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Abstract. We a give an intrinsic characterization of the class of func-
tions which are computable in NC1 that is by a uniform, logarithmic
depth and polynomial size family circuit. Recall that the class of prob-
lems solved in ALogTime, that is in logarithmic time on an Alternating10

Turing Machine, is NC1. Our characterization is in terms of first order
functional programming languages. We define measure-tools called Sup-
interpretations, which allow to give space and time bound and allow also
to capture a lot of program schemas. This study is part of a research
on static analysis in order to predict program resources. It is related to15

the notion of Quasi-interpretations and belongs to the implicit compu-
tational complexity line of research.

1 Introduction

This study concerns interpretation methods for proving complexity bounds of
first order functional programs. Such methods provide machine independent20

characterization of functional complexity classes, that Cobham [14] initiated.
They also provide static analysis of the computational resources, which are nec-
essary to run a program. Such an analysis should guarantee the amount of mem-
ory, time or processors which are necessary to execute a program on all inputs.

Implicit computational complexity (ICC) proposes syntactic characterizations25

of complexity classes, which lean on a data ramification principle like safe re-
cursion [7], lambda-calculus [24] or data tiering [23]. We mention this line of
works because they are inherently fundamentals, in the sense that one has to
introduce such characterizations before one can proceed with the development
of further studies and applications. Here, the term ICC is use as a name for30

characterizations of complexity classes which are syntactic and do not explicitly
refer to computational resources.

It bears stressing to discuss on the two main difficulties that we have to face
in order to provide a compelling resource static analysis. The first is that the
method should capture a broad class of programs in order to be useful. From a35

theoretical perspective, this means that we are trying to characterize a large class
of programs, which represents functions in some complexity classes. Traditional
results focus on capturing all functions of a complexity class and we should
call this approach extensional whereas our approach is rather intentional. This
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change of point of view is difficult because we have to keep in mind that the set40

of polynomial time programs is Σ2-complete. The second difficulty is related to
the complexity of the static analysis suggested. The resource analysis procedure
should be decidable and easily checkable. But inversely, a too “easy” resource
analysis procedure won’t, certainly, delineate a meaningful class of programs.

There are at least four directions inspired by ICC approaches which are re-45

lated with our topic and that we briefly review. The first direction deals with
linear type disciplines in order to restrict computational time and began with
the seminal work of Girard [19] which defined Light Linear Logic. The second
direction is due to Hofmann [20], which introduced a resource atomic type, the
diamond type, into the linear type system for higher order functional program-50

ming. Unlike the two former approaches and the next one, the third one considers
imperative programming language and is developed by Kristiansen-Jones [21],
Niggl-Wunderlich [29], and Marion-Moyen [28].

Lastly, the fourth approach is the one on which we focus in this paper. It
concerns term rewriting systems and interpretation methods for proving com-55

plexity bounds. This method consists in giving an interpretation to computed
functions, which provides an upper bound on function output sizes. The method
analyses the program data flow in order to measure the program complexity. We
have developed two kinds of interpretation methods for proving complexity. The
first method concerns Quasi-interpretations, which is surveyed in [9]. The sec-60

ond method, which concerns this paper, is the sup-interpretation method, that
we introduced in [27]. The main features of interpretation methods for proving
complexity bounds are the following.

1. The analysis include broad classes of algorithms, like greedy algorithms,
dynamic programming [26] and deal with non-terminating programs [27].65

2. Resource verification of bytecode programs is obtained by compiling first
order functional and reactive programs. See for example [3, 2, 17].

3. There are heuristics to determine program complexity. See [1, 10]

1.1 Backgrounds on ALogTime and NC1

We write log(n) to mean dlog2(n + 1)e. Recall that the floor function bxc is the70

greatest integer ≤ x, and the ceiling function dxe is least integer ≥ x.
We refer to Random Access Alternating Turing Machine of [12, 30], called

ATM. An ATM has random access read only input tapes as well as work tapes.
The states of the ATM are classified as either conjunctive, disjunctive or reading.
The computation of an ATM proceeds in two stages. The first stage consists in75

spawning two successor configurations from a root configuration. The second
stage consists in evaluating backward the configuration tree generated in the
first stage. An ATM outputs a single bit. A function F : {0, 1}∗ → {0, 1}∗ is
bitwise computable in ALogTime if the function Fbit : {0, 1}∗ × {0, 1}∗ → {0, 1}
is computable by an ATM in time O(log(n)). The function Fbit is defined by80

Fbit(x, u) is equal to the i’th bit of F (x), where i is the integer that u represents
in binary. Following Cook [16], we say that a function F : {0, 1}∗ → {0, 1}∗
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is computed in ALogTime if φ is bitwise computable in ALogTime and φ is
polynomially bounded.

A circuit Cn is a directed acyclic graph built up from Boolean gates And,85

Or and Not. Each gate has an in-degree less or equal to two. A circuit has
n input nodes and g(n) output nodes, where g(n) = O(nc). for some constant
c ≥ 1. Thus, a circuit Cn computes a function fn : {0, 1}n → {0, 1}g(n). A circuit
family is a sequence of Boolean circuits C = (Cn)n, which computes a family of
finite functions (fn) over {0, 1}∗. Inversely a function f is computed by a circuit90

family (Cn)n if the restriction of f to inputs of size n is computed by Cn. The
complexity of a circuit depends on its height (that is the longest path from an
input to an output gate) and its size (that is the number of gates).

The class of NC1 functions is the set of functions which are computed by
UE∗ -uniform circuit families of polynomial size (i.e. bounded O(nd) for some95

degree d) and of depth O(log(n)) where n is the circuit input length.
NC1 contains functions associated with binary addition, subtraction, and

more generally prefix sum of associative operators. Buss [11] showed that the
evaluation of Boolean formulae is a complete problem for NC1. The class NC1

contains functions which are computed by very fast parallel algorithms.100

Uniformity condition ensures that there is a procedure which, given n, pro-
duces a description of the circuit Cn. All along, we shall consider UE∗ -uniform
family of circuits, which is sufficient one to establish the equivalent Theorem 1.
Barrington, Immerman abd Straubing [6] studied other equivalent uniform con-
ditions. The UE∗ -uniformity condition is the following. The extended connection105

language LEC of C = (Cn)n is a set of quadruplets (n, g, p, y) where the gate
indicated by the path p from the gate numbered g is of type y in Cn. For NC1,
knowing whether an element is in the extended connection language LEC for C
is decidable in time O(log(n)) by an ATM.

In [30], Ruzzo demonstrated the following equivalence.110

Theorem 1. A function φ : {0, 1}∗ → {0, 1}∗ is in NC1 if and only if φ is
computed in ALogTime.

The class NC1 is included in the class Logspace, and so in the Ptime. Furst,
Saxe and Spiser [18] and Atjai [5] established that AC0 is strictly included in
NC1. Following [6] opinion, NC1 is at the frontier where we begin to have some115

separation results, which is a motivation to study NC1.

1.2 Results and related works

We consider a first order functional programming language over constructor
term algebra. We define a class of programs that we call explicitly additive arbo-
real programs. We demonstrate that functions, which are computable by these120

programs, are exactly the functions computed in ALogTime. That is, they are
computable in NC1 by uniform families of Boolean circuits of logarithmic depth
and polynomial size. NC1 is a small complexity class containing problems, which
are efficiently solved in parallel. To our knowledge, this is the first result, which
connects a small class of parallel functions and term rewriting systems. We end125



4

the paper by discussing on the synthesis of sup-interpretations that we employ
in the analyser CROCUS, that we are currently developing.

There are various characterizations of ALogTime, which are surveyed in [13]
based on bounded recursion schema. Compton and Laflamme [15] give a char-
acterization of ALogTime based on finite global functions. These results are130

clearly a guideline for us. However, there are only a few characterizations of
ALogTime from which a resource static analysis is conceivable. Bloch [8] gives
a characterization of ALogTime using a divide and conquer ramified recursion
schema. Leivant and Marion [25] propose another characterization based on lin-
ear ramified recursion with substitutions. These purely syntactic characteriza-135

tions capture a few algorithmic patterns. This work tries to delineate a broad
class of algorithms. Parallel algorithms are difficult to design. Employing the sup-
interpretation method leads to delineate efficient parallel programs amenable to
circuit computing. Designing parallel implementations of first order functional
programs with interpretation methods for proving complexity bounds, might be140

thus viable in the near future.

2 First order functional programming

2.1 Syntax of programs

We define a generic first order functional programming language. The vocabulary
Σ = 〈Cns,Op,Fct〉 is composed of three disjoint domains of symbols. The arity
of a symbol is the number n of arguments that it takes. The program grammar
is the following.

(Constructor terms) T (Cns) 3 v ::= c | c(v1, · · · , vn)
(terms/Expressions) T (Cns,Fct,Var) 3 t ::= c | x | c(t1, · · · , tn)

| op(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) Patterns 3 p ::= c | x | c(p1, · · · , pn)
(rules) R 3 r ::= f(p1, · · · , pn) → ef

where c ∈ Cns is a constructor, op ∈ Op is an operator, f ∈ Fct is a function
symbol. The set of variables Var is disjoint from Σ and x ∈ Var. In a rule, a145

variable of ef occurs in the patterns p1, · · · , pn of the definition of f. A program
p is a list of rules. The program’s main function symbol is the first function
symbol in the program’s list of rules. We usually don’t make the distinction
between this main symbol and the program symbol p. Throughout, we consider
only orthogonal programs, that is, rule patterns are disjoint and linear. So each150

program is confluent.
Throughout, we write e to mean a sequence of expressions, that is e =

e1, . . . , en, for some n clearly determined by the context.

2.2 Semantics

The domain of computation of a program p is the constructor algebra Values =155

T (Cns). Put Values∗ = Values∪{Err} where Err is the value associated when
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an error occurs. An operator op of arity n is interpreted by a function JopK
from Valuesn to Values∗. Operators are essentially basic partial functions like
destructors or characteristic functions of predicates like =.

The language has a usual closure-based call-by-value semantics which is dis-160

played in Figure 1 in Appendix A. The computational domain is Values# =
Values ∪ {Err,⊥} where ⊥ means that a program is non-terminating. A pro-
gram p computes a partial function JpK : Valuesn → Values#.

A substitution σ is a finite function from variables to Values. The application
of a substitution σ to a term e is noted eσ.165

3 Sup-interpretations

Let us now turn our attention to the sup-interpretation method which is the
main tools to analyze a program complexity. For this purpose, we define a special
kind of program interpretation called sup-interpretation, which is associated to
a lightweight, to provide a complexity measure.170

3.1 Partial assignments

A partial assignment I is a partial mapping from a vocabulary Σ such that
for each symbol f of arity n, in the domain of I, it yields a partial function
I(f) : (R+)n 7−→ R+, where R+ is the set of non-negative real numbers. The
domain of a partial assignment I is noted dom(I). Because it is convenient, we175

shall always assume that partial assignments that we consider, are defined on
constructors and operators. That is Cns ∪Op ⊆ dom(I).

An expression e is defined over dom(I) if each symbol belongs to dom(I)
or is a variable of Var. Assume that an expression e is defined over dom(I)
and has n variables. Take a denumerable sequence X1, . . . , Xn, . . .. The partial180

assignment of e wrt I is the homomorphic extension that we write I∗(e). It
denotes a function from Rn

+ to R+ and is defined as follows:

1. If xi is a variable of Var, let I∗(xi) = Xi

2. If b is a 0-ary symbol of Σ, then I∗(b) = I(b).
3. If f is a symbol of arity n > 0 and e1, · · · , en are expressions, then

I∗(f(e1, · · · , en)) = I(f)(I∗(e1), . . . , I∗(en))

3.2 Sup-interpretations & Lightweights185

Definition 1 (Sup-interpretation). A sup-interpretation is a partial assign-
ment θ which verifies the three conditions below :

1. The assignment θ is weakly monotonic. That is, for each symbol f ∈ dom(θ),
the function θ(f) satisfies for every i = 1, . . . , n

Xi ≥ Yi ⇒ θ(f)(X1, · · · , Xn) ≥ θ(f)(Y1, · · · , Yn)
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2. For each v ∈ Values,

θ∗(v) ≥ |v|

The size of an expression e is noted |e| and is defined by |c| = 0 where c is
a 0-ary symbol and |b(e1, . . . , en)| = 1 +

∑
i |ei| where b is a n-ary symbol.

3. For each symbol f ∈ dom(θ) of arity n and for each value v1, . . . , vn of
Values, if JfK(v1, . . . , vn) is defined, that is JfK(v1, . . . , vn) ∈ Values, then

θ∗(f(v1, . . . , vn)) ≥ θ∗(JfK(v1, . . . , vn))

An expression e admits a sup-interpretation θ∗(e), wrt θ, if e is defined over190

dom(θ). Intuitively, the sup-interpretation is a special program interpretation.
Instead of yielding the program denotation, a sup-interpretation provides an
approximation from above of the size of the outputs of the function denoted by
the program.

Lemma 1. Let e be an expression with no variable and which admits a sup-195

interpretation θ. Assume that JeK is defined, that is JeK ∈ Values∗. We then
have (i) θ∗(JeK) ≤ θ∗(e) and (ii) |JeK| ≤ θ∗(e).

Proof. See appendix B

Example 1. We illustrate the notion of sup-interpretation by a function, which
divides by two a number. For this, we define the set of tally numbers thus,

Uint = 0 | S(Uint)

We note n = Sn(0). Next, we define the function JhalfK such that JhalfK = bn
2 c

by the program below.

half(0) → 0 half(S(0)) → 0 half(S(S(y))) → S(half(y))

Now, a sup-interpretation of 0 is θ(0) = 0 and a sup-interpretation of S is
θ(S)(X) = X+1. Clearly, for any n, θ∗(n) ≥ |n| = n. Then, we set θ(half)(X) =200

bX
2 c, which is a monotonic function. We check that condition (3) of Definition 1

is satisfied because θ∗(half(n)) = bn
2 c. Notice that such a sup-interpretation is

not a quasi-interpretation (a fortiori not a interpretation for proof termination)
since it violates the subterm property.

We end by defining lightweights which are used to control the depth of re-205

cursive data-flows.

Definition 2 (Lightweight). A lightweight ω is a partial assignment which
ranges over Fct. To a given function symbol f of arity n it assigns a total function
ωf from Rn

+ to R+ which is weakly monotonic.
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3.3 Additive assignments210

Definition 3. A partial assignment I is additive if

1. For each symbol f of arity n in dom(I), I(f) is bounded by a polynomial of
R+[X1, · · · , Xn].

2. For each constructor c ∈ dom(θ),

θ(c)(X1, · · · , Xn) =
n∑

i=1

Xi + αc αc ≥ 1

Lemma 2. Assume that I is an additive assignment such that Cns ⊂ dom(I).
There is a constant α such that for each value u of Values, the following in-215

equality is satisfied : |u| ≤ θ∗(u) ≤ α× |u|

Throughout the following paper we consider sup-interpretations and lightweights,
which are additive assignments.

4 Arboreal programs

4.1 Fraternities220

Given a program p, we define precedence ≥Fct on function symbols. Set f ≥Fct g
if there is a p-rule f(p1, · · · , pn) → e and g is in e. Then, take the reflexive
and transitive closure of ≥Fct, also noted ≥Fct. Next, we define f ≈Fct g and
f >Fct g as usual. We define a rank function rk as a morphism from (Fct,≥Fct)
into (N,≥), so satisfying : rk(g) < rk(f), if f ≥Fct g, and rk(f) = rk(g), if225

f ≈Fct g.
A context is an expression C[�1, · · · , �r] containing one occurrence of each �i.

Here, we suppose that the �i’s are new symbols which are neither in Σ nor in
Var. The substitution of each �i by an expression di is noted C[d1, · · · , dr].

Definition 4. Given a program p, a term C[g1(t1), . . . , gr(tr)] is a fraternity230

activated by f(p1, · · · , pn) iff

1. There is a rule f(p1, · · · , pn) → C[g1(t1), . . . , gr(tr)].
2. For each i ∈ {1, r}, gi ≈Fct f.
3. For every function symbol h in the context C[�1, · · · , �r], f >Fct h.

4.2 Arboreal programs235

Definition 5 (Arboreal). A program p admits an arboreal sup-interpretation
iff there is a sup-interpretation θ, a lightweight ω and a constant K > 1 such
that for every fraternity C[g1(t1), . . . , gr(tr)] activated by f(p1, · · · , pn), and any
substitutions σ, both conditions are satisfied:

ωf(θ∗(p1σ), . . . , θ∗(pnσ)) > 1 (1)
ωf(θ∗(p1σ), . . . , θ∗(pnσ)) ≥ K × ωgi

(θ∗(ti,1σ), . . . , θ∗(ti,mσ)) ∀1 ≤ i ≤ r (2)

The constant K is called the arboreal coefficient of p.
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Example 2. We show how to compute prefix sum, which is one of the canonical
examples of an efficient parallel circuit computation. Suppose that

⊙
is a binary

associative operation over A. The prefix sum of a list [x1, . . . , xn] of elements of
A, is x1

⊙
. . .

⊙
xn. Lists over A are defined as usual

List(A) = [ ] | [A, List(A)]

We take two operators Left and Right, which cut a list in two half.

Left([ ]) = [ ] Left([x1, . . . , xn]) = [x1, . . . , xbn
2 c]

Right([ ]) = [ ] Right([x1, . . . , xn]) = [xbn
2 c+1, . . . , xn]

We write [x1, . . . , xn] instead of [x1, [x2, . . . , xn]]. Now, the prefix sum of a list
is computed as follows.

sum([x]) = x

sum([x, y, L]) = sum(Left([x, y, L]))
⊙

sum(Right([x, y, L]))

Here, we consider
⊙

as an infix operator using familiar conventions. Actually,
the pattern [x, y, L] captures a list of length at least 2.

The constructors and the operators admit the following sup-interpretations.

θ([ ]) = 0 θ([X, L]) = X + L + 1

θ(Left)(N) = bN
2
c θ(Right)(N) = dN

2
e

Indeed, since the size of a list is the number of its element, we see that for any
list L, we have |L| = θ(L). We might also check that |JLeft(L)K| ≤ θ(Left(L))240

and |JRight(L)K| ≤ θ(Right(L)). Next, sum satisfies the arboreal condition by
taking ωsum(L) = L and K = 3

2 (Hint : L ≥ 2). Lastly, we shall see in a short
while that sum is an example of an explicitly additive arboreal program.

We shall now show that a program admitting an arboreal sup-interpretation
is terminating. Actually, the termination of an arboreal program may be estab-245

lished by the dependency pair method of Arts and Giesl [4], or by the size change
principle for program termination of Lee, Jones and Ben-Amram [22]. However,
it is worth to have a direct demonstration in order to establish an upper bound
on derivation lengths.

4.3 Weighted Call-trees250

We now describe the notion of call-trees which is a representation of a pro-
gram state transition sequences. Next, we show that, when we consider arboreal
programs, we can assign weights to state transitions in such way that a state
transition sequence is associated to a sequence of strictly decreasing weights.
Lastly, weights provide a measure which gives us an upper bound on derivation255

lengths.
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Call-trees Suppose that we have a program p. A state of p is a tuple 〈f,u1, · · · ,un〉
where f is a function symbol of arity n and u1, · · · ,un are values of Values∗.

A state transition of p is a triplet η1  η2 between two states η1 = 〈f,u1, · · · ,un〉
and η2 = 〈g,v1, · · · ,vm〉 where260

1. f(p1, · · · , pn) → e is a rule of p
2. there is a substitution σ such that piσ ↓ ui for any 1 ≤ i ≤ n,
3. e = C[g(d1, · · · , dm)] and for any 1 ≤ i ≤ m, diσ ↓ vi

We write ∗
 to mean the transitive closure of  . We define the 〈f,u1, · · · ,un〉

call-tree as a tree where (i) the set of nodes are labeled by states of {η |265

〈f,u1, · · · ,un〉
∗
 η}, (ii) there is an edge between two nodes if there is a transi-

tion between both states, which labels the nodes. (iii) the root is a node labeled
by the state 〈f,u1, · · · ,un〉.

A 〈f,u1, · · · ,un〉 call-tree may be an infinite tree. In this case, König’s
Lemma implies that there is a reduction strategy which leads to a infinite se-270

quence of reductions.

Weighted Call-trees Throughout, it is convenient to use θ∗(vj) to abbreviate
θ∗(vj,1), . . . , θ∗(vj,n). Given a sup-interpretation θ and a lightweight ω of a pro-
gram, we assign to each state transition a weight, which is a pair (p, q) in N∪{⊥
} × N ∪ {⊥} as follows. We have η1 = 〈f,u1, · · · ,un〉

(p, q)
 η2 = 〈g,v1, · · · ,vm〉275

iff

– If f >Fct g, then (p, q) = (rk(f), 0).
– If f ≈Fct g and ωf(θ∗(u)) ≥ 1, then (p, q) = (rk(f), dlogK(ωf(θ∗(u)))e)
– Otherwise, (p, q) = (⊥,⊥).

In the two first cases above, the weight is said defined,280

Lemma 3. Assume that p admits an arboreal sup-interpretation. The weight
which is assigned to each state transition of p is defined.

Proof. It suffices to prove that when f ≈Fct g, we have ωf(θ∗(u1), . . . , θ∗(un))) ≥
1. Since p admits an arboreal sup-interpretation, the situation is the following.
f(u1, · · · ,un) matches a unique rule f(p1, · · · , pn) → e because p is orthogonal.285

By definition of a state transition, g is in e. Since f ≈Fct g, e is a fraternity acti-
vated by f(p1, · · · , pn) such that e = C[. . . , g(. . .), . . .]. Therefore, the condition
(1) of Definition 5 holds, which completes the proof.

Intuitively, the weight associated to a transition indicates what is decreasing.
In fact, there is two possibilities. In the first one, the function rank is strictly290

decreasing. In the second one, it is the lightweight which is strictly decreasing.

Theorem 2. Assume that the program p admits an arboreal sup-interpretation.
Then p is terminating. That is, for every function symbol f and for any values
u1, · · · ,un in Values, JfK(u1, · · · ,un) is in Values∗.
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Proof. Let 〈f,u1, · · · ,un〉 be a state of p. Take a branch of the 〈f,u1, · · · ,un〉295

call-tree η0
(p0, q0)
 η1

(p1, q1)
 η2

(p2, q2)
 . . . where ηj = 〈fj , vj〉.

We define an ordering on N × N by (n, m) < (p, q) if n < p or n = p and

m < q. We show that for any i such that ηi
(pi, qi)
 ηi+1

(pi+1, qi+1)
 ηi+2, we have

(pi, qi) > (pi+1, qi+1). There are three cases to examine.

1. Suppose that fi >Fct fi+1. Then, we have pi = rk(fi) > pi+1 = rk(fi+1).300

2. Suppose that fi ≈Fct fi+1 and fi+1 >Fct fi+2. We have pi = rk(fi) = pi+1 =
rk(fi+1) and qi = dlogK(ωfi(θ

∗(vi)))e > qi+1 = 0, since ωfi(θ
∗(vi)) > 1

3. Suppose that fi ≈Fct fi+1 and fi+1 ≈Fct fi+2. As in the previous case,
we have pi = pi+1. Now, we also have qi = dlogK(ωfi

(θ∗(vi)))e > qi+1 =
dlogK(ωfi+1(θ

∗(vi+1)))e. Indeed intuitively, each recursive state corresponds
to the division of its lightweight by the arboreal constant K > 1. Formally,
Condition (2) of Definition 5 claims that

ωfi
(θ∗(vi)) ≥ K × ωfi+1(θ

∗(vi+1))
dlogK(ωfi

(θ∗(vi)))e ≥ dlogK(ωfi+1(θ
∗(vi+1)))e+ 1

In the three cases above, we have established that (pi, qi) > (pi+1, qi+1). Since
the ordering < is well-founded, the weight sequence is finite, which completes
the proof.305

5 Main result

5.1 Explicitly defined functions

Given a program p, a function symbol f is explicitly defined iff for each rule
like f(p1, · · · , pn) → e, the expression e is built from variables, constructors,
operators and explicitly defined function symbols whose precedence is strictly310

less than f An expression e is explicit in p iff each function symbol occurring in
e is explicitly defined in p.

An explicit function is a function which is defined by a program in which any
function symbols are explicitly defined.

Definition 6. A program p is explicitly fraternal if and only if for each frater-315

nity C[g1(t1), . . . , gr(tr)] of p, the context C[�1, · · · , �r] and each ti are explicitly
defined in p.

5.2 Characterization of Alogtime

We encode the elements of Values∗ by binary words of {0, 1}∗ using a mapping
code : Values∗ → {0, 1}∗ such that (i) code is computed in ALogTime, and (ii)320

each constructor of Cns is computed by an UE∗ -uniform, polynomial size, and
constant depth circuit family wrt the encoding code.
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A program p has flat operators if every operator of Op is computed by an
UE∗ -uniform, polynomial size, and constant depth circuit family using the same
encoding code.325

A program p admits an additive arboreal sup-interpretation if it admits an ar-
boreal sup-interpretation for which the sup-interpretation θ and the lightweight
ω are additive assignments.

Definition 7. A program p is explicitly additive arboreal if p admits an ad-
ditive arboreal sup-interpretation, which is explicitly fraternal and all operators330

are flat.

Given a function φ : Valuesk → Values, we associate a function φ̃ : {0, 1}∗ →
{0, 1}, which is defined by φ(u) = φ̃(code(u)), for any u ∈ Values. A function
φ over Values is computed in ALogTime if the function φ̃ is also computed in
ALogTime.335

Theorem 3. A function φ over Values is computed by a explicitly additive
arboreal program if and only if φ is computed in ALogTime.

Proof. It is a consequence of Lemma 7 and Lemma 9.

6 Circuit evaluation of Exp. Add. arboreal programs

We now move toward an implementation of programs by uniform family of cir-340

cuits. It will be appropriate to do this in several steps that we shall describe
in more or less intuitive fashion. Indeed implementation details are not difficult
but tedious, and will be written in the full forthcoming paper. Actually, the
demonstration of Theorem 3 leans essentially on Lemmas 5 and 6.

6.1 Explicit functions are constant depth computable345

In the first step, we show that an explicit functions are computed in constant
parallel time.

Lemma 4. Assume that φ : Valuesk → Values∗ is an explicit function from
flat operators. Then, φ is computed by an UE∗-uniform, polynomial size, and
constant depth circuit family.350

Proof. An explicit function φ is defined by composition from constructors and
operators. So, we complete the construction by a straightforward induction on
the definition length, and by using a circuit implementation of constructors and
destructors. The program which defines φ provides the UE∗ -uniformity.
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6.2 Upper bounds on height and size355

In the second step, we establish a logarithmic upper bound on the derivation
lengths. Then, we show that computed values are polynomially bounded.

The height of a weighted call tree is the length of the longest branch.

Lemma 5. Let p be an explicitly additive arboreal program. Let 〈f,u1, · · · ,un〉
be a state of p. The height of the 〈f,u1, · · · ,un〉 call tree is bounded by d ×360

log(max(|u1|, . . . , |un|)) for some constant d.

Proof. Put n = maxi(|ui|). We refine the demonstration of Theorem 2 by looking
more carefully to a finite strictly decreasing sequence (p0, q0) > . . . > (p`, q`) of
a branch of the 〈f,u1, · · · ,un〉 call-tree.

By definition of the partial ordering < on N×N, we have ` ≤ (p0+1)×(q0+1).365

Since, p0 ≤ maxf(rk(f)) and q0 ≤ dlogK(maxf(ωf(θ∗(u))))e, we see that ` ≤
maxf(rk(f))× dlogK(maxf(ωf(θ∗(u))))e.

The fact that p admits an additive assignment implies that there is a poly-
nomial P such that maxf(ωf(θ∗(u)) ≤ P (α× n), where the constant α is given
by Lemma 2. Putting altogether, there is a constant d such that ` ≤ d× log2(n).370

Lemma 6. Assume that p is an explicitly additive arboreal program. Then, there
is a polynomial P such that for any values u1, · · · ,un and function symbol f,
we have

|JfK(u1, · · · ,un)| ≤ P (max
i

(|ui|))

Proof (Sketch of proof). Suppose that f is recursively defined, and so its compu-
tation implies fraternities. Each fraternity is explicitly defined, which means that
the output size is linearly bounded by a×m+b where a and b are some constants,
m is the input size, because of Lemma 4. The computation of 〈f,u1, · · · ,un〉 is
made by iterating ` times the computation of explicit fraternity. So the output375

size is bounded by a`m + b × `. The length ` is bounded by the height of the
〈f,u1, · · · ,un〉 call-tree. By lemma 5, ` ≤ d× log(max(|u1|, . . . , |un|)), for some
constant d. Therefore, there is a polynomial P whose degree depends on the
arboreal coefficient K and a such that |JfK(u1, · · · ,un)| ≤ P (maxi(|ui|)).

6.3 Programs are in NC1
380

In the third step, we construct an UE∗ -uniform, polynomial size, and constant
depth circuit family which computes an explicitly additive arboreal program.

Lemma 7. Suppose that a function φ : Valuesk → Values is defined by an
explicitly additive arboreal program p. Then, an UE∗-uniform, polynomial size,
and logarithmic depth circuit family computes φ̃.385
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Proof. Given an upper bound m on the input size, we construct a circuit Cm

by induction on function symbol rank of p. Actually, the depth of a circuit is
bounded by d× log(n) for some constant d because of Lemma 5. Lemma 6 states
that the size of the inputs and the outputs of each circuit layer is bounded by
a polynomial. We see that circuits have a logarithmic depth and polynomial390

size. The UE∗ -uniformity condition is not too difficult to check, because the
extended connection language is based on p, which is given and on the upper-
bounds obtained in the previous section. A more detailed proof is postponed in
Appendix C.

7 Simulation of ALogTime computable functions395

In this section, we prove that a function in ALogTime is computed by an explic-
itly additive arboreal program.

For this purpose, we consider the characterization [25] of ALogTime instead
of dealing directly with ATM. There are at least two reasons to proceed in this
way. The first is that it simplifies proofs which otherwise would require a lot400

of encodings. The second is that, as we say in the introduction, there is closed
connection between ramified recursion used in implicit computational complexity
and our approach.

In [25], the characterization is based on linear ramified recursion with sub-
stitution, called LRRS , using well-balanced trees as internal data structures.405

LRRS functions compute over binary tree algebra T. Initial functions consist
of constructors, conditionals and destructors over T. LRRS functions use one
ramified recursion over 2 tiers, and is defined as follows.

f(c, u;x) = gc(u;x) c = 0,1,⊥
f(t*t′, u;x) = g(; f(t, u; h1(;x)), . . . , f(t′, u; hk(;x)), x)

where g, gc and the substitution functions h1, . . . , hk are previously defined func-
tions. We separate tiers by a semicolon. A flat function is a function whose
domain and range are at the same tier. A crucial point is that g and the sub-
stitution functions h1, . . . , hk are flat functions. Indeed, it was proved that flat
functions are definable by composition of initial functions.410

A function φ over the algebra of words W = {0,1}* is said to be representable
in LRRS if it is representable by some function f definable in LRRS and whose
inputs represent the shortest (in the height) encoding of words by full binary
trees.

Theorem 4 (Marion and Leivant). A function f over {0, 1}∗ is representable415

in LRRS if and only if it is bitwise in ALogTime and its growth is bounded by a
polynomial in the size of the inputs.

Now we are going to use this result in order to establish the completeness of
our characterization:
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Lemma 8. A function φ which is representable in LRRS, is computed by an420

explicitly additive arboreal program p.

Proof (Sketch of proof). The simulation of LRRS functions is based on three
points. The first point concerns the encoding of well balanced trees. n the sim-
ulation, we reduce LRRS trees into a list like in Example 2. The operator Left
and Right allow to simulate well-balanced tree.425

The second point is to see that a flat function of LRRS is explicitly defined.
The third point is to replace the linear ramified recursion scheme with pa-

rameter substitutions over binary trees by the following scheme:

f([c], u, x) → gc(u, x) c = 0,1,⊥
f([c,b, l], u, x) → g(f(Left([c,b, l]), u, h1(x)), . . . , f(Right([c,b, l]), u, hk(x)), x)

The program defined by the previous rules is explicitly fraternal, because g,
gc, and (hi)i are flat functions.

The above Lemma entails the following one:

Lemma 9. Every function φ in ALogTime is computable by an explicitly addi-430

tive arboreal program p.

8 On the synthesis of sup-interpretations

Knowing whether a program admits an additive arboreal sup-interpretation is
undecidable. However, we have an heuristic, which finds sup-interpretations with
some restrictions on their forms. Actually, we are developing a software called435

CROCUS, which finds quite efficiently additive arboreal sup-interpretations.
Consider MPP the set of functions defined to be constant functions, pro-

jections, max, +, × and closed by composition. First, remember that quasi-
interpretations are a particular form of sup-interpretations. Actually, it suffices
to take θ to be L−M. The decidability of Quasi-interpretation is a direct conse-440

quence of Tarsky Theorem on the decidability of the polynomial First Order
Logic formulae over reals. See [10, 9].

An algorithm to synthesis sup-interpretations would proceed as follows. We
restrict to the class MPP of assignments. Instead of searching for θ(f), we look
for quasi-interpretations LfM. Sup-interpretations of operators are given. Finally,445

we express the condition on the lightweight by a first order formula. Actually, the
complexity of the procedure to synthesis sup-interpretations is exponential time
in the program size. The sup-interpretation method has some advantages com-
pared to Quasi-interpretations. Indeed, some conditions on quasi-interpretations
are drop, and we have to find less assignments.450

So, there is a set programs for which we can decide whether or not they
are explicitly additive arboreal programs, and this set of programs capture the
ALogTime functions.
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A Call by value semantics

t1 ↓ w1 . . . tn ↓ wn

c ∈ Cns and ∀i, wi 6= Err
c(t1, · · · , tn) ↓ c(w1, · · · , wn)

t1 ↓ w1 . . . tn ↓ wn

op ∈ Op
op(t1, · · · , tn) ↓ JopK(w1, · · · , wn)

t1 ↓ w1 . . . tn ↓ wn f(p1, · · · , pn) → e eσ ↓ w
where σ(xi) = wi

f(t1, · · · , tn) ↓ w
∀i = 1, . . . , n

Fig. 1. Call by value semantics of ground terms wrt a program p

The meaning of e ↓ w is that e evaluates to the value w of Values. By
definition, if no rule is applicable, then an error occurs and e ↓Err. So, a pro-
gram p computes a partial function JpK : Valuesn → Values# defined as fol-525

lows. For all vi ∈ Values, JpK(v1, · · · , vn) = w iff p(v1, · · · , vn) ↓ w. Otherwise
JpK(v1, · · · , vn) = ⊥.
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B Proof of Lemma 1

The proof is done by structural induction on expression. The base case is a
consequence of Condition 2 of Definition 1.530

Take an expression e = f(e1, · · · , en) that has a sup-interpretation θ. By
induction hypothesis (IH), we have θ∗(ei) ≥ θ∗(JeiK). Now,

θ∗(e) = θ(f)(θ∗(e1), ..., θ∗(en)) by definition of θ∗

≥ θ(f)(θ∗(Je1K), ..., θ∗(JenK)) by 1 of Dfn 1 and (IH)
= θ∗(f(Je1K, ..., JenK)) by definition of θ∗

≥ θ∗(JfK(Je1K, ..., JenK)) by 3 of Dfn 1
= θ∗(JeK)

We establish the second inequality

θ∗(e) ≥ θ∗(JeK) by Lemma 1
≥ ‖e‖ by Condition 2 of Dfn 1

C Programs are in NC1

Lemma 10. Suppose that a function φ : Valuesk → Values is defined by an
explicitly additive arboreal program p. Then, an UE∗-uniform, polynomial size,
and logarithmic depth circuit family computes φ̃.

Proof. Given an upper bound m on the input size, we construct a circuit Cm535

by induction on function symbol rank of p. The base case is a consequence of
Lemma 4.

Next, take a function symbol f which is defined by a set of q rules of the form
f(p1, · · · , pn) → ei. Since p is an orthogonal program, the q set of patterns, which
guard f rules, are not overlapping. We build from the input gates a discriminator540

circuit which selects the right f rule to fire. The discriminator circuit is based on
the q set of patterns and is defined by composition of selectors (based on if then
else construction) and destructors which are computed by a constant depth and
a polynomial size circuits.

There are two cases to consider which depends on ei.545

In the first case, ei is built from function symbols whose ranks are strictly
less that the rank of f. By induction assumption, a family of polynomial size
and logarithmic depth circuits computes function symbol in ei. So, we conclude
by composing those circuits.

In the second case, ei = C[g1(s1), . . . , gr(sr)] is a fraternity activated by550

f(p1, · · · , pn). The context C[�1, . . . , �r] is build from explicit functions. Lemma 4
yields a constant depth and polynomial size circuits to compute C[�1, . . . , �r]. On
the other hand, the (sj)j=1,r are also explicitly defined and therefore computed
by constant depth and polynomial size circuits. The circuit which computes the
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fraternity ei is built by composing the circuit which corresponds to C[�1, . . . , �r]555

and by interfacing its input gates with the circuits corresponding to (sj)j=1,r.
The key point of the construction is that the length of the above circuit compo-
sition is bounded by d× log(n) for some constant d because of Lemma 5. Lastly,
Lemma 6 states that the size of the inputs and the outputs of each circuit layer
is bounded by a polynomial. We conclude that the overall construction provides560

a logarithmic depth and polynomial size family of circuits The UE∗ -uniformity
condition is not too difficult to check, because the extended connection language
is based on p, which is given and on the upper-bounds obtained in the previous
section.


