
An Introduction to Deep Reinforcement Learning

Part 1 – MDPs, Dynamic Programming, Q-Learning, Deep Q-Learning

Karim Bouyarmane



The subject of Reinforcement Learning are Markov Decision Processes (MDP)



More precisely, Reinforcement Learning is a Machine Learning approach to solving MDPs



MDP: simplest possible probabilistic model of “something” that can “take actions”/decisions and 
act on itself or on the world

agent/world with states 𝑠 ∈ 𝒮 and possible actions 𝑎 ∈ 𝒜

(e.g. physical robot, trading agent, video-game playing agent, continuous decision maker in dynamic and 
uncertain environment, etc.)

Two models and one parameter are necessary to fully characterize the MDP:

• a transition model 𝑃 𝑠′ 𝑠, 𝑎 = 𝑇 𝑠, 𝑎, 𝑠′ (a.k.a dynamics model, “what is the effect of an action?”)
• a reward model at state 𝑠 : 𝑅 𝑠 ∈ ℝ (“what is our objective? what state are we trying to reach?”)

(or  𝑅(𝑠, 𝑎), or even 𝑅(𝑠, 𝑎, 𝑠′), etc.)
• a discount factor 0 < 𝛾 ≤ 1 (trade-off between immediate reward and delayed reward, “cost of 

delayed reward”)

𝑠 𝑠′

𝑎

𝑟



MDP: simplest possible probabilistic model of “something” that can “take actions”/decisions and 
act on itself or on the world

agent/world with states 𝑠 ∈ 𝒮 and possible actions 𝑎 ∈ 𝒜

(e.g. physical robot, trading agent, video-game playing agent, continuous decision maker in dynamic and 
uncertain environment, etc.)

Two models and one parameter are necessary to fully characterize the MDP:

• a transition model 𝑃 𝑠′ 𝑠, 𝑎 = 𝑇 𝑠, 𝑎, 𝑠′ (a.k.a dynamics model, “what is the effect of an action?”)
• a reward model at state 𝑠 : 𝑅 𝑠 ∈ ℝ (“what is our objective? what state are we trying to reach?”)

(or  𝑅(𝑠, 𝑎), or even 𝑅(𝑠, 𝑎, 𝑠′), etc.)
• a discount factor 0 < 𝛾 ≤ 1 (trade-off between immediate reward and delayed reward, “cost of 

delayed reward”)

𝑠 𝑠′

𝑎

𝑟

𝑠′ 𝑠′

𝑟𝑟



MDP = (𝒮,𝒜, 𝑇, 𝑅, 𝛾)



𝑠 𝑠′

𝑎

𝑟

𝑠0 𝑠1

𝑎0

𝑟1

𝑠2

𝑎1

𝑟2

MDP

𝑠3

𝑎2

𝑟3

…



𝑠0 𝑠1

𝑎0

𝑟1

𝑠2

𝑎1

𝑟2

𝛾𝑟1 𝛾2𝑟2

𝑠3

𝑎2

𝑟3

𝛾3𝑟3

…

෍

𝑡=0

+∞

𝛾𝑡𝑟𝑡

…

…discounted rewards

rewards

return



Policy = deciding what action to take at every state  𝜋: 𝑠 ↦ 𝑎

(a.k.a. “feedback loop”, “control law”, “control policy”, “decision function”, etc.)

“autonomous agent” = agent that follows (“is endowed with”) a policy 𝜋



“Solving” an MDP = solving for a policy 𝜋: 𝒮 → 𝒜

𝜋 𝑠 = 𝑎



𝑠0 𝑠1

𝜋(𝑠0)

𝑟1

𝑠2

𝜋(𝑠1)

𝑟2

𝑠3

𝜋(𝑠2)

𝑟3

…

autonomous agent that follows a policy 𝜋



𝑠 𝑎

𝜋

Sense

Plan

Act

The autonomy feedback loop revisited



We don’t want to find any policy, we want to find a good policy

A good policy is a policy that takes actions that make the agent maximize its long-term 
rewards (or returns), i.e. that makes the agent realize a certain objective (the objective being 
encoded in the reward/returns model)

The art of formulating a good MDP is thus formulating a good reward model that captures 
the desired objective

A good policy can also be interpreted a policy that minimizes cost (𝑐𝑜𝑠𝑡 = −𝑟𝑒𝑤𝑎𝑟𝑑)

Examples of long term rewards:
• Winning a game
• Accomplishing a task successfully
• Reaching a goal position
• Making stock gains at a certain maximum horizon



Definition: A sequence of states 𝑠𝑡 follows a policy 𝜋 if

∀𝑡 ≥ 0, 𝑠𝑡+1~𝑃 𝑠𝑡+1 𝑠𝑡 , 𝜋 𝑠𝑡

We write 𝑠𝑡~𝜋



So, we want to find the optimal policy 𝜋∗

𝜋∗ = argmax
𝜋

𝔼𝑠𝑡~𝜋 ෍

𝑡=0

+∞

𝛾𝑡𝑅 𝑠𝑡 | 𝜋

Where
𝑠0~ given distribution
𝑠𝑡+1~𝑃 𝑠𝑡+1 𝑠𝑡 , 𝜋 𝑠𝑡



Solving for the optimal policy is thus an optimization problem (optimal control) over the 
space of policies (𝒜𝒮)

Different families of methods for solving MDP

• Non-ML MDP Solving: Dynamic programming methods 
• Value iteration
• Policy iteration

• Q-learning methods (DQN)

• Policy gradient methods (Actor-Critic)

• Evolution strategies or DFO: Derivative-Free Optimization (CMA-ES)



Value of a state (or Utility of a state) V-value (or U-value)

𝑉 𝑠 (𝑜𝑟 𝑈 𝑠 ) = 𝔼𝑠𝑡~𝜋∗ ෍

𝑡=0

+∞

𝛾𝑡𝑅 𝑠𝑡 |𝑠0 = 𝑠, 𝜋∗



Value of a state (or Utility of a state) V-value (or U-value): 

“Best returns we can hope for in average, if we start from the state”

(meaning that we start from the state, and follow the optimal policy)



If we knew the V-value of every state, then the optimal policy at any given state is to take 
the action that gives you the best chance to land on the highest-value state

i.e. optimal policy = “follow the V-values”



If we knew the V-value of every state, then the optimal policy at any given state is to take 
the action that gives you the best chance to land on the highest-value state

i.e. optimal policy = “follow the V-values”

𝜋∗(𝑠) = argmax
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)



If we knew the V-value of every state, then the optimal policy is 

𝜋∗(𝑠) = argmax
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)



𝜋∗(𝑠) = argmax
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)𝑉 𝑠 = 𝔼 ෍

𝑡=0

+∞

𝛾𝑡𝑅 𝑠𝑡 |𝑠0 = 𝑠, 𝜋∗ ⟺

“ 𝑉 = 𝑓 𝜋∗ ” “ 𝜋∗ = 𝑓−1 𝑉 ”⟺



+1

-1

Introducing Gridworld®

𝒜 = {↑,←, ↓,→}

𝒮 = {1,2,3,4,5,6,7,8,9,10,11}

for every state 𝑠 ∈ 𝒮, let us denote

𝑠↑ the state immediately to the north of 𝑠 (if it exists)

𝑠↓ the state immediately to the south of 𝑠 (if it exists)
𝑠← the state immediately to the west of 𝑠 (if it exists)
𝑠→ the state immediately to the east of 𝑠 (if it exists)

the transition model is

𝑃 𝑠→ 𝑠,→ = 0.8

𝑃 𝑠↑ 𝑠,→ = 0.1

𝑃 𝑠↓ 𝑠,→ = 0.1

𝑃 𝑠↑ 𝑠, ↑ = 0.8

𝑃 𝑠← 𝑠, ↑ = 0.1
𝑃 𝑠→ 𝑠, ↑ = 0.1

…

the reward model is

𝑅 11 = +1
𝑅 10 = −1

𝑅 𝑠 ≠ 10 and 11 = −0.04

the discount factor is
𝛾 = 1

+ If the robot bumps into a wall, it stays in the same state



→ → → +1

↑ ↑ -1

↑ ← ← ←

Optimal policy 𝜋∗



0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388

Value of every state 𝑉



0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388

Value of every state 𝑉

→ → → +1

↑ ↑ -1

↑ ← ← ←

Optimal policy 𝜋∗

𝜋∗(𝑠) = argmax
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)𝑉 𝑠 = 𝔼 ෍

𝑡=0

+∞

𝛾𝑡𝑅 𝑠𝑡 |𝑠0 = 𝑠, 𝜋∗ ⟺



The value function or the optimal policy, completely characterize the optimal solution of an MDP



Bellman equation:

𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)



Bellman equation:

𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)

0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388
0.8 ∗ 1 + 0.1 ∗ 0.660 + 0.1 ∗ 0.918 − 0.04 = 0.918

In the example state (the one with value 0.918), if the agent 
follows the optimal action (which is “go to right”), then it has 
80% chance of actually going to the right, landing in a state 
of value 1, 10% chance of going up, bumping into the wall, 
and thus stating in the same state with value 0.918, and 10% 
chance of going down, landing in the state of value 0.660, 
i.e.



Bellman equation:

𝑉 𝑠1 = 𝑅 𝑠1 + 𝛾max
𝑎

𝑇 𝑠1, 𝑎, 𝑠1 𝑉 𝑠1 + 𝑇 𝑠1, 𝑎, 𝑠2 𝑉 𝑠2 + 𝑇 𝑠1, 𝑎, 𝑠3 𝑉 𝑠3 +⋯

𝑉 𝑠2 = 𝑅 𝑠2 + 𝛾max
𝑎

𝑇 𝑠2, 𝑎, 𝑠1 𝑉 𝑠1 + 𝑇 𝑠2, 𝑎, 𝑠2 𝑉 𝑠2 + 𝑇 𝑠2, 𝑎, 𝑠3 𝑉 𝑠3 +⋯

𝑉 𝑠3 = 𝑅 𝑠3 + 𝛾max
𝑎

𝑇 𝑠3, 𝑎, 𝑠1 𝑉 𝑠1 + 𝑇 𝑠3, 𝑎, 𝑠2 𝑉 𝑠2 + 𝑇 𝑠3, 𝑎, 𝑠3 𝑉 𝑠3 +⋯

⋮



Solving Bellman equation ⇛ Solving for 𝑉 ⇛ Obtaining 𝜋∗



The Bellman equation

𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)

is a fixed-point equation

“ 𝑉 = 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑉 ”



To solve a fixed-point equation, we apply the iteration method:

Initialize a random 𝑉0

𝑉𝑘+1 = 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑉𝑘

lim
𝑘→+∞

𝑉𝑘 = 𝑉



Value-iteration (for finding the optimal policy of an MDP)

• Initialize 𝑉0(𝑠) at some random values at all states 𝑠

• Apply Iterative Bellman equation

𝑉𝑘+1 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉𝑘(𝑠′)

• Loop

• Until convergence of 𝑉𝑘(𝑠) to some value 𝑉 𝑠

• Apply

𝜋∗(𝑠) = argmax
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)



There is another method very similar to Value-iteration, that solves directly for 𝜋∗

called Policy-iteration



Reminder - Bellman equation:

𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)

Linear Bellman equation, by definition of 𝜋∗:

𝑉 𝑠 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑇 𝑠, 𝜋∗(𝑠), 𝑠′ 𝑉(𝑠′)



Policy-iteration (for finding the optimal policy of an MDP)

• Initialize 𝜋0(𝑠) at some random values at all states 𝑠

• Solve linear Bellman equation for 𝑉𝑘, given optimal policy 𝜋𝑘

𝑉𝑘 𝑠 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑇 𝑠, 𝜋𝑘(𝑠), 𝑠
′ 𝑉𝑘(𝑠′)

• Update 

𝜋𝑘+1(𝑠) = argmax
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉𝑘(𝑠′)

• Loop

• Until convergence of 𝜋𝑘(𝑠) to some value 𝜋∗(𝑠)



Value-iteration and Policy-iteration are exact methods to solve MDPs, they 
are not Machine Learning approaches



Why would we need Machine Learning to solve MDPs anyways?

Usually we don’t know the transition and reward model a priori, we don’t know 𝑻
and 𝑹

We can only observe some sample data from 𝑇 and 𝑅 by making the agent actually 
perform in real world or simulate different actions 𝑎 at different states 𝑠, then 
record what state 𝑠′ we ended up in and what reward 𝑟 we got as a result from that 
action at that state

Records of observed data from experiences will be in the form of tuples 𝒔, 𝒂, 𝒔′, 𝒓



Classical MDP solving: Model-based
input: model (𝑇, 𝑅), output: policy

Reinforcement Learning for solving MDPs: Data-based
Input experience records (data) 𝑠, 𝑎, 𝑠′, 𝑟 , output policy

𝑇, 𝑅 𝜋∗, 𝑉

𝑠1, 𝑎1, 𝑠1
′ , 𝑟1

𝜋∗, 𝑉𝑠2, 𝑎2, 𝑠2
′ , 𝑟2

𝑠3, 𝑎3, 𝑠3
′ , 𝑟3

𝑠4, 𝑎4, 𝑠4
′ , 𝑟4

𝑠5, 𝑎5, 𝑠5
′ , 𝑟5

𝑠6, 𝑎6, 𝑠6
′ , 𝑟6

…



Reinforcement learning template:

• Start with a random policy
• Following this policy (exploitation) interleaved with some random 

actions from time to time (exploration), make the agent collect 
experience record tuples

• Refine the policy based the knowledge received from these actions and 
these observations

• Loop
• Until the policy converges



What is it exactly that we “learn”?

• Not directly the model 𝑻 and 𝑹, since we only care about the policy 𝜋

• Maybe learn V-value of every state? too coarse, we don’t have experience 
data directly associated with states 𝑠, but with actions 𝑎 taken at state 𝑠

• We introduce a new quantity that refines V-values ⇛ by giving value to a 
pair of <action, state> the Q-value of an action 𝒂 at state 𝒔



V-value of a state:

𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)



Q-value of an action at a state:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)



Q-value of an action at a state:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ 𝑉(𝑠′)

Q-value is also known as action-value, as opposed to V-value
which is known as state-value



Q-value of an action at a state:

Best returns we can hope for if we take action 𝑎 at state 𝑠

(meaning that we take action 𝑎 at state 𝑠 and then start following the optimal policy 
from whatever state 𝑠′ we land at)



0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388

Value of every state 𝑉

→ → → +1

↑ ↑ -1

↑ ← ← ←

Optimal policy 𝜋∗

+1

-1

Q-value of every action in every state

0.812 0.918

0.881

0. 675

0.641 -0.687

0.660

0.415

0.388 0.209

-0.740

0.370

0.8680.812

0.6110.655

0.705

0.762

…

…

…

…

…

…

…

…

… …

…

…

…

…

…

…

……

*Not all values displayed, just example values



0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388

Value of every state 𝑉

+1

-1

Q-value of every action in every state

0.812 0.918

0.881

0. 675

0.641 -0.687

0.660

0.415

0.388 0.209

-0.740

0.370

0.8680.812

0.6110.655

0.705

0.762

…

…

…

…

…

…

…

…

… …

…

…

…

…

…

…

……

→ → → +1

↑ ↑ -1

↑ ← ← ←

Optimal policy 𝜋∗

*Not all values displayed, just example values



→ → → +1

↑ ↑ -1

↑ ← ← ←

Optimal policy 𝜋∗

+1

-1

Q-value of every action in every state

0.812 0.918

0.881

0. 675

0.641 -0.687

0.660

0.415

0.388 0.209

-0.740

0.8680.812

0.6110.655

0.705

0.762

…

…

…

…

…

…

…

…

… …

…

…

…

…

…

…

……



If we knew the Q-value of every action at every state, then finding the optimal policy is straightforward

𝜋∗(𝑠) = argmax
𝑎

𝑄(𝑠, 𝑎)

And finding the V-value of a state is also straightforward

𝑉(𝑠) = max
𝑎

𝑄(𝑠, 𝑎)

The optimal policy is guided by the Q values
i.e. optimal policy = “follow the Q-values”



Relationship between 𝑉, 𝑄, 𝜋∗

𝑉 𝑠 = 𝑄(𝑠, 𝜋∗ 𝑠 )



Bellman equation for the Q-value

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ max
𝑎′

𝑄(𝑠′, 𝑎′)



Bellman equation for the Q-value

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ max
𝑎′

𝑄(𝑠′, 𝑎′)

𝑄 𝑠, 𝑎 = 𝔼𝑠′ 𝑅 𝑠 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ |𝑠, 𝑎



Q-learning (for finding the optimal policy of an MDP) with learning rate 𝛼

• Initialize 𝑄(𝑠, 𝑎) at some random values at all states 𝑠 and actions 𝑎 (i.e. initialize random policy)
• Start in state 𝑠0
• Set current state 𝑠= 𝑠0

• From current state 𝑠, choose action 𝑎 by picking one of these two choices (𝜖-greedy strategy):
• [Exploitation, Being greedy] Either by following the current policy argmax𝑎 𝑄(𝑠, 𝑎)
• [Exploration, with probability 𝜖] Or by picking a completely random action 𝑎

• Execute 𝑎
• Observe the landed state 𝑠′, and the obtained reward 𝑟 (we have now collected an experience 

record data point 𝑠, 𝑎, 𝑠′, 𝑟 )
• From this observation, update value of 𝑄(𝑠, 𝑎) by taking a stochastic gradient step towards 

෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑠, 𝑎 𝑠′, 𝑟 = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′

𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼[ ෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑠, 𝑎|𝑠′, 𝑟 − 𝑄(𝑠, 𝑎)]

• Update current state 𝑠=𝑠′
• Loop

• Until convergence of 𝑄/convergence of 𝜋∗

Keep in mind: policy ≡ Q-value
𝜋∗(𝑠) = argmax

𝑎
𝑄(𝑠, 𝑎)

෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 (𝑠, 𝑎|𝑠
′, 𝑟)

𝑄 𝑠, 𝑎

𝛼
𝑄 𝑠, 𝑎



This approach is called Tabular Q-learning, which means it tries to build a table 
of Q-values for every (state,action) pair

Problematic with continuous state spaces or continuous action spaces

even with discretization and finite state space: huge number of states (Tetris has 
1060 states × 3 actions)



Solution: use function approximation with parametric model

instead of learning 𝑄(𝑠, 𝑎) for every (𝑠, 𝑎), parameterize 𝑸 as 𝑸𝜽 (for 
example linear model, neural network), and learn the parameter 𝜽
from the observations, this is called Approximate Q-learning

when 𝑄𝜃 is a deep learning model (for example a CNN, taking the raw 
pixels of the game as the state of the game), then we talk about Deep 
Reinforcement Learning



Deep RL = Q-value of every action as a deep-learning regression model, 
called the Q-network

Note that it is different from a supervised learning problem as a 
classification problem on the actions from the observation of the actions 
taken by human agents. Here there is no human agent, the agent 
generates the data it needs and learns a Q-value function



Approximate Q-learning algorithm (for finding the optimal policy of an MDP) with learning rate 𝛼

• Initialize 𝜃 at some random values (i.e. initialize random policy)
• Start in state 𝑠0
• Set current state 𝑠= 𝑠0

• From current state 𝑠, choose action 𝑎 by picking one of these two choices:
• [Exploitation] Either by following the current policy argmax𝑎 𝑄𝜃(𝑠, 𝑎)
• [Exploration] Or by picking a completely random action 𝑎

• Execute/simulate 𝑎
• Observe the landed state 𝑠′, and the obtained reward 𝑟 (we have now collected an experience 

record data point 𝑠, 𝑎, 𝑠′, 𝑟 )
• From this observation, update value of 𝑄𝜃(𝑠, 𝑎) by taking a stochastic gradient step towards 

෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 (𝑠, 𝑎|𝑠
′, 𝑟) = 𝑟 + 𝛾max

𝑎′
𝑄𝜃 𝑠′, 𝑎′

𝜃 = 𝜃 − 𝛼 ቤ
𝜕

𝜕𝜃
෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑠, 𝑎|𝑠′, 𝑟 − 𝑄𝜃 𝑠, 𝑎

2

𝜃

• Update current state 𝑠=𝑠′
• Loop

• Until convergence of 𝑄/convergence of 𝜋∗

Keep in mind: policy ≡ Q-value
𝜋∗(𝑠) = argmax

𝑎
𝑄𝜃(𝑠, 𝑎)

෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 (𝑠, 𝑎|𝑠
′, 𝑟)

𝑄 𝑠, 𝑎

𝛼
𝑄 𝑠, 𝑎



Approximate Q-learning algorithm (for finding the optimal policy of an MDP) with learning rate 𝛼

• Initialize 𝜃 at some random values (i.e. initialize random policy)
• Start in state 𝑠0
• Set current state 𝑠= 𝑠0

• From current state 𝑠, choose action 𝑎 by picking one of these two choices:
• [Exploitation] Either by following the current policy argmax𝑎 𝑄𝜃(𝑠, 𝑎)
• [Exploration] Or by picking a completely random action 𝑎

• Execute/simulate 𝑎
• Observe the landed state 𝑠′, and the obtained reward 𝑟 (we have now collected an experience 

record data point 𝑠, 𝑎, 𝑠′, 𝑟 )
• From this observation, update value of 𝑄𝜃(𝑠, 𝑎) by taking a stochastic gradient step towards 

෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 (𝑠, 𝑎|𝑠
′, 𝑟) = 𝑟 + 𝛾max

𝑎′
𝑄𝜃 𝑠′, 𝑎′

𝜃 = 𝜃 − 𝛼 ቤ
𝜕

𝜕𝜃
෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛 𝑠, 𝑎|𝑠′, 𝑟 − 𝑄𝜃 𝑠, 𝑎

2

𝜃

• Update current state 𝑠=𝑠′
• Loop

• Until convergence of 𝑄/convergence of 𝜋∗

Keep in mind: policy ≡ Q-value
𝜋∗(𝑠) = argmax

𝑎
𝑄𝜃(𝑠, 𝑎)

Chasing a moving target

Failed iid assumption for SGD 

Two problems with this naïve approach



To stabilize Approximate Q-learning, Minh et al, 2015, introduce two 
improvements:
• Experience replay, store 1M transitions (experience data point) in 

memory buffer, then sample minibatches from those for SGD, don’t 
use current current transition for SGD, store it in memory buffer

• Use target network to compute the target of Q, update target 
network with Q-network every 10000 iterations



DQN algorithm with experience replay (for finding the optimal policy of an MDP) with learning rate 𝛼

• Initialize 𝜃 (Q-network) at some random values (i.e. initialize random policy), initialize 𝜃− to 𝜃 (𝜃− is the 
target network, target network=Q-network at initialization)

• Start in state 𝑠0
• Set current state 𝑠= 𝑠0

• From current state 𝑠, choose action 𝑎 by picking one of these two choices:
• [Exploitation] Either by following the current policy argmax𝑎 𝑄𝜃(𝑠, 𝑎)
• [Exploration] Or by picking a completely random action 𝑎

• Execute/simulate 𝑎
• Observe the landed state 𝑠′, and the obtained reward 𝑟 (we have now collected an experience record 

data point 𝑠, 𝑎, 𝑠′, 𝑟 )
• Store 𝑠, 𝑎, 𝑠′, 𝑟 in replay buffer 𝒟 (buffer capacity 1M, FIFO) 

• Sample minibatches of 32 tuples 𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖
′, 𝑟𝑖 of iid from 𝒟 to perform SGD

• [Update Q-network only, not target network] On that minibatch, update value of 𝑄𝜃(𝑠𝑖 , 𝑎𝑖) by taking a 
stochastic gradient step towards 

෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛,𝑖 (𝑠𝑖 , 𝑎𝑖 |𝑠𝑖
′, 𝑟𝑖) = 𝑟𝑖 + 𝛾max

𝑎′
𝑄𝜃− 𝑠𝑖

′, 𝑎′

𝜃 = 𝜃 − 𝛼 ቤ
𝜕

𝜕𝜃
𝔼 𝑠𝑖,𝑎𝑖,𝑠𝑖

′,𝑟𝑖
෠𝑄𝐵𝑒𝑙𝑙𝑚𝑎𝑛,𝑖 𝑠𝑖 , 𝑎𝑖|𝑠𝑖

′, 𝑟𝑖 − 𝑄𝜃 𝑠𝑖 , 𝑎𝑖
2

𝜃

• Every 10000 iteration reset 𝜃− to 𝜃 (reset target network to Q-network)
• Update current state 𝑠=𝑠′

• Loop
• Until convergence of 𝑄/convergence of 𝜋∗


