Learning Discrete Categorial Grammars from
Structures

Jérome Besombes Jean-Yves Marion

Ecole Nationale Supérieure des Mines de Nancy
Loria-INPL
615, rue du jardin botanique
54602 Villers-lés-Nancy, France

{Jerome.Besombes, Jean-Yves.Marion}@loria.fr

Abstract

We define the class of discrete classical categorial grammars, similar in the spirit to
the notion of reversible class of languages introduced by Angluin and Sakakibara.
We show that the class of discrete classical categorial grammars is identifiable from
positive structured examples. For this, we provide an original algorithm, which runs
in quadratic time in the size of the examples. This work extends the previous results
of Kanazawa. Indeed, in our work, several types can be associated to a word and
the class is still identifiable in polynomial time. We illustrate the relevance of the
class of discrete classical categorial grammars with linguistic examples.

Key words: Classical categorial grammar, Grammatical inference, Gold’s
identification in the limit, Types, Positive examples.

1 Introduction

Gold (1967) introduced the notion identification from positive examples which
is a fascinating model of learning. Its importance stems from the fact that lin-
guists like Chomsky or Pinker (1994) show that natural language acquisition
would be based on the analysis of the structures of correct phrases. Our objec-
tive is to contribute to the design and the understanding of the formal process
of language acquisition. Classical categorial grammars are widely used in lin-
guistics. Kanazawa (1998) established that the class of k-valued categorial
grammars is learnable from structured examples, but, for £ > 1, Floréncio
(2001) showed that identification of k-valued categorial grammars is NP-hard.
This result constitutes a strong limitation in the interest of these classes for

Preprint submitted to Elsevier Science 31 October 2004

the formalization of natural language acquisition which would be feasible. On
other hand, rigid grammars (k = 1), which are learnable in polynomial time,
allow to associate only a single type to each word. This is a strong limitation
for considering realistic linguistic phenomena. In this article, we define a new
class of classical categorial grammars, the discrete categorial grammars, which
strictly contains rigid grammars and is learnable in quadratic time. This class
is completely independent to the hierarchy of k-valued grammars since an ar-
bitrary number of types may correspond to a same word (Figure 1). Since a
pre-defined limit £ seems not to be realistic for the formalization of natural
language acquisition, the motivation of our work is to define a learnable class
of categorial grammars independently to such a limit.

We construct an algorithm which identifies this class of discrete categorial
grammars in quadratic time, we give a proof of its correctness and illustrate
it on three short examples. The first one is taken from Kanazawa (1998) for a
comparison with Kanazawa’s algorithm. The second and third show how we
learn non-rigid grammars for which non-rigidity expresses two kinds of com-
mon linguistic ambiguities: homonymy and transitivity and non-transitivity
of the same verb.

2 Categorial grammars

2.1 Trees

We consider ordered labeled trees like terms, and inversely. Throughout, we
shall write terms linearly or we shall draw them. We think that the use of
both notations should help the reader to have a better understanding and to
visualize what is going on. In particular, we shall see types, partial parse trees,
and FA-structures either linearly as terms or as ordered labeled trees. These
notions are of course define in details below.

We now give some few definitions about trees that are useful in the rest of
the paper. A context t[¢] is a tree in which the symbol ¢ has at most one
occurrence. The symbol ¢ is not in the vocabulary, it marks a node on the
border of a tree. For any tree ¢, we note ¢[t'] the result of the substitution of ¢
by ' in ¢. The notation ¢[t'] is a convenient way to say that ¢’ is a subtree of .
The size [t| of a tree ¢ is defined by |a| = 1 and [f(t1,...,tn)| = 14+ Xz, [til-

2.2 Types

Given a set Var of primitive types and a special type {s} which is not in Var,
Tp is the smallest set of types generated by

o if z € Varu {s} then z € T'p,
e if A€ Tpand B € Tp, then A\B € T,
e if Ac Tpand B € Tp, then A/B € Tp.

A type A of is a subtype of a type C of if and only if:

e U=A,
e or C = B\B' and A is a subtype of B or B,
e or C = B/B' and A is a subtype of B or B'.

A subtype z of a type C' is a primitive subtype if x is a primitive type of Var.
A subtype A of a type C' is an argument-subtype if there is a type B such
that either A\B or B/A is a subtype of C. A subtype A of a type C is a
functor-subtype if there is a type B such that either A/B or B\ A is a subtype
of C. A type-context Alo] is a context of a type.

2.3 Categorial grammars

Bar-Hillel et al. (1960) introduced categorial grammars or AB-grammars.
There are several references on categorial grammars, Morril (1994), Moort-
gat (1996). We present briefly the pre-requisite.

A categorial grammar G is defined from a quadruplet (X, Var, {s},—) where

Y is a finite vocabulary. Elements of ¥ are named letter.

Var is a set of primitive types which plays the role of type variables.

s is a special type which expresses that a word is recognized by G.

> is a finite binary relation over X x Tp which defines the lexicon. A lexical
entry is written o — A and means that the letter « is of type A. We shall
write a —g A when it is necessary to mention G to avoid confusion.

Given a letter « in X, Catg(«) is the set of types associated to a.
Catg(a) ={A € Tp, a— A}

We put Cat(G) = Uyex Catg(a) which is the set of all types in the lexicon.

2.4 Partial parse trees

Given a categorial grammar G, a partial parse tree for G is any ordered binary
tree of the following form.

First, for any o € ¥ and any A € T'p such that o — A, we have

A

«

Second, for any partial parse tree ¢; (called argument subtree) and t, (called
functor subtree) where the root node of ¢; and the root node ¢, are respectively
labeled by the types A and A\B.

A /\

Third, for any partial parse tree ¢; (called functor subtree) and t, (called
argument subtree) where root node of ¢; and root node ¢, are respectively
labeled by B/A and A.

B
RN
B/A A
tx A
The set of partial parse trees of G is Parse(G). A parse-contert is a context
of partial parse tree.

2.5 Parse trees and languages

A parse tree is a partial parse tree which root node is labeled by the type s.
The set of parse trees of a grammar G is noted PT(G). We have PT(G) C
Parse(G). Tiede (2001) explains that both PT(G) and Parse(G) are regular

tree languages.

A parse tree t yields a word of X*. For this, we define a mapping w from

PT(G) to ¥* which extracts a word from a partial parse tree, as follows.

w(A(0)) = o
w(B(t1,t2)) = w(ty) - w(ty) where (3, -) is a free monoid

Here A(«) is the linear notation of the first kind of partial trees drawn above.
And B(ty,t5) corresponds to the second and third kind of partial parse trees.

The language produced by a grammar G is the set

L(G) ={u : w(t) =u where t € PT(G)}

A type A is useless for a grammar G if there is no parse tree with a node
labeled by A. Throughout the following discussion, we assume wlog that we
are talking about categorial grammar without useless types.

3 FA-structures
3.1 Structural examples

A consequence of Gold (1967) is that we can not infer word languages gener-
ated by categorial grammars. To cope with this problem, several authors have
suggested to learn from a class of grammars, like Sakakibara (1992) for context
free grammars or categorial grammars Kanazawa (1998), rather than from a
class of languages. Like this, positive examples are annoted by additional in-
formations which are related to grammars. We call them structural examples.
We consider functor-argument structures, used by Kanazawa (1998), which
we call FA-structures all along the paper.

3.2 Partial FA-structures

A partial FA-structure is a tree FA(t) obtained from a partial parse tree ¢ by
replacing the label of each node by / if the argument node is the right son, by
\ if the argument node is its left son and by the leaf label if the son is a leaf.

Formally, FA is a mapping defined inductively as follows
A
FA(|) =«

«

FA(A/B%K) = \(FA(A),FA(ZK))

B B/A
FA(/NC) = J(FA(/\),FA(/\))
B/A 31 to
ANA

3.3 FA-structures

A FA-structure is a partial FA-structure obtained from a parse tree. The set
of FA-structures is the functor-argument tree language FA(G). A FA-context
is a context of a FA-structure.

Remark 1 Actually, a way of understanding FA-structure is to see them as
semantic informations among the word of a sentence. Thus, we can see FA-
structures as dependency tree languages where the functor indicates the head.
It is worth mentioning the work of Moortgat (2001) which shed some light
on the relationships between dependencies and categorial grammars. Another
related work is the one of Dudau-Sofronie (2004) in which she suggests to label
sentences by partial Montague semantics informations.

Example 1 The first ezample is due to Kanazawa (1998). The categorial
grammar G above will be our running example.

a— x/y
man Y

swims x\s

fast — (z\s)\(z\s)

We obtain PT(QG) the set of trees of the form:

x/ \x\s
zfy oy z\s (2\s)\(z\s)
o /N |
a man x|\s (x\s)}(ac\s) fast

swims fast

FA(QG) the set of trees of the form:
/ \
/ .

a m

\

an \ fast
/N
swims fast

and
L(G) = {a man swims fast... fast}
n>0

3.4 Substitutions and FA-equivalence

A substitution o is a mapping from Var to Tp that we extend canonically over
Tp as follows.

o(s)=s
o(A\B) = o(A)\o(B)
o(B/A) = a(B)/o(A)

Next, we define the image o(G) of a categorial grammar G by applying o to

each type of G. In other words, 0(G) is defined by the relation o () 0(A)
iff —a A.

Define G C G’ if there is a substitution ¢ such that for each lexical entry
a g A, we have a — ¢ 0(A). Of course, G' has possibly more lexical entries.

Lemma 1 G C G’ if and only if there is a substitution o such that o(Parse(G)) C
Parse(G').

Proof Assume that G C G'. There is a substitution o such that a —¢g A,
we have a g o(A). Take t € Parse(G). This implies that the partial parse
tree o(t) is in Parse(G'). So, o(Parse(G)) C Parse(G").

Conversely, it suffices to see that A(«) is a partial parse tree if o —¢g A. So
o =g O'(A) O

Lemma 2 (Buszkowski and Penn (1990)) G C G’ implies FA(G) C FA(G").

Proof By the previous lemma, there is a substitution o such that o(Parse(G)) C
Parse(G'"). Take f € FA(G). Thereist € Parse(G) such that f = FA(t). Then,
we have f = FA(o(t)) because FA operation erase types. We conclude that
f e FA(G"). O

The converse of the Lemma above is wrong.

Two grammars G and G’ are FA-equivalent if and only if FA(G) = FA(G').
An important point is that if FA(G) C FA(G') then L(G) C L(G"). So, if G
and G’ are FA-equivalent then they recognize the same word language, that
is L(G) = L(G").

4 Flat categorial grammars

We associate to each type A a rank rk(A) which gives its level of functionality.

rk(A) =0 A€ Varu {s}
rk(B\C) = max{rk(B), rk(C) + 1}
rk(C'/B) = max{rk(B), rk(C) + 1}

A grammar G is flat if for each lexical entry o +— A, the rank of A is at most
1. In this way, each argument-subtype is of rank 0 and the label of the root of
each argument subtree of a partial parse tree is a type of rank 0.

Lemma 3 Let G be a categorial grammar. There is a flat categorial grammar
Level(Q) and an injective substitution o such that G = o(Level(G)).

Proof The transformation Level(G) is described by the algorithm 1. The
algorithm terminates because an argument-type of rank > 0 in G is deleted
at each loop. The grammar Level(G) is flat because each argument-type of
rank > 0 is replaced by a new primitive type. It is not difficult to see that the
output substitution o is injective and satisfies G = o(Level(G)). O

Algorithm 1 The transformation Level(G)
Input: a categorial grammar G
Output: a flat categorial grammar Level(G) and a injective substitution o
such that G = o(Level(G))
while there is an argument-subtype A s.t. 7k(A) > 0 do
Choose a new primitive type a ¢ Var,
Set Var = VarU {a}
Set o(a) = A
For each o — B[A],
if A is an argument subtype of B then replace o — B[A] by o — Bla]
if A is a functor subtype of B or B = A then add « — B[a] and keep
also a — B[A].
end while

Theorem 1 Let G be a categorial grammar. Then, Level(G) and G are FA-
equivalent.

Moreover, the size of Level(G) is linearly bounded in the size of G. The size
of a grammar is >, , 4 |A].

Proof First, we prove that FA(Level(G)) C FA(G). We have G = o(Level(G))
by Lemma 3. If ¢ is a partial parse tree of Level(G), then o(t) is a partial parse
tree of G. So o(Parse(Level(G))) C Parse(G). And we have FA(Level(G)) C
FA(G).

Conversely, take a lexical entry o —¢g B/A (or o —g A\B). There is a lex-
ical entry o +pepeye) B'/a which corresponds to it such that o(a) = A and
o(B') = B. Indeed, if the rank of A is 0, then A is unchanged and a = A.
Otherwise, the rank of A is > 0, and A is replaced by a primitive type a
and o = feveye) @/ B’ is added to the lexicon of Level(G) with o(a) = A. The
type B is transformed into B’ in a similar way. As a consequence, we see that
the shape of each type of GG is retained by the transformation which leads to
Level(G).
Now, take a partial parse tree t of G. Replace each leaf type C by the
corresponding type ¢ of Level(G) of the same shape satisfying o(c) = C.
We obtain a partial parse tree t' of Level(G) such that o(¢t') = ¢t. We have
Parse(G) C o(Parse(Level(@))). So we conclude that FA(G) C FA(Level(Q)).
O

Example 2 The grammar G given in example 1 is not flat since the type
(z\s) is an argument subtype of (z\s)\(z\s). The FA-equivalent flat grammar

G' = Level(G) is defined by:

a— x/y
o, man =y
swims — z, x\S

fast — 2\(z\s), z\z
where z is the new primitive type introduced by the algorithm.

In conclusion, each categorial grammar GG can be translated into a flat catego-
rial grammar Level(G) whose size is the same than G up to a linear constant.
The fact that G and Level(G) are FA-equivalent is crucial. Indeed from the
point of view of grammatical inference from FA-structure, it implies that we
can not distinguish between G and Level(G). We lose nothing by working on
Level(G) because it has the same FA-structures than G.

Remark 2 We shall henceforth consider only flat categorial grammars. About
grammar translation, the reader may consult Le Nir (2008) which embedded
fragments of Lambek calculus into categorial grammars.

5 Discrete categorial grammars

A set T' of types is discrete if no two types of I' differ in only one primitive
subtype. In other words, a set I' of types is discrete if for each type-context
Alo] of T', there is at most one primitive type a such that Afa] is in T.

A grammar G is discrete if G is flat and if for each a € ¥, the set Catg(a) is
discrete.

Example 3 The grammar G' of example 2 is discrete. The following flat cat-
egorial grammar G" is not discrete, since fast — Alz1] and fast — Az,
where A[o] is the type-context o\(z\s).

a— z/y
man Yy
G":
swims — zy, z\s

fast = 2\ (z\s), 22\ (z\s), 21\22

L(G") = {a man swims, a man swims fast, a man swims fast fast}

10

Lemma 4 Assume that G is discrete categorial grammar. Let f be a partial
FA-Structure and A[o] be a type-context. Then, there is at most one partial
parse tree t which satisfies f = FA(t) and whose root is labeled by Ala] where
a s a primitive type.

Note that the existence of ¢ implies that the primitive type a is unique.
Proof The proof goes by induction on the size of the FA-structure f.

Suppose that f is a letter a. Since G is discrete, there is at most one lexical
entry a — Ala] where a is a primitive type. In this case, Ala](«) is the unique
partial parse tree such that

A
f=rA()=a

«

Next, suppose that |f| > 1. By definition of FA-structures, f is of one of the
following forms:

\ /

7N RN

ANIVANRIVANIAN

Consider the first case. The second case is treated symmetrically.

Suppose that there is a partial parse tree t; such that FA(t;) = ¢'. Suppose
that the root of ¢; is labeled by b. Since G is flat and since b is an argument
type, b is of rank 0. The induction hypothesis claims that ¢; and b are unique.

Now, consider the other branch g of f. Again by induction hypothesis, we
know that there is at most one partial tree ¢5 such that ¢ = FA(¢,) and whose
root is labeled by the type A[a]\b for some primitive type a.

We conclude that if ¢; and %, exist, then they both form a unique partial parse
tree ¢ of root Ala] such that f = FA(t).

Alal

t = N
7 B4l
t1 %2 O

Theorem 2 Assume that G is discrete categorial grammar. Let f be a partial
FA-Structure in FA(G) and A be a type. Then, there is at most one partial
parse tree t which satisfies f = FA(t) and the root of t is labeled by A.

11

Proof It is a consequence of the above Lemma by setting Afo] = A, that is
o does not occur in A. a

Remark 3 Theorem 2 establishes that to any FA-structure corresponds at
most an unique parse-tree. This result does not hold for the case of partial
parse- trees. For instance, if we consider the following discrete grammar:

a > (s/xs)/x1, Ts/ 11
G(3) tbh— Ty

c— T, s/xy

To the FA-structure:

/\
a/ b

correspond the both partial parse-trees:

s/ xo Ty
/ /
(s/x2) /21 \x|1 T4/T3 \:v|3
I

This property differs from rigid categorial grammars considered by Kanazawa
(1998) in the following respect. For each partial FA-structure f of a rigid
categorial grammar, there is a unique parse tree t such that f = FA(t). This
statement does not hold when we consider discrete categorial grammars.

Given a FA-structure f[¢], we define Catg(f[o]) as the set of types A such
that there is a partial parse tree t whose root is labeled by A which satisfies
fIFA(t)] is a FA-structure of G.

Theorem 3 Assume that G is a discrete categorial grammar. Let f[o] be a
FA-context of G. Then, Catg(f[¢]) is a singleton.

Proof The proof goes by induction on the size of f[¢]. The base case is when
f = o. Then, we have Catg(f[¢]) = s. We have to consider several cases.

Assume that flo] = h] /\\ .
© g

By induction hypothesis, the type B corresponding to the FA-context h[o]
is unique, that is Calg(h[¢]) = {B}. Take a partial parse tree ¢ such that
g = FA(t). The type of the root of ¢ is necessarily a\B for some type a. Now,

12

the type a is primitive because G is flat. So, we can apply Lemma 4 which
implies that @ is unique. We have Catg(f[¢]) = a.

Assume that f[o] = h[, \]. This case is similar to the previous one.
g ., ©

Assume that flo] = h] /\\]
g ©

By induction hypothesis, the type B corresponding to the context h[o] is
unique. By Lemma 4, there is a unique partial parse tree ¢ such that g = FA(t).
We name a the type of the root of ¢. It follows that Catg(f[¢]) = a\B.

Assume that f[o] = h[, \]. This case is similar to the previous one. O
© g

6 Rigid grammars

Before going further, there is a certain interest in discussing about k-valued
categorial grammars introduced by Kanazawa (1998) and in seeing how they
differ from discrete categorial grammars. The discussion is summed up un
Figure 1. A categorial grammar G is k-valued if for any word o € ¥, there are
at most k lexical entries. A 1-valued categorial grammar is also called rigid.

In fact, the class of discrete categorial grammars strictly contains the class of
rigid ones.

Theorem 4 For any rigid categorial grammar G, there is a discrete grammar
G' which is FA-equivalent.

Proof The flat categorial grammar Level(G) is discrete. Lemma 3 implies
that the substitution o such that G = o(Level(G)) is injective. If o — Ala]
and a — A[b] are two lexical entries of Level(G), it means that a = b because
G is rigid and so contains only one entry a +— o(A[a]). Put G' = Level(G) to
conclude. O

Consider the following discrete categorial grammar.

John — x
loves — z\s, (z\s)/y
Mary —y

The verb love is a transitive verb, which corresponds to (z\s)/y) and non-
transitive, which corresponds to z\s. There is no rigid-grammar which can
encode this grammatical phenomenon.

13

rigid

discrete 2-valued

3-valued

4-valued

Fig. 1. The k-valued hierarchy compare with discrete grammars.

On the other hand, there are k-valued grammars which are not discrete, like
the grammar G” in Example 3.

It would be interesting to see the notion of discrete categorial grammar can be
extended to Lambek calculus in the spirit of the ideas of Bonato and Retoré
(2001) which adapted rigidity to Lambek calculus.

7 Discrete grammars are learnable
7.1 Characteristic samples

Let G be a target categorial grammar, that is the grammar that we try to
guess from a finite sequence of FA-structures. A characteristic sample is a set
of FA-structures which are sufficient to infer G when G is discrete.

We start by some preliminary definitions on partial parse trees in order to
define FA-structures which will be in a characteristic sample.

(1) We associate to each type A a partial parse tree root(A) whose root is
labeled by A.

(2) We associate to each type A a parse-context leaf,[o] which is recursively
defined as follows.
o leaf,[o] = ¢
e If Aisa primitive type a, leaf,[o] is a parse-context such that leaf,[root(a)]

is parse tree.

e If A= B/a where a is a primitive type,

/B / a\]

leafy[o] = leafy
o root(a)

14

e If A= a\B, where a is a primitive type,

/\\]

root(a)

leafs[o] = leafy

A finite set C of FA-structures is said to be a characteristic sample for a flat
grammar G if

e for each subtype A of a type in Cat(G), FA(leaf[root(A)]) € C,
e and for each lexical entry o — A of G, FA(leaf[c]) € C.

We may easily check that C C FL(G).

Lemma 5 Assume that G and G' are two discrete categorial grammars. Let
C be a characteristic sample of G. If C C FA(G'), then G C G'.

Proof We define a substitution o which will satisfy the fact that o(G) is
embedded in G'.

For any primitive type a of G, FA(leaf,[root(a)]) is in C.

Since C C FA(G'"), FA(leaf,[root(a)]) is a FA-structure of G'. Furthermore,
FA(root(a)) is necessarily an argument subtree of FA(leaf,[root(a)]).

So we can apply Lemma 4 which states that there is a unique partial parse
tree t of G’ such that FA(root(a)) = FA(t). Let a be the primitive type which
labels the root of t. We put o(a) = d.

We show by induction on A that Cate (FA(leaf4]¢])) = {o(A4)}. The unicity
is a consequence of Lemma 5.

e if A is a primitive type, the result is obvious by the definition of ¢
e if A= a\B. By definition, we have

/\\]

root(a)

leafy[o] = leafy(o]

By induction hypothesis, Cate (leafg[o]) = {o(B)}. As we have previously

said, the type associated to FA(root(a)) is o(a). So, we have
Catgz(leafa\B[o]) =o(a)\o(B) = o(a\B)

e if A = B/a. This case is identical and so we skip it.

15

Lastly, consider o +—¢c A. We have established that Cate (FA(leaf,[o])) =
{o(A)}. So, a ¢ o(A) is a lexical entry of G'. O

7.2 An inference algorithm

Following Gold (1967) and Kanazawa (1998), we present the definition of
identification in the limit from positive FA-structure examples. A positive pre-
sentation of a categorial grammar G is a sequence fi, fo ... which enumerates
each FA-structure of FA(G). An inference algorithm I takes as input a finite
set S = {f1,...,fn} of a positive presentation of G and guesses a grammar
I(S). Given a positive presentation, the inference algorithm I converges if
there is a stage N such that for all n > N, L(I(f1,...,fn)) = L(G). Gold
(1967) established that there is no such inference algorithm for a class of
grammars as broad as the class of categorial grammars. For this reason, the
success criterion is restricted to a particular class of categorial grammars. A
class of categorial grammars is identifiable if and only if there is an inference
algorithm I such that for each positive presentation, I converges.

Remark 4 Based on Angluin (1982), characteristic samples are telltale sets
for the the FA-structure languages of discrete categorial grammars. Therefore,
FA-structure languages are identifiable.

We present an efficient inference algorithm infer for the class of discrete cat-
egorial grammars. This inference algorithm is described in 2.

Algorithm 2 The inference algorithm infer
Input: a finite set of FA-structures S
Output: a discrete categorial grammar infer(S)
for each f € S do
Construct a parse tree ¢ by decorating the root of f with s and each argu-
ment node by a new type variable.
Define Gy by collecting all the lexical entries o — A obtained on each t.
end for
Let oy be the identity substitution.
while there is « — Ala;] and a — Alas] where a; and ay are two distinct
primitive types do
Set 0;11(az) = a1 and VYa # as,0;11(a) = a
Set Gi—|—1 = O'z(GZ)
end while

Lemma 6 The algorithm 2 terminates on each finite set S of FA-structures
and outputs a discrete categorial grammar infer(S).

16

Proof Starting from Gy, we compute a sequence of flat categorial grammars
Gy, ...,G, by merging two variable types at each step. The process stops after
n steps because at each step we decrease by one the number of variable types
and so we write infer(S) = G,. The categorial grammar infer(S) is discrete
because when we exit the while loop, there is no more lexical entries o — A[a]
and « — Alas] such that a; # as. O

Lemma 7 Assume that S is a set of FA-structures of a categorial grammar G.
Let infer(S) be the discrete categorial grammar computed by the algorithm 2.
We have infer(S) C G.

Proof First, we have Gy C G. Then, we also have G; C Gy because G; =
0i(Gi_1)- So, we have G; C G. We conclude that infer(S) C G. O

Theorem 5 The class of discrete categorial grammars is identifiable from
FA-structures.

Proof Assume that G is a discrete categorial grammar. We consider a positive
presentation fi,..., f,,... of G. There is a stage N such that for each n > N,
the set S = {fi,..., fn} contains a characteristic sample. We see that S C
FA(infer(S)). Lemma 5 implies that G C infer(S).

Conversely, Lemma 7 shows that infer(S) C G.
Lemma 2 implies FA(G) = FA(infer(S)) and so L(G) = L(infer(S)).

We conclude that infer converges. O

The inference algorithm is incremental and runs in quadratic time in the size
of the input FA-structures.

7.8 FExamples

Example 4 This example shows how our algorithm identifies the example
grammar of Kanazawa (1998). The inputs are the following four FA-structures
which form a characteristic set.

17

\ \
// \\ // \

/ N\ /N /N

man swims fast a fish

\ \
/ \
/ swims / / \ \

/\ SN N

a man man \ fast

/N

swims fast

First, we label the root node of each argument subtree with a new variable.

\’S \,8
e \\ / N\

/,x1 /,x4 Swims
/ \ / N\ / \
a o x3 fast a T
| |
m|an swims fish

/,xe swims /, s
/ N\ / N\ /N
a I a g \,z10 fast
| | / N\
man man T11 fast
|
SWIms

According to these labels, trees are completed.

18

AN PN

x 1\ x4 T4\$
/N 2N /N
x1/To T T3 z3\(z1\s) x4/ Ts swims

| | |
L m|an swims fast L fish

x/S\x \s x /S\
Y 6\ 6| y 8\ PN

xg/ 7 7 swims xg/Tg Z10 z10\(75\5)
| | | | /N |
a man a man T11 .’1311\.’1310 fO,St

swims fast

This gives the first grammar Gy which produces ezactly the input FA-structures?® .
This grammar is flat by construction but not discrete. We successively merge
primitive types until we obtain a discrete grammar.

av T1/xe, xy/T5, TG/T7, Xg/Tg
man — Xg, X7, Xg
Go: fish Ts,
SWims X3, x4\5, X6\, X11

fast — 23\ (21\$), Z11\Z10, T10\(25\5)

T9 = T7 = X9
= T3=2n

T4 = Tg

1 This first step is equivalent to the first step of the RG algorithm described in
Kanazawa (1998) for the inference of rigid grammars from structures.

19

av— X1/Ty, T4/Xs, Xg/X2, Xg/Ta,
man +— Ty
Gi: fish— Ts
swims — 3, T4\S

fast — 23\ (21\8), 3\ %10, T10\(25\5)

To = Ty

T1 =Ty = Tg

av— x1/xo
man — To
Go: fish— To
swims — 3, z1\s

fast — x3\(z1\s), 23\Z10, X10\(Z1\9)

= T3 = X1

a1/
man To
Gs: fish— T
swims — I3, z1\$

fast — z3\(z1\$), x3\x3

The grammar Gs s discrete and the process stops. We remark that Gz is a
renaming of the grammar G’ given in example 2.

Example 5 Take the following FA-structures.

\ \ \
/ \ / \ / \
they / they / they /

/ N\ VN /N

hate fear fear hate fear fear

20

The algorithm outputs the grammar:

they — x

G : hate — (2\3)/y, y
fear = (x\s)/y, y

This example illustrate a case of homonymy. Words hate and fear are correctly
associated to a verb type ((x\s)/y) and a noun type (y). There is no corre-
sponding rigid grammar and the algorithm of Kanazawa fails on this input.

Example 6 We come back on the example which shows that the case of a
verb with a transitive and a non-transitive form may be treated. For this, it
suffices to consider the following FA-structures:

\ \
7\ / \
John loves John /

7N\

loves Mary

We get the discrete categorial grammar

John — x
loves — z\s, (z\s)/y
Mary — vy

References

Angluin, D., 1982. Inference of reversible languages. Journal of the ACM 29,
741-765.

Bar-Hillel, Y., Gaifman, C., Shamir, E., 1960. On categorial and phrase struc-
ture grammars. Bulletin of Research Council of Israel F (9), 1-16.

Bonato, R., Retoré, C., 2001. Learning rigid lambek grammars and minimalist
grammars from structured sentences. In: Third Learning Language in Logic
Workshop (LLL2001).

Buszkowski, W., Penn, G., 1990. Categorial grammars determined from lin-
guistic data by unification. Studia Logica 49, 431-454.

Dudau-Sofronie, D., 2004. Apprentissage de grammaires catégorielles pour
simuler ’acquisition du langage naturel a I’aide d’informations sémantiques.
Ph.D. thesis, Lille I University.

Floréncio, C. C., 2001. Consistent identification in the limit of any of the
classes -valued is np-hard. In: P. de Groote, G. Morrill, C. R. (Ed.), Logical

21

Aspects of Computational Linguistics. Lecture Notes in Computer Science.
Springer-Verlag, pp. 125-138.

Gold, M., 1967. Language identification in the limit. Information and Control
10, 447-474.

Kanazawa, M., 1998. Learnable classes of Categorial Grammars. CSLI.

Le Nir, Y., 2003. Structures des analyses syntaxiques catégorielles. application
a 'inférence grammaticale. Ph.D. thesis, Rennes 1 University.

Moortgat, M., 1996. Handbook of Logic and Language, J. van Benthem and
A. ter Meulen Edition. North-Holland, Ch. Categorial type logics.

Moortgat, M., 2001. Structural equations in language learning. In: P. de
Groote, G. Morrill, C. R. (Ed.), Logical Aspects of Computational Lin-
guistics. Vol. 2099 of Lecture Notes in Computer Science. Springer, pp.
1-16.

Morril, G. V., 1994. Type Logical Grammar: categorial logic of signs. Kluwer.

Pinker, S., 1994. The language instinct. Harper.

Sakakibara, Y., 1992. Efficient learning of context free grammars from positive
structural examples. Information and Computation 97, 23—60.

Tiede, H. J., 2001. Lambek calculus proofs and tree automata 2014, 251-265.

22

