun type (y). There is no corresponding rigid grammar and the algorithm
of Kanazawa fails on this input.

Example 5. This example shows that the case of a verb with a transitive and
a non-transitive form may be treated. Consider the input \(John, loves) and
\(John, [ (loves, Mary))

John — =
G : loves — z\s, (z\s)/y
Mary — y

To the verb loves corresponds a transitive verb type ((z\s)/y) and a non-
transitive verb type (z\s). Like in the former example, there exists no corre-
sponding rigid grammar.

We defined an original class of classical categorial grammars which is
identifiable from structures in the Gold’s model and a quadratic algorithm for
this identification. The expressivity of this class allows to consider linguistic
ambiguities not yet considered by a polynomial learning algorithm. It’s now
interesting to see how the algorithm may be adapted to learn the class of
reversible Lambek grammars from structures, following the idea of Bonato
and Retoré [2] for the adaptation of Kanazawa’s algorithm to learn rigid
Lambek grammars.
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